Constitutional Properties of Selected Ternary R-Ni-Al alloys (R= Ce, Sm)

S. Delsante, G. Borzone
The addition of misch metal to aluminium-based alloys improves:

- Tensile strength
- Heat resistance
- Vibration resistance
- Corrosion resistance
- Extrudability

Low-density glassy alloys contain:

- ~ 90 at% Al,
- 5 to 9 at% transition metals (Fe, Co, Ni, Rh)
- ~ 5 at% rare earths (Ce, Nd, Y)

They have:

- High tensile strength
- Crystallization temperature between 250°C and 300°C
- Nanocrystal dispersions of essentially pure Al
- Low density (aerospace industry)

Amorphous phases formed in the La-Ni-Al system (Inoue 1997)

(ASM Gschenidner vol.2, 1990)
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Journal/Book</th>
<th>Volume/Issue/Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase relations of the Sm–Ni–Al ternary system at 500 °C in the 40–100 at.% Al region</td>
<td>S. Delsante, R. Raggio and G. Borzone</td>
<td>Intermetalics</td>
<td>16 (11-12), 2008, 1250-1257</td>
</tr>
<tr>
<td>Chemical and thermodynamic properties of several Al–Ni–R systems</td>
<td>G. Borzone, R. Raggio, S. Delsante and R. Ferro</td>
<td>Intermetallics</td>
<td>11 (11-12), 2003, 1217-1222</td>
</tr>
<tr>
<td>Synthesis and Structural Characterization of Ternary Compounds Belonging to the Series RE_{2+m}Ni${4+m}$Al${15+4m}$ (RE rare earth metal)</td>
<td>S. Delsante, K. W. Richter, H. Ipser and G. Borzone</td>
<td>Z. Anorg. Allg. Chem.</td>
<td>635, 2009, 365-368</td>
</tr>
<tr>
<td>Influence of rare earth metals on the characteristics of anodic oxide films on aluminium and their dissolution behaviour in NaOH solution</td>
<td>F. Rosalbino, S. Delsante, G. Borzone and E. Angelini</td>
<td>Corrosion Science</td>
<td>52 (2), 2010, 322-326</td>
</tr>
</tbody>
</table>
The aim of this work is the investigation of the isothermal sections at 800°C of the R-Ni-Al systems (R= Ce and Sm) in the Al-rich part to underline similarities and differences in the formation of ternary phases and in the established phase relationships.

Why Ce and Sm?
Ce represents the light rare earth, Sm is known to have a “boundary behavior” between light and heavy rare earths.

Outline
- Literature data on R-Ni-Al systems (R = Ce and Sm)
- Experimental details
- Results and discussion
Three recent publications about the Ce-Ni-Al system:

1. [08Tang]: Experimental investigation of the Al-Ce-Ni system at 800°C (Intermetallics 16, 2008, 432-439)

2. [09Tang]: The phase equilibria of the Al-Ce-Ni system at 500°C (JALCOM 470, 2009, 222-227)

3. [10Tang]: Correlation between thermodynamics and glass forming ability in the Al-Ce-Ni system (Intermetallics 18, 2010, 900-906)
After a thermodynamic modeling, 10 invariant reactions in the Al-rich corner have been computed by [10Tang]. They confirmed some of them by DTA experiments.

- E1: $L \rightarrow Al + Ce_3Al_{11} + NiAl_3$ (628.2°C)
- U1: $L + Ce_4Ni_6Al_{23} \rightarrow Ce_3Al_{11} + NiAl_3$ (735.7°C)
- U2: $L + Ni_2Al_3 \rightarrow Ce_4Ni_6Al_{23} + NiAl_3$ (843.0°C)
- U3: $L + CeNiAl_4 \rightarrow Ce_4Ni_6Al_{23} + Ce_3Al_{11}$ (896.5°C)
- U4: $L + CeNi_2Al_5 \rightarrow Ce_4Ni_6Al_{23} + Ni_2Al_3$ (901.1°C)
- P1: $L + CeNiAl_4 + CeNi_2Al_5 \rightarrow Ce_4Ni_6Al_{23}$ (998.2°C)
- U5: $L + CeAl_4 \rightarrow L + Ce_3Al_{11}$ (1019.4°C)
- U6: $L + \beta CeAl_3 \rightarrow CeNiAl_4 + CeAl_4$ (1104.7°C)
- U7: $L + CeAl_2 \rightarrow \beta CeAl_3 + CeNiAl_4$ (1167.6°C)
- P2: $L + CeAl_4 + CeAl_2 \rightarrow \beta CeAl_3$ (1191.9°C)
Binary and ternary phases in the Al-rich part for the relevant phase diagrams

<table>
<thead>
<tr>
<th>Phase</th>
<th>Composition / at.%</th>
<th>Pearson symbol - type structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ce</td>
<td>Ni</td>
</tr>
<tr>
<td>Ce₃Al₁₁</td>
<td>22.4</td>
<td>-</td>
</tr>
<tr>
<td>α-CeAl₃</td>
<td>25.0</td>
<td>-</td>
</tr>
<tr>
<td>CeAl₂</td>
<td>33.3</td>
<td>-</td>
</tr>
<tr>
<td>Al₃Ni</td>
<td>-</td>
<td>25.0</td>
</tr>
<tr>
<td>Al₃Ni₂</td>
<td>-</td>
<td>40.0</td>
</tr>
<tr>
<td>Ce₄Ni₆Al₂₃</td>
<td>12.1</td>
<td>18.2</td>
</tr>
<tr>
<td>CeNiAl₄</td>
<td>16.7</td>
<td>16.7</td>
</tr>
<tr>
<td>CeNi₂Al₅</td>
<td>12.5</td>
<td>25.0</td>
</tr>
<tr>
<td>“Ce₁₂.₁Ni₂₈.₁Al₅₉.₈”</td>
<td>12.1</td>
<td>28.1</td>
</tr>
</tbody>
</table>

In [99Belov] the existence of a ternary eutectic reaction (L → Al + NiAl₃ + CeAl₄ *) with a global composition Ce₂.₆Ni₂.₆Al₉₄.₈ and a T_E = 627°C has been reported.
Two recent publications about the Sm-Ni-Al system:

1. [08Delsante]: Phase relations of the Sm–Ni–Al ternary system at 500 °C in the 40–100 at.% Al region; (Intermetallics, 16 (11-12), 2008, 1250-1257)

2. [09Delsante]: Synthesis and Structural Characterization of Ternary Compounds Belonging to the Series $RE_{2+m}Ni_{4+m}Al_{15+4m}$ (RE rare earth metal); (Z. Anorg. Allg. Chem., 635, 2009, 365-368)
E₁: \(L \rightarrow Al + Sm_{3}Al_{11} + Sm_{4}Ni_{6}Al_{23} \)
\((Sm_{2.5}Ni_{2.5}Al_{95}) \)

E₂: \(L \rightarrow Al + NiAl_{3} + Sm_{4}Ni_{6}Al_{23} \)
\((Sm_{1}Ni_{2}Al_{97}) \)

Isothermal section at 500°C
Binary and ternary phases in the Al-rich part for the relevant phase diagrams

<table>
<thead>
<tr>
<th>Phase / T range (°C)</th>
<th>Composition / at.%</th>
<th>Pearson symbol - type structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>SmAl</td>
<td>Sm 50.0 Ni - Al 50.0</td>
<td>oP16-ErAl</td>
</tr>
<tr>
<td>SmAl₃</td>
<td>Sm 25.0 Ni - Al 75.0</td>
<td>hP8-Ni₃Sn</td>
</tr>
<tr>
<td>SmAl₂</td>
<td>Sm 33.3 Ni - Al 66.7</td>
<td>cF24-Cu₂Mg</td>
</tr>
<tr>
<td>AlNi</td>
<td>- 50.0 Ni 50.0</td>
<td>cP2-CsCl</td>
</tr>
<tr>
<td>Al₃Ni</td>
<td>- 25.0 Ni 75.0</td>
<td>cP4-Cu₃Au</td>
</tr>
<tr>
<td>Al₃Ni₂</td>
<td>- 40.0 Ni 60.0</td>
<td>hP5-Al₃Ni₂</td>
</tr>
<tr>
<td>Sm₃Ni₅Al₁₉</td>
<td>Sm 11.1 Ni 18.5 Al 70.4</td>
<td>oS108-Gd₃Ni₅Al₁₉ (stable only at 800°C)</td>
</tr>
<tr>
<td>Sm₄Ni₆Al₂₃</td>
<td>Sm 12.1 Ni 18.2 Al 69.7</td>
<td>mS66-Y₄Ni₆Al₂₃</td>
</tr>
<tr>
<td>SmNiAl₄</td>
<td>Sm 16.7 Ni 16.7 Al 66.6</td>
<td>oC24-YNiAl₄</td>
</tr>
<tr>
<td>SmNiAl₃</td>
<td>Sm 20.0 Ni 20.0 Al 60.0</td>
<td>oP20-YNiAl₃</td>
</tr>
<tr>
<td>SmNiAl₂</td>
<td>Sm 25.0 Ni 25.0 Al 50.0</td>
<td>oS16-CuMgAl₂</td>
</tr>
<tr>
<td>SmNi₂Al₃</td>
<td>Sm 16.7 Ni 33.3 Al 50.0</td>
<td>hP18-HoNi2.6Ga2.4</td>
</tr>
</tbody>
</table>
Experimental techniques

Pieces of the elements in pure Ar atmosphere
Synthesis in alumina crucibles by induction melting
Annealing for 10-15 days at 800°C
Quenching in ice-water

ISOTHERMAL SECTION INVESTIGATIONS

CHARACTERIZATION OF THE ALLOYS

LOM SEM EPMA

XRD

Differential Scanning Calorimetry and Thermal Analysis were also performed on some Ce-Ni-Al alloys
Ce-Ni-Al system: 11 alloys in the composition range 70 - 100 at.% Al have been synthesized and completely characterized.

Sm-Ni-Al system: 19 alloys in the composition range 55 – 100 at.% Al have been synthesized and completely characterized.
Results
Ce-Ni-Al: isothermal section at 800°C

Grey phase: NiAl$_3$
White phase: Ce$_3$Al$_{11}$
liquidus (ternary eutectic morphology)

Composition and crystal structures of the ternary phases Ce$_4$Ni$_6$Al$_{23}$ (mS66-Y$_4$Ni$_6$Al$_{23}$, CeNiAl$_4$ (oS24-YNiAl$_4$) were confirmed

For the Ce$_3$Al$_{11}$ a Ni solubility of ~2 at.% was observed.

The previously established phase relationships have been confirmed
BSE micrograph of a Ce$_{2.5}$Ni$_{3.0}$Al$_{94.5}$ sample: ternary eutectic morphology

The microstructure of the ternary eutectic is greatly affected by the solidification.

$T_E = 622^\circ C$
measured by DSC
The **experimental results** by DTA analysis confirmed the **calculated temperatures** for the invariant reactions reported by [10Tang], with a good agreement for U₃ and P₁

U₁: \(L + Ce₄Ni₆Al₂₃ \rightarrow Ce₃Al₁₁ + NiAl₃ \)
\[700°C \quad [736°C] \]

U₃: \(L + CeNiAl₄ \rightarrow Ce₄Ni₆Al₂₃ + Ce₃Al₁₁ \)
\[896°C \quad [896.5°C] \]

P₁: \(L + CeNiAl₄ + CeNi₂Al₅ \rightarrow Ce₄Ni₆Al₂₃ \)
\[990°C \quad [998°C] \]
Sm-Ni-Al: isothermal section at 800°C

1. Sm₄Ni₆Al₂₃
2. Sm₃Ni₅Al₁₉
3. SmNiAl₄
4. SmNiAl₃
5. SmNiAl₂
6. SmNi₂Al₃
7. "Sm₁₃Ni₃₀Al₅₇"

Bright phase: SmAl₃
Grey phase: Sm₄Ni₆Al₂₃
Liquidus: SmAl₃

Light grey phase: SmNiAl₂

Grey phase: NiAl
Light grey phase: Ni₂Al₃

Dark Grey phase: SmNi₂Al₃

Bright phase: SmAl₂

Grey phase: NiAl
Light grey phase: SmNiAl₄
- The existence of the $\text{Sm}_4\text{Ni}_6\text{Al}_{23}$, SmNiAl_4, SmNiAl_3, SmNiAl_2 and SmNi_2Al_3 ternary phases previously reported for the isothermal section at 500°C were confirmed.

- The existence of the $\text{Sm}_3\text{Ni}_5\text{Al}_{19}$ in samples annealed at 800°C was also confirmed.

- A new phase with a composition $\sim\text{Sm}_{13}\text{Ni}_{30}\text{Al}_{57}$ was found.

- The relationships between binary and ternary phases have been proposed.
Ce-Ni-Al and Sm-Ni-Al systems: Isothermal sections at 800°C

Different behaviour of R-Ni-Al systems containing Ce or Sm

But, the phase reported by [08Tang] to exist at 800°C with an unknown structure and a composition ~Ce$_{12.1}$Ni$_{28.1}$Al$_{59.8}$ can be the same observed by us with a composition ~ Sm$_{13}$Ni$_{30}$Al$_{57}$
Conclusions -1

- Composition and crystal structures of the ternary phases Ce₄Ni₆Al₂₃, CeNiAl₄ were confirmed

- For the Ce₃Al₁₁ a Ni solubility of ~2 at.% was observed.

- The previously established phase relationships have been confirmed

- Temperature of several invariant reactions have been determined by DSC and DTA analysis
Conclusions -2

- The existence of the ternary phases Sm$_4$Ni$_6$Al$_{23}$, SmNiAl$_4$, SmNiAl$_3$, SmNiAl$_2$ and SmNi$_2$Al$_3$ previously reported for the isothermal section at 500°C were confirmed. The existence of the Sm$_3$Ni$_5$Al$_{19}$ in samples annealed at 800°C was also confirmed.

- A new phase with a composition ~Sm$_{13}$Ni$_{30}$Al$_{57}$ was found. A structural investigation is still needed.

- The relationships between binary and ternary phases have been proposed.

- The differences between the relationships occurring at 500°C and 800°C have been highlighted.

- Similarities and differences in the formation of ternary phases and in the established phase relationships for the Ce-Ni-Al and Sm-Ni-Al systems have been underlined.
THANK YOU FOR YOUR ATTENTION
$\text{Al}_{15+4m}\text{Ni}_{4+m}\text{R}_{2+m}$ structure series

$\text{R}_4\text{Ni}_6\text{Al}_{23}$
$\text{R} = \text{Y, Sm, Gd, Yb}$

$\text{R} = \text{heavy rare earths}$

$\text{R}_3\text{Ni}_5\text{Al}_{19}$
$\text{R} = \text{Y, Gd, Dy, Er}$

RNi_3Al_9
$\text{R} = \text{Gd}$

<table>
<thead>
<tr>
<th>Phase</th>
<th>at% R</th>
<th>at% Ni</th>
<th>at% Al</th>
<th>structure type</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{R}_3\text{Ni}5\text{Al}{19}$</td>
<td>11.11</td>
<td>18.52</td>
<td>70.37</td>
<td>oS108- $\text{Gd}_3\text{Ni}5\text{Al}{19}$</td>
</tr>
<tr>
<td>$\text{R}_4\text{Ni}6\text{Al}{23}$</td>
<td>12.12</td>
<td>18.18</td>
<td>69.7</td>
<td>mS66- $\text{Y}_4\text{Ni}6\text{Al}{23}$</td>
</tr>
<tr>
<td>RNi_3Al_9</td>
<td>7.69</td>
<td>23.08</td>
<td>69.23</td>
<td>hR78- ErNi_3Al_9</td>
</tr>
</tbody>
</table>
Bright phase: $\text{Sm}_3\text{Ni}_5\text{Al}_{19}$
Grey phase: Ni_3Al_3
liquidus

Bright phase: SmNiAl_4
Dark Grey phase: “new phase”
Grey phase: SmNiAl_3