Stability of Laves Phases in the Ta – V System

J. Pavlíček, J. Vřešťál, X.-Q. Chen, P. Rogl

aDepartment of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
bInstitute of Physics of Materials, Academy of Science of the Czech Republic, Brno, Czech Republic
cInstitute of Physical Chemistry, University of Vienna, Vienna, Austria
dShenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
Outline of the presentation

Stability of Laves phases (C14, C15, C36)
- ab initio energetics,
- phase equilibria,
- vibrational stabilisation of phases
C14 Laves Phase
- **hexagonal structure** – prototype MgZn$_2$ (space group 194, P63/mmc)
- 12 atoms per unit cell, lattice parameters a and c
- **3 inequivalent sublattices**

C15 Laves Phase
- **cubic structure** - prototype Cu$_2$Mg (space group 227, Fd-3m)
- 24 atoms per unit cell, lattice parameter a
- **2 inequivalent sublattices**

C36 Laves Phase
- **hexagonal structure** prototype MgNi$_2$ (space group 194 P63/mmc)
- 24 atoms per unit cell, lattice parameters a and c
- **5 inequivalent sublattices**
First-principle Calculations for Modeling of Gibbs Energy of Phases – macroscale level

- Laves-phases Cr$_2$X:

In all mentioned systems: for Cr$_2$X: the most stable structure at 0 K: C15, at high T: C14

Similarly Cr-Hf and Cr-Ti systems: (CALPHAD 34(2) (2010) 215)
Energetics Ta – V: „anomalous system“

(C14 is most stable structure at 0 K, and at high T
C15 is stable at mediate temperatures: $T_{low} – T_{high}$)

(Ta and V belong to the same group of the periodic system.

Studied as prospective superconductors.)

Ab initio calculations results:

\[
\begin{array}{|c|c|c|c|}
\hline
\text{structure} & \text{Cr}_2\text{Hf} & \text{Cr}_2\text{Ti} & \text{V}_2\text{Ta} \\
\hline
\text{C14} & -8,70 & -8,47 & -11,40 \\
\text{C15} & -10,38 & -10,16 & -10,18 \\
\text{C36} & -9,68 & -9,51 & -10,82 \\
\hline
\end{array}
\]

\[\Delta E_{\text{Laves-SER}}^{\text{kJ.mol}^{-1} \text{ of atoms}}\]
Ab initio Calculations – nanoscale level

CODES

VASP (Vienna Ab initio Simulation Package) with the PAW-PBE (Projector Augmented Wave Perdew-Burke-Ernzerhof) pseudopotential gives us the possibility of the structure relaxation.

GGA (Generalized Gradient Approximation) was used to evaluate the exchange-correlation energy.

We used to evaluate the properties (total energies) of:

- Standard element reference (SER) states
- Laves phases with two-sublattice model of occupations of the sublattices:
 - C14,15 - two sublattice model \((A,B)_2(B,A)\) \((A=V, B=Ta)\):
 - \((\text{End-members: } A_2A, A_2B, B_2A, B_2B.)\)

We have calculated **energies of formation** of all configurations:

- starting at experimental lattice parameters
- results based on **equilibrium lattice parameters**
Results: Energetics: Ta – V

\[\Delta E_{\text{Laves-SER}} \text{(kJ.mol}^{-1} \text{ of atoms)} \]

<table>
<thead>
<tr>
<th>composition</th>
<th>Ta\textsubscript{2}Ta</th>
<th>Ta\textsubscript{5}V</th>
<th>Ta\textsubscript{2}V</th>
<th>TaV</th>
<th>TaV\textsubscript{2}</th>
<th>V\textsubscript{2}V</th>
</tr>
</thead>
<tbody>
<tr>
<td>C14</td>
<td>9.35</td>
<td>5.09</td>
<td>46.69</td>
<td>37.59</td>
<td>-11.40</td>
<td>9.82</td>
</tr>
<tr>
<td>C15</td>
<td>10.94</td>
<td>----</td>
<td>48.11</td>
<td>----</td>
<td>-10.18</td>
<td>11.23</td>
</tr>
<tr>
<td>C36</td>
<td>10.15</td>
<td>5.22</td>
<td>47.38</td>
<td>37.30</td>
<td>-10.82</td>
<td>10.42</td>
</tr>
</tbody>
</table>

(Energies for possible three-sublattice model are also calculated here.)

Effect of magnetic order: C15(Cr\textsubscript{2}Cr): \(E_{\text{FM}} - E_{\text{NM}} = -3.01 \text{ kJ.mol}^{-1} \text{ of atoms}, \) (for V\textsubscript{2}V not tested)
(At 0 K – FM - Laves phase is more stable, at room temperature – it is nonmagnetic)

Equilibrium lattice parameters correspond to the experimental ones – nonmagnetic state
Energy differences, between the total energy of Laves phases of various types and SER states (bcc-Ta, bcc-V) calculated in this work and compared with literature data

<table>
<thead>
<tr>
<th>Composition</th>
<th>Energy differences (kJ.mol$^{-1}$of atoms) (vrt. SER)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ta$_2$Ta</td>
</tr>
<tr>
<td>C14 this work</td>
<td>9.35</td>
</tr>
<tr>
<td>C15 this work</td>
<td>10.94</td>
</tr>
<tr>
<td>C36 Ref.</td>
<td>-----</td>
</tr>
<tr>
<td>C36 this work</td>
<td>10.15</td>
</tr>
</tbody>
</table>

Ta-V phase diagram calculation – macroscale level

- Two sublattice model for Laves phases C14 and C15, (C15 most stable at 0 K).

Every Laves phase – 6 assessed (free) parameters
(5 kJ.mol⁻¹ of atoms – guess for Gibbs energy of hypothetical compositions)

Phase equilibrium data:
- Savitskij E.M., Efimov J.V.: Monatsh.Chem. 103 (1972) 270

Thermodynamic data: low temperature heat capacity data only
Thermodynamic models of phases-macroscopic level

BCC: 2 \ 1 \ 3
Liquid: 1 \ 1

Laves_C14: 2 \ 2 \ 1
Laves_C15: 2 \ 2 \ 1

Assignment of lattice sites in models

Sublattice 1 2
Laves_C14 2a 6h (V) 4f
Laves_C15 16d (V) 8a (two sublattice model)

Ab initio values (NEW) for $\Delta H^\circ(T = 0 \text{ K})$ for Ta – V Laves phases C14, C15, (C36) vs. SER phases (all combinations) – not changed in assessment – taken as thermodynamic data!
(Instead of infamous 5 kJ.mol$^{-1}$!!!)
Parameter values of solution phases: Ta - V (in J.mol⁻¹ of atoms) – adjusted to experimental data

Ta-V

[Danon, Servant 2004]

BCC

\[L^0 = 5476.65 \]
\[L^1 = -16527.68 \]

Liquid

\[L^0 = -3707.72 + 0.285 \times T \]

(Tanaka´s rule for liquid is not fulfilled, but no new experimental data exist.)
Contribution of vibrational heat capacity and vibrational entropy to the Gibbs energy – influence of temperature

\[G_{L-SER} = \Delta H_o + \int_0^T \Delta C_p \,dT - T \int_0^T (\Delta C_p /dT) \,dT \]

\[\Delta H_o = E_o^L - E_o^{SER} \quad (0 \text{ K}) \]

\[\Delta C_p = C_p^L - C_p^{SER} = a + bT \]

\[G_{L-SER} = \Delta H_o + T(a - b - a \ln T) + (b/2)T^2 \]

(assumption: \(b = 0, \Delta C_p = a \))

\[G_{L-SER} \approx \Delta H_o + Ta(1 - \ln T) \]

New: ---

(\(a(T - T \ln T) \) – adjusted for C14)

(\((a-b)T - aT \ln T + (b/2)T^2 \) – adjusted for C15)
\[G = \Delta H_0 + T(a - b - a \ln(T)) + (b/2)T^2 \]

\[G = \Delta H_0 + Ta(1 - \ln(T)) \]

C15 \[b \neq 0 \]

C14 \[b = 0 \]
Parameter values of Laves phases (in J.mol$^{-1}$ of comp.)

Ta-V system - 2 sublattices (1:2) for C14 and C15 Laves phases

adjusted values are in red - correspond to the contribution of vibrational entropy and vibrational heat capacity

ab initio calculated values are in blue – not changed during optimization

C14

\[
\begin{align*}
G(V:V) &= 29448 + 3 \cdot \text{GHSERV} \\
G(Ta:V) &= -34219 -1.57*T + 1.57*T*\ln(T) + 2 \cdot \text{GHSERV} + \text{GHSERTA} \\
G(V:Ta) &= 140061 + 2 \cdot \text{GHSERTA} + \text{GHSERV} \\
G(Ta:Ta) &= 28038 + 3 \cdot \text{GHSERTA} \\
L(Ta:Ta,V;0) &= 14800 \\
L(Ta,V:V;0) &= -4200 \\
\end{align*}
\]

C14 (3-subl.)

\[
\begin{align*}
G(V:V) &= 117792 + 12 \cdot \text{GHSERV} \\
G(V:Ta) &= -136876 -6.19*T +6.19*T*\ln(T) + 4 \cdot \text{GHSERTA} + 8 \cdot \text{GHSERV} \\
G(V:V:Ta) &= 451080 + 6 \cdot \text{GHSERV} + 6 \cdot \text{GHSERTA} \\
G(V:V:Ta) &= 61080 + 10 \cdot \text{GHSERTA} + 2 \cdot \text{GHSERV} \\
L(V:Ta:Ta,V;0) &= 31000 \\
L(V:V, Ta:V;0) &= -9000 \\
\end{align*}
\]

C15

\[
\begin{align*}
G(V:V) &= 33703 + 3 \cdot \text{GHSERV} \\
G(Ta:V) &= -30525 +0.1782*T -0.190*T*\ln(T) +0.0059*T^{**2} + 2 \cdot \text{GHSERV} + \text{GHSERTA} \\
G(V:Ta) &= 144334 + 2 \cdot \text{GHSERTA} + \text{GHSERV} \\
G(Ta:Ta) &= 32815 + 3 \cdot \text{GHSERTA} \\
L(Ta:Ta,V;0) &= 1011 \\
L(Ta,V:V;0) &= -6124 \\
\end{align*}
\]
Assessment results
Ta - V

(Predicted lower limit of C15 stability is about 600 K. C14 – three sublattice model = dashed lines)

Results - calculated thermodynamic data
- prediction

Ta - V

\[E_{\text{form}} = E_{\text{tot}}^{\text{Lav}} - 2E_{\text{tot}}^{\text{V}} - E_{\text{tot}}^{\text{Ta}} \]

C15 (cub.) \(-30.52\) kJ.mol\(^{-1}\)
C14 (hex.) \(-34.22\)

Ta - V

\[\Delta C_{p}^{\text{L-SER}} = C_{p}^{\text{Lav}} - 2C_{p}^{\text{V}} - C_{p}^{\text{Ta}} \]

C15 (cub.) \(-1.57\) J.(mol.K)\(^{-1}\)
C14 (hex.) \(+0.190 + 0.0118*T\)
Conclusions

Energetics

• Ab initio calculations are able to predict the relative stability of the C14 and C15 Laves phases in metallic materials

Phase diagram

Only 3 (4) assessed parameters for Laves phase C14 (C15) type are necessary in reassessed phase diagram

• New: Contribution of heat capacity
 - Term ΔC_p^{L-SER} at higher temperature stabilises respective structures.
 - C15 is stable at mediate temperatures: $T_{low} - T_{high}$
 - Temperature dependence of ΔC_p^{L-SER} term is necessary to consider here!!!
 - The origin of this heat capacity is more probably vibrational (not configurational) (adjusted parameters may be calculated from vibrational data)
Thank you for your attention

Acknowledgements
Financial support of Grant Agency of the Czech Republic (Projects Nos. P108/10/1908, 106/09/0700), the Ministry of Education of the Czech Republic (Projects Nos. OC 09010, MEB 060915) and Long Term Research Projects AV0Z20410507 and MSM0021622410 are gratefully acknowledged.