CONTROLE POSTURAL E MARCHA HUMANA:

ANÁLISE MULTIFACTORIAL

Andreia Sofia Pinheiro de Sousa

MONOGRAFIA

PROGRAMA DOUTORAL EM ENGENHARIA BIOMÉDICA

Orientador:

Prof. Doutor João Manuel R. S. Tavares

Prof. Auxiliar do Departamento de Engenharia Mecânica
Faculdade de Engenharia da Universidade do Porto

Julho de 2010
RESUMO

Todos os comportamentos motores incluem controlo postural, um processo neural complexo envolvido na organização da estabilidade e orientação do corpo no espaço. Tendo em conta esta relação intrínseca, o tema central desta Monografia relaciona-se com o controlo postural e a marcha humana. O principal objectivo que se pretendeu alcançar com a sua realização foi o estudo e a análise dos mecanismos propostos para interpretar as estratégias de controlo postural e marcha.

A análise do movimento e controlo postural tem tido um desenvolvimento crescente; no entanto, a classificação de diferentes padrões biomecânicos, quer estáticos, quer dinâmicos, como mais ou menos eficientes, implica a conjugação de vários factores e a quantificação de múltiplas variáveis, o que justifica a implementação de novos estudos nesta área. Assim, a revisão de estudos sobre as temáticas referidas servirá de base para delinear o projecto de Doutoramento em Engenharia Biomédica, constituindo assim uma primeira introdução ao tema da Tese definida.

A abordagem utilizada para o desenvolvimento desta Monografia foi constituída pelas seguintes etapas principais: a) revisão dos componentes e subsistemas do sistema de controlo postural e da sua influência em parâmetros de outros sistemas, como a hemodinâmica; b) revisão dos mecanismos propostos para interpretar a marcha; c) revisão da instrumentação disponível para quantificar variáveis biomecânicas relativas ao controlo postural e a marcha humana.
ÍNDICE

I. INTRODUÇÃO E ESTRUTURA DA MONOGRAFIA ... 1
 1.1 Enquadramento ... 1
 1.2 Estrutura .. 2

II. CONTROLO POSTURAL .. 5
 2.1 Introdução .. 5
 2.2 Subsistemas de controlo postural ... 8
 2.3 Subcomponentes de controlo postural ... 9
 2.4 Controlo do equilíbrio sem perturbações da postura ... 16
 2.5 Controlo de equilíbrio durante perturbações da postura .. 18
 2.6 Ajustes posturais durante o movimento .. 19
 2.7 controlo postural e retorno venoso .. 24

III. MARCHA HUMANA .. 27
 3.1 Introdução .. 27
 3.2 Fases do ciclo de marcha .. 29
 3.3 Neurofisiologia/controlo motor da Marcha .. 32
 3.4 Aspectos biomecânicos da marcha .. 36
 3.5 Modelos explicativos da marcha ... 38
 3.6 Controlo energético da marcha ... 53
 3.6 Análise da actividade muscular durante o ciclo de marcha 58
 3.7 Caracterização cinética da marcha .. 63

IV. INSTRUMENTAÇÃO BIOMECÂNICA ... 65
 4.1 Introdução ... 65
 4.2 Análise cinemática do movimento .. 66
 4.3 Análise cinética ... 73
 4.4 Actividade electromiográfica ... 78

V. CONSIDERAÇÕES FINAIS ... 84
 5.1 Conclusões .. 84
5.2 Perspectivas de trabalhos futuros ... 84

BIBLIOGRAFIA .. 86
ÍNDICE DE FIGURAS

Figura 2.1: Integração e organização da informação proveniente dos diferentes subsistemas de controlo postural. ... 9

Figura 2.2: Esquema representativo das principais vias e funções envolvidas na propriocepção. (As linhas finas representam as vias aferentes e estruturas associadas a propriocepção; as linhas grossas representam as vias eferentes associadas a acções motoras levando a movimento esquelético. A parte superior da figura representa as estruturas nervosas superiores que controlam a atenção e motivação. A parte inferior da figura representa o sistema autónomo que regula a propriocepção.) ... 14

Figura 3.1: Esquema representativo do ciclo de marcha... 28

Figura 3.2: Representação esquemática do conceito de dois níveis do GPC. (As esferas verdes representam populações de interneurónios. Os losangos representam conjuntos de motoneurónios sinergistas.) ... 32

Figura 3.3: Ilustração dos mecanismos do GPC induzidos por impulsos excitatórios provenientes da Região Locomotora Mesencefálica. (As populações de interneurónios estão representadas por esferas. As conexões sinápticas excitatórias e inibitórias estão representadas através de linhas e círculos respectivamente. As populações de motoneurónios estão representadas por losangos.) 33

Figura 3.4: Ilustração gráfica do conjunto dos seis determinantes da marcha... 38

Figura 3.5: Ilustração gráfica do primeiro determinante da marcha, a rotação pélvica. ... 38

Figura 3.6: Ilustração gráfica do segundo determinante da marcha, a inclinação pélvica. ... 39

Figura 3.7: Ilustração gráfica do terceiro determinante da marcha, flexão do joelho em apoio unipodalico... 40

Figura 3.8: Ilustração gráfica do quarto e quinto determinantes da marcha, pé e joelho. ... 41
Figura 3.9: Ilustração gráfica do sexto determinante da marcha, o deslocamento lateral da pelvis.

Figura 3.10: Duas teorias explicativas da marcha: (a) Os seis determinantes da marcha reduzem o deslocamento vertical e horizontal do centro de gravidade; (b) A teoria do pêndulo invertido postula que o membro em fase de apoio é mantido em extensão funcionando como um pêndulo invertido.

Figura 3.11: Os princípios da marcha dinâmica representados em robots: A fase de apoio unipodálico pode ser produzida por dinâmica passiva com os membros agindo como pêndulos como na teoria do pêndulo invertido. Uma característica da marcha dinâmica é que existe uma colisão entre o membro em fase de balanço e o solo, havendo dissipação de energia. A energia pode ser recuperada passivamente como na dinâmica passiva num plano inclinado ou activamente através da propulsão.

Figura 3.12: Diagrama geométrico da redirecção da velocidade do CM pelos membros posterior e anterior: O trabalho teórico realizado por cada membro é proporcional ao quadrado das forças integradas e normalizadas à massa com trabalho positivo realizado pelo membro posterior e negativo pelo membro anterior. (a) Se a propulsão é igual à magnitude da colisão, a quantidade de trabalho positivo e negativo é minimizada e não é necessário trabalho durante a fase de apoio unipodálico. b) Se a colisão exceder a propulsão o próximo passo inicia com uma velocidade menor. Para manter a mesma velocidade é realizado trabalho positivo adicional durante a fase de apoio ou executando marcha em plano inclinado. (c) Se a propulsão excede a colisão é necessário trabalho negativo adicional para desacelerar o pêndulo.

Figura 4.1: Diagrama de vector recolhido num indivíduo saudável durante a marcha.
ÍNDICE DE TABELAS

Tabela 3.1: Fases e subfases do ciclo de marcha. .. 28

Tabela 3.2: Parâmetros de tempo e espaço relevantes na análise de marcha. 29
I. INTRODUÇÃO E ESTRUTURA DA MONOGRAFIA

1.1 ENQUADRAMENTO

Esta Monografia relaciona-se essencialmente com o sistema de controlo postural e a marcha humana.

A evidência sugere que o equilíbrio em posição ortostática é naturalmente instável. Pequenos desvios de uma posição corporal erecta perfeita resultam num binário corporal induzido pela força da gravidade. Como resultado, torna-se necessária a criação de binários correctivos para compensar o binário destabilizante induzido pela força de gravidade. Este processo de controlo não está ainda claramente esclarecido, havendo mesmo alguma controvérsia acerca da organização de sistemas sensoriais e motores que contribuem para a estabilidade postural. Contudo, vários estudos demonstraram que a postura pode ser perturbada pela estimulação de vários sistemas sensoriais [Day, 1997; Horak, 1996a; Johanson, 1991; Kavounoudias, 1999; Lee, 1975a; Peterka, 1995], realçando a importância das estratégias de controlo postural.

A coordenação entre postura e movimento envolve o controlo dinâmico do centro de massa (CM) na base de suporte [Stapley, 1999]. A análise quantitativa deste controlo insere-se no domínio da biomecânica, envolvendo o estudo estático e dinâmico de sistemas biológicos [Hall, 1999]. A marcha, apesar de constituir um exemplo de um movimento rítmico, é influenciada por um conjunto multifatorial resultante da interacção ou do processo de organização própria de vários sistemas. O estudo de interacções sensoriomotoras dinâmicas durante a marcha é de interesse para determinar como respostas reflexas, resultantes de perturbações, podem levar a correções na marcha e para revelar mecanismos de integração sensoriomotora [Rossignol, 2006].

A adaptação do sistema biológico humano inclui a alteração da resposta dos receptores neurais [Theunissen, 2000], e alterações da função do sistema nervoso

Assim sendo, dada a capacidade de reorganização do sistema de controlo postural no sentido de uma melhor performance do movimento, é pertinente compreender os mecanismos e estratégias de controlo postural, estático e dinâmico, e de que forma esses mecanismos influenciam variáveis de outros sistemas. Dada a multidimensionalidade do movimento torna-se importante a identificação e correlação de factores, internos e externos, relevantes, e de variáveis descritivas que permitam caracterizar adequadamente padrões cinéticos e cinemáticos, trabalho executado e energia despendida. A referida identificação de factores e variáveis é de elevada importância, não só em Ciências da Saúde como também Desporto, Engenharia, entre outros domínios.

1.2 ESTRUTURA

Tendo em conta a informação acima exposta esta Monografia foi dividida em três grandes temas distribuídos ao longo dos 4 capítulos restantes:

Capítulo II: Controlo Postural

Este capítulo é dedicado a uma abordagem ao sistema de controlo postural. São apresentados os subsistemas, as estratégias e mecanismos associados ao controlo postural. É também apresentada uma abordagem ao modo como se processa o equilíbrio sem perturbações e com perturbações da postura. Dentro deste último tema, são distinguidas as perturbações esperadas e não esperadas do CM. Adicionalmente, é abordada a forma como o sistema de controlo postural se organiza durante o movimento. Numa última fase é apresentada a influência no controlo postural em variáveis de outros sistemas, como o vascular.
Capítulo III: Marcha Humana

De uma forma genérica, este capítulo está orientado no sentido de fazer uma análise em termos de controlo motor, mais direcionada para a componente biomecânica. No sentido de aceder a este conceito, é feita uma abordagem às principais variáveis a ter em conta na análise da marcha, bem como as teorias existentes e referenciados como explicativas para o fenómeno. Ao longo da apresentação das várias teorias procurou fazer-se uma análise comparativa, com o objectivo de perceber de que modo os diferentes modelos se completam ou divergem, e até que ponto se afastam ou aproximam da realidade. São referidos aspectos relativos ao controlo energético da marcha humana seguida de uma caracterização electromiográfica e cinética da mesma.

Capítulo IV: Instrumentação biomecânica

Neste capítulo são abordados aspectos essencialmente relacionados com os meios que permitem aceder aos três componentes tradicionais da análise da marcha: factores cinéticos, cinemáticos e electromiográficos. Numa fase inicial é apresentada uma parte introdutória, onde são expostas, de uma forma sucinta, as bases da biomecânica da marcha em termos operacionais. Seguidamente, encontram-se descritos meios actualmente existentes que permitem aceder, de forma válida e rigorosa, aos diferentes parâmetros enunciados. Nesta fase, procurou-se estabelecer uma análise comparativa entre os diferentes meios tecnológicos, de maneira a poder aferir uma escolha que permita uma maior eficiência, em função dos objectivos propostos, num trabalho de investigação.

Capítulo V: Considerações finais

Neste capítulo são apresentadas as principais conclusão e os trabalhos futuros a realizar no âmbito da Tese de Doutoramento em Engenharia Biomédica.
II. CONTROLO POSTURAL

2.1 INTRODUÇÃO

A manutenção de uma postura estável assume grande relevância para o movimento. Para os humanos esta tarefa é particularmente desafiante dado que aproximadamente 2/3 da massa corporal é dificilmente equilibrada sobre os membros inferiores, que promovem uma base de suporte estreita, a uma distância do solo de cerca de 2/3 da altura corporal. Este aspecto impõe grande exigência em termos de controlo postural e equilíbrio. O equilíbrio em bipedismo ortostático é naturalmente instável [Peterka, 2004], sendo, no entanto, fundamental para a execução segura da maior parte dos movimentos [Winter, 1990]. Quando o sistema de controlo postural se deteriore, como por exemplo com a idade, os resultados podem ser devastadores, como originar quedas em idosos que têm sido identificadas como um grave problema de saúde pública [Baker, 1985].

Praticamente todos os comportamentos motores pressupõem controlo postural, um processo neural e complexo envolvido na organização da estabilidade e orientação do corpo no espaço [Massion, 1998]. O controlo postural pode ser definido como a habilidade para manter o equilíbrio em relação à acção da força gravítica através da manutenção ou retorno do centro de massa (CM) na base de suporte. Em posição ortostática existe um equilíbrio instável dado que a força gravítica tem que ser equilibrada continuamente através de energia muscular [Horak, 1987]. A posição do CM, bem como a configuração geométrica dos segmentos corporais, é rigorosamente controlada relativamente à superfície de apoio e direcção da força gravítica [Gurfinkel, 1995; Massion, 1992b; Nashner, 1985a]. Sem o nível apropriado de controlo postural, uma tarefa normal como a marcha torna-se de difícil realização [Riccio, 1988].

1 Ponto equivalente ao total da massa corporal no sistema global de referência e é a média ponderada do CM de cada segmento corporal num espaço 3D. Constitui uma variável passiva controlada pelo sistema de controlo de equilíbrio. A projecção vertical do CM no solo é muitas vezes designada de centro de gravidade (CG), sendo sua unidade de medida o metro [Winter, 1995].
Assim, o controlo postural já não é considerado apenas como um sistema ou um conjunto de reflexos de equilíbrio e “endireitamento”. Mais do que isso, o controlo postural constitui uma tarefa motora complexa, derivada da interacção de múltiplos processos sensoriomotores, cujos principais objectivos do controlo postural são a orientação postural e o equilíbrio postural. A orientação postural envolve o controlo activo do alinhamento e o tônus corporal em relação à força de gravidade, base de suporte, ambiente visual e referências internas. A orientação espacial no controlo postural é baseada na interpretação de informação convergente sensorial proveniente de sistemas somatosensoriais, visuais e vestibulares. Adicionalmente, o equilíbrio postural envolve a coordenação de estratégias sensoriomotoras para estabilização do CM durante desequilíbrios internos e externos na estabilidade postural [Horak, 2006].

O equilíbrio em posição vertical é conseguido quando o CM é posicionado sobre a base de suporte e está alinhado com o centro de pressão2 (CP). Qualquer perturbação externa, como uma translação súbita da superfície de suporte, ou interno, como um movimento rápido do membro superior e inferior, altera a projecção do CM para os limites da base de suporte e o alinhamento entre o CM e o CP, o que pode resultar num desequilíbrio postural. Para minimizar o perigo de perda de equilíbrio, o sistema nervoso central (SNC) utiliza ajustes posturais antecipatórios (APA) através da activação de músculos do tronco e membros inferiores desencadeada por mecanismos de feedforward previamente ao desequilíbrio [Aruin, 1995b; Belenkiy, 1967; Li, 2007; Massion, 1992b], bem como ajustes posturais compensatórios (APC) que são iniciados por sinais sensoriais de feedback [Alexandrov, 2005; Park, 2004]. Os APC constituem mecanismos de restauro da posição do CM após uma perturbação.

2 É o ponto de localização do vector de força de reacção do solo vertical. Representa uma média ponderada das pressões sobre a superfície de apoio que está em contacto com o solo. É totalmente independente do CM. Se um pé está no solo, o somatório do CP está dentro do pé, já se os dois pés estão em contacto com o solo, o somatório do centro de pressão situa-se entre os dois pés. Se só existe uma plataforma de forças, só o somatório dos CP está disponível, pois são necessárias duas plataformas de força para aceder às alterações do CP em cada pé. A localização do CP em cada pé é o reflexo directo do controlo neural da musculatura da tibiótársica. O aumento dos flexores plantares move o CP anteriormente, o aumento da actividade inversora move o CP lateralmente, sendo a unidade de medida o metro. Na literatura existe frequentemente uma má utilização desta variável pois é referida como CM [Winter, 1995].

Este capítulo encontra-se organizado de forma a explorar os subsistemas de controlo postural, a sua acção individual e de que forma em conjunto interagem para promover o controlo postural. Dado que a compreensão do controlo postural requer a consideração de vários subsistemas fisiológicos que permitem a habilidade para manutenção da postura, realização de marcha e interacção com o ambiente, de maneira segura e eficiente, serão exploradas subsistemas importantes para controlo postural. É também apresentada uma abordagem ao modo como se processa o equilíbrio sem perturbações e com perturbações da postura. Dentro deste último tema, serão distinguidas as perturbações previsíveis e imprevisíveis do CM, sendo dada maior relevância às perturbações não esperadas. Numa última fase será dada relevância aos ajustes posturais durante o movimento.
2.2 Subsistemas de Controlo Postural

Os subsistemas que formam o sistema de controlo postural incluem os seguintes, Figura 2.1: 1) **sistema sensorial**, composto por sistema vestibular, visual e proprioceptivo; 2) **sistema nervoso central (SNC)** e 3) **sistema musculosquelético**.

O sistema proprioceptivo consiste em receptores musculares, articulares e cutâneos que promovem informação acerca do estado do sistema efector (por exemplo, comprimento muscular, tensão desenvolvida, orientação relativa dos segmentos) e informação acerca do ambiente (como temperatura, condição da superfície de contacto, distribuição da pressão, presença de algum estímulo tóxico). O sistema vestibular promove informação acerca da orientação corporal no enquadramento inercial de referência e aceleração corporal. O sistema visual tem sido categorizado como um sistema proprioceptivo, na medida em que promove não só informação acerca do ambiente, como também acerca da orientação e movimento corporal, sendo por isso referido como extraproprioceptivo [Lee, 1975b]. Assim, é claro que a informação usada para manutenção postural provém de várias fontes. A redundância permite não só compensar a deteriorização de um sistema, mas também permite a verificação de inputs (às vezes contraditórios) através da comparação destes antes da realização da acção. O conjunto de inputs que chegam ao sistema necessitam de ser avaliados e integrados, e um plano de acção apropriado tem de ser decidido a nível do SNC. Este plano de acção é executado pelo sistema musculosquelético para regular a postura e o movimento [Winter, 1990]. O modelo interno da posição corporal é continuamente actualizado com base neste feedback multissensorial e esta representação interna é usada para comandos de feedforward para controlo da posição corporal no espaço, tendo em conta as restrições ambientais [Massion, 1994; Mergner, 1998].

O facto de a resposta do sistema de controlo postural ser vital para as actividades da vida diária, leva a pensar que o plano de acção para lidar com situações de desequilíbrio tem de ser programado em vez de organizado com base na necessidade. Investigadores tentaram identificar estes planos de acção, mimetizando uma variedade de desequilíbrios, nomeadamente deslocamentos da

Figura 2.1: Integração e organização da informação proveniente dos diferentes subsistemas de controlo postural (adaptado de [Winter, 1990]).

2.3 SUBCOMPONENTES DE CONTROLO POSTURAL

2.3.1 RESTRIÇÕES BIOMECÂNICAS

As restrições biomecânicas na oscilação postural exercem uma grande influência nos padrões de coordenação postural [Buchanan, 2003]. O corpo pode ser comparado a um pêndulo simples quando a oscilação corporal é menor que 0.5 Hz [McCollum, 1989]. Para oscilações superiores a 0.5 Hz o corpo oscila como um
pêndulo invertido duplo com o fulcro a nível da anca [Yang, 1990]. Estes argumentos sugerem que o valor de 0.5 Hz constitui uma restrição biomecânica na produção de padrões posturais específicos [Nashner, 1989].

Uma das restrições biomecânicas mais importantes no controlo postural é o controlo do CM dentro da base de suporte. Em apoio, os limites de estabilidade, área na qual o indivíduo pode mover o seu CM, mantendo o equilíbrio sem mudar a base de suporte, têm a forma de um cone [McCollum, 1989]. Assim sendo, o equilíbrio não constitui uma posição particular no espaço, sendo determinado pelo tamanho da base de suporte e as limitações da amplitude articular, força muscular e informação sensorial disponível para detectar os limites. O SNC possui uma representação interna deste cone de estabilidade, que usa para determinar como o indivíduo se deve mover para manter o equilíbrio [Horak, 2006].

2.3.2 ESTRATÉGIAS DE MOVIMENTO/EQUILÍBRIO

No plano sagital, diferentes estratégias podem ser usadas para manutenção do equilíbrio com o mínimo de esforço. Assim, podem ser usadas três estratégias para manutenção do equilíbrio em apoio: duas estratégias mantêm os pés fixos e a outra altera a base de suporte através do passo [Horak, 1987; Mcllroy, 1996]. A estratégia do tornozelo (a mais utilizada) envolve alteração do CM através da rotação do corpo relativamente à tibiotársica, como um mecanismo semelhante a um pêndulo invertido, com movimento mínimo nas articulações da anca e joelho. Esta acção é caracterizada pela activação dos músculos anteriores e posteriores de distal para proximal e é importante quando ocorrem pequenos distúrbios em apoio em superfície firme. A estratégia da anca, na qual o corpo exerce um binário de forças a nível da anca para mover rapidamente o CM, é usado em superfícies de suporte estreitas ou não rígidas, que não permitem o adequado binário de forças ao nível do tornozelo quando o CM tem de ser movido rapidamente [Horak, 2000] ou quando o CM se situa perto dos limites da base de suporte [Horak, 1987; Karlsson, 1997]. A estratégia da anca é caracterizada pela activação dos músculos anteriores e posteriores de proximal para distal. Esta activação precoce dos músculos do tronco e anca movem o CM sobre a base de suporte, de modo a manter a postura [Frank, 1990]. A estratégia do passo realinha a base de suporte sobre o CM corporal com passos rápidos ou saltos na direcção da fonte de desequilíbrio externo [Horak, 1987]. Esta estratégia é utilizada sobretudo durante a marcha, e quando a
manutenção no mesmo lugar não é importante. No entanto, mesmo que seja utilizada a estratégia do passo em resposta a um desequilíbrio externo, há uma tentativa prévia de retornar o CM para a posição inicial, exercendo um binário angular. Indivíduos com risco aumentado de queda têm um predomínio de utilização das estratégias do passo e anca em relação a indivíduos com baixo risco de queda, que usam sobretudo a estratégia do tornozelo para manter a estabilidade postural [Maki, 2000]. No entanto, o medo de queda leva ao uso adicional da estratégia da anca [Adkin, 2000]. Perturbações maiores ou danos no sistema de feedback podem forçar estratégias adicionais, como por exemplo, movimentos do joelho e dos membros superiores [Karlsson, 1997].

Embora sejam desencadeadas estratégias de movimento posturais a 100 ms em relação a um desequilíbrio externo, os indivíduos podem influenciar a selecção da estratégia e a magnitude da sua resposta por influência de intenções, experiências e expectativas [Burleigh, 1994; Horak, 1996b; Shupert, 1999]. As estratégias posturais antecipatórias ajudam a manter a estabilidade, antecipando a compensação para um desequilíbrio. Indivíduos com respostas posturais automáticas pouco coordenadas mostram instabilidade postural em respostas a desequilíbrios externos, enquanto sujeitos com APA pouco coordenados mostram instabilidade no início do movimento [Horak, 1996c].

O uso de cada estratégia depende da configuração da superfície de apoio e da intensidade do desequilíbrio. Os ajustes posturais ocorrem não só como resultado de feedback sensorial em resposta a perturbações externas e inesperadas, mas também como resultado de feedforward em antecipação a perturbações previsíveis [Horak, 1987]. Para corrigir pequenos desvios é muitas vezes usada a estratégia do tornozelo, enquanto para correções maiores é usada a estratégia da anca [Johanson, 1993]. Alguns autores referem que a estratégia do tornozelo é suficiente para corrigir desequilíbrios que ocorrem durante uma postura natural [Fitzpatrick, 1992; Kuo, 1993], enquanto outros referem que a mistura das duas estratégias é mais benéfica [Day, 1993; Horak, 1990; Kuo, 1993; Yang, 1990]. Adicionalmente, [Yang, 1990] defende que a manutenção do equilíbrio exige uma relação fixa entre os binários articulares, que torna a tarefa de controlo postural mais simples para o sistema nervoso.
O estudo de [Kuo, 1993], através de recurso a técnicas de optimização determinou as acelerações da anca e tornozelo que requerem a menor quantidade de actividade muscular para repor o corpo numa posição mais estável em resposta ao desequilíbrio. Estes cálculos tiveram em consideração dois objectivos posturais diferentes: a posição (manutenção do alinhamento corporal) e a estabilidade (manutenção da projecção do CM dentro dos limites de estabilidade). Numa situação de predominância do objectivo de manutenção do alinhamento, o modelo prevê a utilização da estratégia do tornozelo para controlo da postura. Por outro lado, quando o objectivo de estabilidade foi optimizado ou o desequilíbrio foi maior exigindo uma resposta de maior amplitude e rapidez, o modelo prevê a utilização da estratégia da anca para responder a desequilíbrios em superfícies de apoio não rígidas [Kuo, 1993]. De acordo com este modelo, a estratégia da anca exige menos actividade do que a estratégia do tornozelo para efectuar o mesmo movimento do CM numa superfície de suporte não rígida, o que reforça mais uma vez a ideia de que a escolha da estratégia postural depende do objectivo postural e do ambiente [Kuo, 1995]. Já em [Horak, 1986] foi também encontrado que a área da base de suporte condiciona a estratégia a ser usada. Quando a base de suporte diminui, torna-se mais difícil manter o equilíbrio, sendo adoptada a estratégia da anca. A informação sensorial, as características músculo-esqueléticas, os graus de liberdade e as restrições da tarefa são também factores decisivos da estratégia a adoptar [Maurer, 2000].

Segundo [Runge, 1999], durante translações rápidas da superfície de apoio a estratégia da anca é adicionada à estratégia do tornozelo para produzir um continúo de respostas posturais. Não foram verificados binários de forças a nível da anca que não acompanhados de binários de forças a nível do tornozelo sugerindo que a biomecânica corporal pode transformar padrões de controlo discretos num continúo de correções posturais. Para distinguir entre distúrbios suficientemente pequenos para serem controlados pela estratégia do tornozelo e aqueles necessários para desencadear a estratégia da anca, o SNC necessita de informação proveniente de receptores posturais para estimar o movimento do CM [Massion, 1992a]. No entanto, é possível obter estabilização apenas com uma parte da informação sensorial completa. Uma correcta estabilização dos sujeitos demonstra que os receptores da parte superior do corpo são suficientes para diferenciar os dois tipos de distúrbio, que a informação articular da tibiotársica não é usada exclusivamente na
determinação da resposta, e que existe *feedback* dos receptores dos membros superiores para os músculos da perna. Por outro lado, pacientes com disfunção vestibular são capazes de resistir a distúrbios, o que indica que a utilização isolada dos receptores sensoriais da tibiotársica ou do pé é suficiente para a estabilidade [Horak, 1990].

2.3.3 Estratégias Sensoriais

A informação sensorial proveniente dos sistemas somatossensorial, Figura 2.2, visual e vestibular tem de ser integrada para interpretar ambientes sensoriais complexos. À medida que os sujeitos alteram o seu ambiente, necessitam de reorganizar a sua dependência relativa em cada um dos sentidos. Num ambiente bem iluminado com uma base de suporte firme, indivíduos saudáveis apoiam-se em informação somatossensorial (70%), visual (10%) e vestibular (20%) [Peterka, 2002]. No entanto, quando em superfícies de apoio instáveis ocorre um aumento da informação vestibular e visual, na medida em que diminui a dependência dos inputs somatossensoriais para orientação postural [Peterka, 2002]. A habilidade para distribuir o peso da informação sensorial, dependendo do contexto sensorial, é importante para a manutenção da estabilidade quando um indivíduo se move de um contexto para outro [Peterka, 2002].
A análise da Figura 2.2 permite verificar que as estruturas nervosas superiores que controlam a atenção e motivação podem suprimir sugestões tácteis, visuais, auditivas e vestibulares e focar a atenção no sentido de optimizar a propriocepção através da modulação do estado das estruturas cerebelares e reticulares. Estas estruturas modulam as vias rubroespinais e rubro-bulboespinais que ajudam a modular a resposta através do recrutamento do sistema gamma. As vias motoras associadas ao movimento usam uma representação do "sistema de controlo", na qual as forças musculares aplicadas aos segmentos corporais são (matematicamente) integradas para produção de velocidade dos segmentos corporais e depois integradas mais uma vez para o posicionamento dos segmentos corporais (postura). O feedback sensorial das forças referidas tem origem nos órgãos tendinosos de Golgi. O feedback de sensação de velocidade e de posição é promovido principalmente pelo fuso neuromuscular, os únicos receptores sensoriais cujo output é centralmente modificável via motoneurónios gamma.

Figura 2.2: Esquema representativo das principais vias e funções envolvidas na propriocepção. As linhas finas representam as vias aferentes e estruturas associadas a propriocepção; as linhas grossas representam as vias eferentes associadas a acções motoras levando a movimento esquelético. A parte superior da figura representa as estruturas nervosas superiores que controlam a atenção e motivação. A parte inferior da figura representa o sistema autónomo que regula a propriocepção (adaptado de [Ashton-Miller, 2001]).
2.3.4 ORIENTAÇÃO NO ESPAÇO

A habilidade para orientar as partes corporais relativamente à gravidade, superfície de apoio, ambiente circundante visual e referências internas constitui um componente crítico para o controlo postural. Indivíduos com o sistema nervoso saudável alteram automaticamente o modo como o corpo se orienta no espaço em função do contexto e tarefa [Horak, 2006].

2.3.5 CONTROLO DA DINÂMICA

O controlo do equilíbrio durante a marcha e durante a mudança de um conjunto postural para outro requer um controlo motor complexo de um CM em movimento. Ao contrário do apoio estático, durante a marcha ou durante a transição de um conjunto postural para outro, num indivíduo saudável, o CM não está no interior da base de suporte [Winter, 1993]. A estabilidade postural durante a marcha resulta da colocação do membro em fase de balanço sob o CM quando este se desloca no sentido inferior. No entanto, a estabilidade lateral deriva da combinação do controlo lateral do tronco e colocação lateral do pé [Bauby, 2000]. Idosos com risco de queda tendem a ter excursões laterais do CM maiores do que o normal e colocação lateral do pé mais irregular [Prince, 1997].

2.3.6 PROCESSAMENTO COGNITIVO

São necessárias várias fontes cognitivas para o controlo postural [Teasdale, 2001]. Posturas estáticas constituem uma capacidade motora de equilíbrio das atividades da vida diária que é automaticamente regulada por estruturas nervosas subcorticais e motoneurónios [Lacour, 1993]. Embora o controlo postural estático seja considerada uma tarefa simples, está descrito que requer fontes cognitivas [Lajoie, 1993]. São necessárias fontes cognitivas mínimas em ambientes sem perturbações, mas em condições de equilíbrio mais desafiante (apoio numa superfície estreita, apoio unipodálico, marcha em terreno difícil), as tarefas posturais são mais exigentes do ponto de vista cognitivo. É necessário um aumento da contribuição das estruturas corticais envolvidas na tarefa motora (córtex pré-motor [Rushworth, 2003]) e na representação corporal interna 3D (lobo parietal [Michel, 2003; Pérennou, 2001; Rushworth, 2003]), quando as tarefas posturais são
CAPÍTULO II: CONTROLO POSTURAL

Andreia Sousa 16

complexas ou difíceis e/ou quando as habilidades de equilíbrio estão limitadas devido a envelhecimento normal ou patológico. Assim sendo, os tempos de reacção e a performance numa tarefa cognitiva diminuem à medida que a dificuldade da tarefa postural aumenta [Teasdale, 2001]. Dado que o controlo postural e outros processos cognitivos partilham fontes cognitivas, a performance das tarefas posturais é alterada por tarefas cognitivas secundárias [Camicioli, 1997].

2.4 CONTROLO DO EQUILÍBRIO SEM PERTURBAÇÕES DA POSTURA

Para aceder ao controlo da postura, vários autores têm analisado o movimento do CM e do CP [Koozekanani, 1985; Koozekanani, 1980; Shimba, 1984]. Apesar de por vezes serem associadas, estas duas variáveis não são iguais. O CP é o sinal variável no tempo disponível através da plataforma de força e é erroneamente referido como a oscilação do CM, durante uma postura estática, o CP multiplicado pela a força de reacção do solo é igual ao momento gerado pelos músculos da tibiotársica. Assim sendo, o CP reflecte o padrão motor do tornozelo e consequentemente a resposta do SNC para corrigir o desequilíbrio do CM. Os movimentos do CM podem ser calculados através da integração no tempo da aceleração horizontal (obtida através de plataforma de forças) multiplicado por 2. Infelizmente, este cálculo é frequentemente sujeito a erros resultantes da falta de conhecimento das condições iniciais e erros de integração devido a vieses do sinal da plataforma de forças, e erros que se acumulam ao longo do tempo. O movimento do CM pode ser determinado através da antropometria e cinemática dos segmentos corporais ou determinado aproximadamente através da monitorização do movimento da anca, por exemplo, através de um potenciômetro [Wright, 1971].

O CP tem sido usado mais frequentemente que o CM para avaliar o controlo postural durante postura estática sem perturbações. No entanto, as medições do CP fornecem conhecimentos limitados no que diz respeito ao controlo motor, abrangendo variáveis como amplitude média, intervalo, variabilidade, área, direcção dominante e espectro de frequência de excursões sobre uma duração fixa (10 a 20 s) [Winter, 1995]. Em [Lucy, 1985] é referido que a média da variabilidade (root mean square da amplitude) do CP para adultos saudáveis em apoio sobre os dois
membros com olhos abertos é de 2.61 ± 1.01 mm para a direcção antero-posterior e 1.79 ± 0.41 mm para a direcção mediolateral. Estes valores aumentam com a idade, sendo que neste estudo entre os 70 e os 90 anos de idade a média da variabilidade para as direcções antero-posterior foram 3.04 ± 1.34 mm. Para indivíduos jovens saudáveis estes valores aumentam com os olhos fechados, em indivíduos idosos esta diferença diminui, demonstrando menor estabilidade visual.

A maioria dos estudos nesta temática avalia o controlo postural com base em medições que detectam as excursões medio-laterais e antero-posteriores do CM e CP. Tipicamente, é assumido que grandes excursões ou variabilidade do CM e CP são indicativas de instabilidade postural. Quando analisado o controlo postural desta perspectiva, emergem duas questões. Por um lado, a investigação tem sugerido que alguns graus de variabilidade postural podem ser funcionais, na medida em que proporcionam informação que pode ser usada para explorar activamente o controlo do espaço (entre o indivíduo e o ambiente) durante uma actividade [Van Emmerik, 2002]. Por outro lado, medições realizadas sem atingir os limites individuais de estabilidade são arbitrárias. Por exemplo, uma dada excursão dentro de uma base de suporte larga é menos destabilizante que a mesma excursão numa base mais estreita. As medições dos limites de estabilidade permitem verificar como o CM varia dentro da base de suporte individual. Assim sendo, uma certa magnitude de variabilidade dentro dos limites de estabilidade é compreendida como menos destabilizante que a mesma magnitude de oscilação próximo dos limites de estabilidade [Fiedler, 2005].

Uma revisão efectuada por [Winter, 1995] indica que a medição mais frequentemente recolhida é o somatório do CP a partir de uma única plataforma de forças. Têm também sido referidos os somatórios do CP nas direcções anteroposteriores e mediolaterais. A posição mais frequentemente adoptada é a posição lado a lado e o controlo mais discutido é o da direcção anteroposterior usando a estratégia do tornozelo.
2.5 CONTROLO DE EQUILÍBRIO DURANTE PERTURBAÇÕES DA POSTURA

Perturbações do CM durante bipedismo podem resultar de forças previsíveis, normalmente de origem interna, bem como forças inesperadas provenientes do ambiente externo. A habilidade para executar movimentos com segurança depende da execução de ajustes posturais apropriados para corrigir este tipo de distúrbios [Winter, 1990].

2.5.1 PERTURBAÇÕES PREVISÍVEIS DO CM

Tal como já foi anteriormente referido, muitos dos desequilíbrios (perturbações) experimentados durante as actividades da vida diária podem ser antecipados, prevendo a perda de estabilidade postural, como é o caso do desequilíbrio provocado pelo movimento de membros e tronco [Winter, 1990]. Neste estudo não será dada relevância a estratégias em resposta a este tipo de perturbações.

2.5.2 PERTURBAÇÕES INESPERADAS DO CM

No caso de perturbações da postura inesperadas, as reacções são desencadeadas pelo *input* sensorial que detecta desvios em relação ao esperado. Tal como já foi referido, estes desvios da postura podem ser detectados pelos receptores proprioceptivo, visual e vestibular. Em [Nashner, 1976, 1982; Nashner, 1978] foi usada uma plataforma móvel (com 30 cm de comprimento e durante 250 ms) para avaliar a contribuição relativa destes *inputs* sensoriais para a regulação da postura. Uma translação posterior da plataforma provoca uma oscilação anterior do sujeito. A posição do CM é repostas pela activação dos músculos posteriores dos membros inferiores e tronco com um período de latência de 90 a 110 ms após o movimento da plataforma. A contribuição dos *inputs* proprioceptivo, visual e vestibular para o desencadeamento deste ajuste postural foi avaliada pela manipulação da orientação da plataforma e ambiente visual. Os resultados destes estudos sugerem que os receptores musculares agem como sistema de primeiro alerta para o desencadeamento de ajustes posturais rápidos (90-110 ms) para

\section*{2.6 Ajustes Posturais Durante o Movimento}

Os ajustes posturais que acompanham o movimento servem para prevenir ou minimizar o deslocamento do CM, permitindo uma \textit{performance} de movimento segura e eficiente [Frank, 1990]. A coordenação refere-se a uma relação óptima entre os eventos. A investigação para perceber como o SNC optimiza a regulação da postura erecta durante o movimento está numa fase inicial. A investigação em controlo postural tem focado primariamente a regulação da postura erecta perante a exposição a um desequilíbrio externo, como o movimento na base de suporte [Nashner, 1985b]. No entanto, a regulação da postura erecta é fundamental para uma \textit{performance} segura e eficiente de muitos dos movimentos voluntários [Frank, 1990].

\subsection*{2.6.1 Estratégias de Controlo da Postura Durante Movimentos Voluntários}

Podem ser adoptadas várias estratégias para manutenção da postura durante movimentos dos membros e tronco, que variam de acordo com o grau de segurança.
promovido e a energia dispendida. Em primeiro lugar, os distúrbios posturais impostos pelo movimento podem ser corrigidos por estratégias de feedback. Os mecanismos gerais associados às estratégias de feedback consistem na estimulação dos receptores sensoriais (visuais, vestibulares, cutâneos e proprioceptivos) que desencadeiam ajustes posturais automáticos. As estratégias de feedback são a primeira defesa em relação a perturbações externas inesperadas. Os ajustes posturais desencadeados por feedback são rápidos, inferiores a 100 ms, regulando a postura numa base de situação de crise [Nashner, 1976]. Uma segunda estratégia para controlo postural envolve preparações realizadas antes do movimento, que incluem a definição de uma postura mais estável através do aumento da base de suporte e o aumento da rigidez articular através de co-contracção. Os desequilíbrios podem ser controlados através de ajustes posturais que ocorrem simultaneamente ou antes do início do movimento voluntário. Os mecanismos gerais de controlo postural envolvem o efeito antecipatório do movimento na postura e a coordenação da activação dos ajustes posturais e o movimento desejado, de modo a minimizar os distúrbios posturais. Este mecanismo de controlo foi definido como feedforward [Cordo, 1982].

Considerando a postura e as exigências focais de um dado movimento, torna-se evidente que mesmo um simples movimento requer um controlo complexo. O uso do mesmo conjunto de sinergias posturais desencadeadas por mecanismos de feedback constitui uma solução que permite simplificar o controlo da postura. Os
Capítulo II: Controlo postural

Acompanhamentos posturais e reacções posturais compensatórias partilham o mesmo objectivo de manutenção da postura. Assim sendo, é possível que partilhem padrões de output motor.

A observação indicada em [Brown, 1987] de que a reprogramação de uma resposta postural requer menos tempo que uma resposta focal sugere que os acompanhamentos posturais podem ser controlados por sinergias posturais pré-estruturadas, já referidas anteriormente. Em [Cordo, 1982] é indicada a evidência de que os ajustes posturais que acompanham o movimento voluntário e reacções posturais compensatórias podem ter sinergias posturais comuns ao verificar a activação dos mesmos grupos musculares (gastrocnemio e isquiotibiais) e da mesma sequência de activação em três situações de desequilíbrio: 1) translação posterior da superfície de apoio, 2) translação anterior do sujeito com este a puxar uma pega, e 3) translação do sujeito com este a empurrar uma pega. Além disso, o tempo e magnitude relativa dos isquiotibiais e gastrocnemio mantiveram-se constantes nas condições referidas. Em [Frank, 1990] foi repetido o estudo de [Cordo, 1982] sendo apenas monitorizadas as reacções posturais dos músculos do tronco e dos músculos dos membros inferiores. Para desequilíbrios provocados a nível do tronco, os músculos desta estrutura podem desempenhar um importante papel. As reacções posturais foram evocadas por deslocamentos anteriores e posteriores de uma pega segurada pelos sujeitos, a quem foi pedido que mantivessem a posição da pega contra uma pré-carga de 20 N; em intervalos aleatórios foi aumentada a força (de 80 N, durante 200 ms). Os ajustes posturais que acompanham o movimento foram avaliados tendo sido indicado aos sujeitos puxar ou empurrar uma pega com uma pré-carga de 20 N. As reacções posturais compensatórias e de acompanhamento manifestaram-se através de padrões de activação muscular semelhantes. O desequilíbrio posterior foi controlado por um aumento da activação dos músculos posteriores (gastrocnémio medial, bicipete femoral e longuíssimo) em relação aos músculos anteriores (tibial anterior e recto femoral; o recto abdominal não teve uma activação consistente). O músculo gastrocnémio medial foi o primeiro a ser activado, seguido dos músculos bicipete femoral e longuíssimo, respectivamente. Para o desequilíbrio posterior, os músculos anteriores (tibial anterior e recto femoral) apresentaram maior actividade e foram os músculos que apresentaram actividade mais precoce. A ordem de activação ocorreu de distal para proximal. Adicionalmente tem sido demonstrado que os APA,
associados a movimentos voluntários foram atenuadas ou ausentes quando a postura era ou muito estável (Nardone e Schieppati, 1988; Nouillot et al., 1992) ou instável (Aruin et al., 1998; Slijper e Latash, 2000). Em particular, os APA a nível da musculatura ventral e dorsal do tronco e músculos da perna diminuíram acentuadamente em condições de instabilidade postural quando foi pedido aos indivíduos para libertarem uma carga com os braços estendidos (Aruin et al., 1998). Com base nos resultados deste estudo, foi sugerido que se ocorrer instabilidade corporal, o CNS suprime os APA, a fim de evitar perturbações adicionais do equilíbrio causadas pelos mesmos.

2.6.2 EQUILÍBRIO DINÂMICO DURANTE A MARCHA

A tarefa de manter o equilíbrio durante a marcha deve ser avaliada antes de se analisar o modo como o sistema de controlo motor acompanha a tarefa, dado que a maior parte da literatura aborda o controlo postural em situações estáticas, tendo por base a manutenção do CM no interior da base de suporte. No entanto, durante a marcha o CM pode nunca passar a área do pé: na fase de duplo apoio, este situa-se entre os dois pés; no início da fase de apoio unipodal o CM situa-se posterior e medial a nível do calcâneo em apoio; com o momento anterior do corpo, o CM move-se para a frente mas pode não passar a área da base de suporte [Winter, 1995]. Adicionalmente, em [Shimba, 1984] é verificado que o CM é movido para a frente do lado de fora do bordo medial do pé. Assim sendo, durante a fase de propulsão o CM move-se para a frente do pé na medida em que os flexores plantares geram a maior parte da energia para propulsionar o CM para cima e para a frente. Deste modo, pode considerar-se que o controlo da postura durante a marcha não requer que o CM se situe no interior da base de suporte [Shimba, 1984; Winter, 1990], sendo o controlo conseguido através da adopção de novas posturas ao longo da trajectória [Massion, 1984].

A análise do controlo postural é de grande importância para a compreensão dos mecanismos de equilíbrio e na construção de ajudas ortopédicas, como ortóteses. Os métodos mais comuns para aceder ao controlo postural são baseados na análise das forças de reacção do solo e do CP. Têm sido usados vários parâmetros derivados destas duas variáveis para caracterizar o controlo postural, nomeadamente a direcção dominante do CP, a área coberta pelo CP, a amplitude
média, amplitude pico a pico, o desvio padrão e a frequência do espectro do CP ou da força de reacção do solo [Winter, 1990]. Foi estabelecida uma relação, embora fraca, entre as duas variáveis, e tem sido mostrado que as medições de força promovem uma medição mais fiável e válida que as medições do CP [Goldie, 1989]. No entanto, as medições mencionadas não conseguem revelar que tipo de estratégia foi usado para controlar a oscilação do corpo. Para indivíduos com alterações de equilíbrio é não apenas desejável avaliar a amplitude de oscilação corporal mas também investigar como a oscilação é controlada [Winter, 1990].

2.6.3 COORDENAÇÃO ENTRE POSTURA E MOVIMENTO

Têm sido descritos dois mecanismos de controlo para facilitar a ligação entre postura e coordenação do movimento e para minimizar as perturbações no CM. Têm sido descritas sinergias posturais ou “axiais”, coordenadas com deslocamentos opostos dos segmentos superiores e inferiores (primeiramente notados por [Babinski, 1899]) como responsáveis pela minimização dos deslocamentos do CM durante inclinação anterior e posterior do tronco [Alexandrov, 1998]. De uma perspectiva mecânica, em [Eng, 1992] é demonstrado que a interacção entre binários articulares e a compensação de centros de massa focais individuais e segmentos posturais permite a estabilização do CM durante movimentos bilaterais dos membros superiores. Os comandos de feedforward que activam os músculos responsáveis pelo controlo postural têm sido interpretados como criadores de forças de inércia que compensam forças externas ou internas criadas por segmentos móveis, minimizando perturbações no CM [Bouisset, 1981, 1987].

A coordenação entre postura e movimento envolve o controlo dinâmico do CM na base de suporte [Stapley, 1999]. Os autores do trabalho mencionado referem é necessário que haja deslocamento de CM dentro da base de suporte para que haja coordenação entre postura e movimento. Uma teoria que está por detrás do controlo da postura e movimento é a existência de duas vias de controlo descendentes: uma responsável pelo controlo do movimento e outra pela manutenção do equilíbrio [Massion, 1992a]. Contudo, esta teoria não pode ser aplicada ao movimento corporal global, devido à existência de segmentos posturais (anca) que participam em aspectos focais do movimento e APA que criam as condições dinâmicas necessárias
para o deslocamento anterior do CM. Estes resultados corroboram as sugestões de um controlador comum para comandos focais e posturais [Aruin, 1995a].

2.7 CONTROLO POSTURAL E RETORNO VENOSO

A bomba músculo-esquelética tem sido considerada um mecanismo rápido e localizado pela qual o fluxo sanguíneo pode ser aumentado através de uma actividade do músculo esquelético [Folkow, 1970]. Acredita-se que a contracção muscular ajuda a perfusão muscular através do esvaziamento da circulação venosa, que baixa a pressão venosa durante o relaxamento, aumentando o gradiente de pressão no músculo e facilitando assim um aumento do fluxo arterial [Folkow, 1970; Laughlin, 1987; Sheriff, 1998]. No entanto, a verificação directa destes pressupostos é de difícil concretização, dado que as metodologias correntes não permitem medir directamente a pressão venosa dentro do músculo. A evidência para a bomba muscular provem de estudos que mediram a pressão venosa manipulada pelo posicionamento do membro acima ou abaixo do nível do coração [Folkow, 1970; Leyk, 1994; Shoemaker, 1998; Tschakovsky, 1996]. O mecanismo sustentado por estes estudos é de que as alterações na pressão sanguínea induzidas pela contracção muscular são maiores do que as induzidas pela elevação do membro acima do nível do coração. O aumento do retorno venoso em resposta a uma contracção única [Tschakovsky, 1996] ou exercícios rítmicos [Leyk, 1994; Shoemaker, 1998] quando o membro foi colocado num nível abaixo do coração foi atribuído à bomba muscular. No entanto, vários estudos não encontraram evidência para a influência da bomba muscular do fluxo sanguíneo no músculo esquelético [Laughlin, 1999; Magder, 1995; Naamani, 1995]. Estes resultados negativos podem resultar do carácter não fisiológico das contracções musculares induzidas por electro-estimulação aplicada nestes estudos. Tal como foi sugerido por [Laughlin, 1999], a bomba muscular pode ser mais efectiva em exercício dinâmico relativamente a contracções estimuladas devido à activação sequencial das fibras musculares em relação à activação simultânea de todas as fibras. Assim, a influência da bomba muscular no aumento da perfusão do músculo esquelético durante o exercício constitui um tema de forte investigação.
A base conceptual para a compreensão da bomba muscular advém de uma extensão da Lei de Ohm, que descreve o fluxo \(Q \) através das veias como o produto entre o gradiente de pressão ao longo das veias \((P_a - P_v) \) e a condutância vascular:

\[
Q = (P_a - P_v) \times \text{Condutância}.
\]

As limitações tecnológicas não permitem a medição directa da pressão venosa do músculo esquelético, e neste sentido os investigadores têm sido forçados a fazer inferências acerca da pressão venosa dentro do músculo através de medições e cálculos indirectos. No entanto, as forças mecânicas de contracção têm-se revelado suficientes para iniciar e manter o fluxo sanguíneo ao longo de músculos isolados [Sheriff, 1998]. Vários estudos-chave têm sido realizados com base na ideia de que a contracção que induz alterações na pressão venosa é maior quando a pressão venosa de base aumenta através da manipulação do membro em exercício. O estado de equilíbrio do fluxo sanguíneo foi maior durante postura em decúbito inclinado com a cabeça elevada comparada com a postura em decúbito [Folkow, 1971; Leyk, 1994]. De modo similar, o fluxo sanguíneo no antebraço foi maior com o membro posicionado abaixo do coração do que quando este foi colocado acima do coração [Shoemaker, 1998; Tschakovky, 1996]. Adicionalmente, [Tschakovky, 1996] aplicou insuflações rápidas no antebraço para imitar o efeito da contracção muscular, verificando que estas aumentaram o fluxo sanguíneo do antebraço quando o membro foi posicionado abaixo do coração, o mesmo não ocorreu quando o membro foi colocado acima do coração. O aumento do fluxo sanguíneo em resposta a contracções ou insuflações, quando o membro foi colocado abaixo do nível do coração, promovem evidência para suportar o papel da bomba muscular na regulação do fluxo sanguíneo muscular durante o exercício.

A manutenção postural em superfície de apoio instável exige níveis superiores de controlo do sistema eferente e requer uma alteração essencial no modo de utilização de informação proprioceptiva [Ivanenko, 1997]. Neste sentido, o equilíbrio em posição ortostática tem sido descrito como eficaz para reabilitação [Wester, 1996] e prevenção de lesões músculo-esqueléticas [Bahr, 1997; Caraffa, 1996; Wedderkopp, 1999]. No entanto, a estabilidade e o treino muscular têm sido considerados de forma independente. Em [Nigg, 2006], através dos resultados apresentados, é colocada a hipótese de que a utilização de um calçado instável poderá funcionar como um dispositivo de treino de estabilidade e fortalecimento.
muscular. Por outro lado, o exercício dinâmico causa um maior fluxo sanguíneo, de caráter menos heterogéneo relativamente a exercício isométrico intermitente, estando estas respostas relacionadas com um aumento da actividade electromiográfica [Laaksonen, 2002].

Efectivamente, durante o exercício dinâmico, o ritmo de contracção de músculos esqueléticos periféricos resulta na compressão de veias intramusculares, e confere uma quantidade considerável de energia cinética ao sangue venoso, facilitando o seu retorno ao coração. Tem sido demonstrado que a bomba músculo-esquelética é efectiva no esvaziamento dos vasos venosos dado que mais de 40% do volume sanguíneo intramuscular pode ser transferido centralmente com uma contracção muscular única [Stewart, 2004]. Adicionalmente, a grande maioria do retorno venoso durante exercício muscular dinâmico ocorre durante a fase concêntrica de contracção, corroborando a ideia de que um aumento da pressão intramuscular proporciona uma importante fonte de energia para o retorno venoso ao coração durante o exercício [Hogan, 2003]. Segundo [Sadamoto, 1983], a pressão intra-muscular (PIM) está relacionada com a actividade EMG de superfície durante exercício estático. De facto, parece haver consenso de que, em contracções isométricas voluntárias e na ausência de fadiga, a actividade EMG aumenta da mesma forma que a PIM [Aratow, 1993; Jarvholm, 1991; Korner, 1984; Sjogaard, 2004].
III. MARCHA HUMANA

3.1 INTRODUÇÃO

A locomoção humana pode ser definida como a acção através da qual o corpo se move através do espaço aquático, aéreo e terrestre. É conseguida através de movimentos coordenados dos segmentos corporais aproveitando a vantagem de uma interacção de forças internas e externas [Cappozzo, 1984] e é acompanhada através da acção do sistema neuro-músculo-esquelético. Tanto na locomoção saudável como patológica, é possível obter medições significativas, como por exemplo vários efeitos e manifestações da locomoção que directa ou indirectamente espelham a função do sistema músculo-esquelético podem ser medidas directa ou indirectamente de modo a medir a função do sistema neuro-músculo-esquelético. A análise da locomoção engloba três níveis distintos de variáveis físicas: dados cinemáticos, que descrevem a geometria do movimento; dados cinéticos que constituem as forças e os momentos exercidos quando o corpo interage, e alterações bioelétricas associadas à actividade do músculo esquelético, designadas de sinais electromiográficos. No seu conjunto, estes dados promovem um retrato do fenómeno da marcha [Medved, 2001].

A compreensão do movimento humano do ponto de vista biomecânico é extremamente importante para várias áreas do conhecimento, desde a realidade virtual até ao desporto, passando pela medicina e ergonomia [Corraza, 2006].

Na área da medicina, a análise e quantificação do movimento tem permitido um maior conhecimento dos efeitos de patologias [Capecci, 2006], da maturação e desenvolvimento, e da capacidade de aquisição de movimentos humanos seleccionados. Este tipo de medições revela características deste fenómeno que não são acessíveis através de observação visual ou outros métodos clínicos. O campo de aplicação mais promissor nesta área é provavelmente o que se relaciona com construção de próteses e ortóteses para extremidades em patologias e traumas do sistema locomotor, isto é, em reabilitação médica. Estas questões têm certamente
contribuído significativamente para a motivação para a medição de estruturas em movimento.

A ergonomia e a saúde ocupacional, ou seja, a interacção homem-máquina, constituem também áreas que podem beneficiar da medição de estruturas em movimento. As patologias músculo-esqueléticas profissionais estão a aumentar, representando actualmente grande impacto económico [Leamon, 1994]. Está provado que estas doenças resultam de esforço biomecânico repetido, causado por más decisões ergonómicas e por exposição ocupacional [Silverstein, 1987]. Existe um conjunto de situações múltiplas relacionadas com o trabalho, onde é de todo o interesse estimar quantitativamente o padrão de sobrecarga induzido por certas acções dinâmicas ou posições corporais estáticas e em relação ao dispêndio energético do organismo. Este tipo de procedimentos pode promover uma base para melhoria do processo de trabalho, através de detecção de factores de risco, e simultaneamente uma diminuição de acções crónicas potencialmente traumáticas, bem como a realização de uma intervenção mais adequada, e a monitorização da sua eficiência.

Outra área de investigação associada ao movimento humano está relacionada com o desporto. Os dados obtidos relativos ao movimento corporal podem ser importantes do ponto de vista de aquisição de uma boa técnica, para correcção de erros técnicos e optimização do processo de formação.

Finalmente, relativamente à biônica, o movimento humano pode representar um modelo de concepção de locomoção automática e de robots. Assim sendo, a medição do movimento humano pode promover informação relevante neste campo. Nos laboratórios de investigação em todo o mundo, o trabalho tem sido levado a cabo por um espírito interdisciplinar, incorporando a biologia e a engenharia. A fisiologia, biomecânica, cinesiologia, robótica, ergonomia, neurociência e inteligência artificial fundem-se neste esforço. Através de simulações computorizadas da locomoção, e comparando os resultados com dados reais, o objectivo é resolver problemas como o design artificial de músculos esqueléticos, a construção de robots móveis, controlo telerrobótico, construção de próteses inteligentes, entre outros. Estas questões podem ser relevantes para a indústria biomédica, militar e indústrias de consumo [Medved, 2001].
3.2 FASES DO CICLO DE MARCHA

A marcha pode ser descrita como uma progressão translacional do corpo como um todo, produzida por movimentos rotatórios de segmentos corporais coordenados. A marcha normal é rítmica e é caracterizada pela alternância entre movimentos propulsivos e retropulsivos das extremidades inferiores [Norkin, 1992].

As fases do ciclo de marcha incluem as actividades que ocorrem desde o ponto de contacto inicial de uma extremidade e o ponto em que a mesma extremidade contacta novamente o solo. Durante cada ciclo cada extremidade passa por duas fases, uma fase de apoio e uma fase de balanço [Norkin, 1992], Figura 2.1.

A fase de apoio inicia-se no instante em que uma extremidade contacta com o solo (heel strike) e continua enquanto o pé estiver em contacto com o mesmo. Esta fase corresponde a aproximadamente 60% do ciclo de marcha. A fase de balanço inicia quando o membro inferior descola do solo e termina antes do ataque ao solo do mesmo membro. Esta fase constitui cerca de 40% do ciclo de marcha [Norkin, 1992]. A fase de apoio pode também ser denominada de fase postural, onde 25% corresponde a uma fase de duplo apoio [Hoppenfeld, 1990]. Em [Hoppenfeld, 1990], a fase de balanço é designada de fase de movimento.

3.2.1 SUBDIVISÕES

As fases de apoio e de balanço estão representadas na Figura 3.1. Na Tabela 3.1 encontram-se apresentadas as diferentes subfases do ciclo da marcha propostas em [Norkin, 1992].
Figura 3.1: Esquema representativo do ciclo de marcha (adaptado de [Vaughun, 1999]).

Tabela 3.1: Fases e subfases do ciclo de marcha.

<table>
<thead>
<tr>
<th>Fase de apoio</th>
<th>Fase de balanço</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ataque ao solo: instante no qual o pé (calcâneo) de uma extremidade contacta com o solo [Norkin, 1992]. Constitui o início do ciclo da marcha e representa o ponto no qual o centro de gravidade corporal está na sua posição mais baixa [Vaughun, 1999].</td>
<td>Aceleração: inicia quando o pé de referência deixa o solo e continua até ao ponto em que a extremidade oscilante está directamente debaixo do corpo [Norkin, 1992].</td>
</tr>
<tr>
<td>Foot-flat: fase onde a planta do pé toca no chão [Vaughun, 1999].</td>
<td>Fase média de balanço: ocorre quando a extremidade ipsilateral passa directamente por baixo do corpo [Norkin, 1992].</td>
</tr>
<tr>
<td>Fase média de apoio: ponto no qual o peso corporal está directamente sobre a extremidade inferior de suporte, há um suporte unilateral de carga [Norkin, 1992]. Esta fase ocorre quando o membro contralateral passa pelo membro em apoio e quando o centro de gravidade está na sua posição mais alta [Vaughun, 1999].</td>
<td>Desaceleração: ocorre após a fase média oscilante quando a tibia passa para além da direcção vertical e o joelho estende para o ataque ao solo [Norkin, 1992].</td>
</tr>
<tr>
<td>Propulsão (push off): ponto em que o pé de referência descola do chão [Norkin, 1992].</td>
<td></td>
</tr>
<tr>
<td>• Heel-off: ocorre quando o calcâneo perde o contacto com o solo e a propulsão é iniciada [Vaughun, 1999].</td>
<td></td>
</tr>
<tr>
<td>• Toe-off: fase final de apoio onde o pé descola do chão [Vaughun, 1999].</td>
<td></td>
</tr>
</tbody>
</table>

Andreia Sousa 30
3.2.2 VARIÁVEIS DE TEMPO E ESPAÇO

Os parâmetros de tempo e espaço são fundamentais na marcha. A medição das variáveis associadas, apresentadas na Tabela 3.2, promove uma descrição básica da marcha. Estas fornecem informação quantitativa que é afectada por factores como idade, género, peso, tamanho e forma dos componentes ósseos, distribuição da massa pelos componentes corporais, mobilidade articular, força muscular, hábitos e estado psicológico [Norkin, 1992; Whitle, 2007].

Tabela 3.2: Parâmetros de tempo e espaço relevantes na análise de marcha.

<table>
<thead>
<tr>
<th>Variáveis de tempo</th>
<th>Variáveis de distância</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo de apoio:</td>
<td>Comprimento do passo: é a distância linear entre dois pontos de contacto sucessivos de extremidades opostas. Existe uma relação proporcional entre a duração dos passos e a simetria na marcha.</td>
</tr>
<tr>
<td>- unipodálico: período em que apenas uma extremidade está apoiada no solo. Este valor aumenta com a idade e diminui com o aumento da velocidade da marcha.</td>
<td></td>
</tr>
<tr>
<td>- bipodálico: período em que os dois membros se encontram em contacto com o solo.</td>
<td></td>
</tr>
<tr>
<td>Tempo do passo: quantidade de tempo decorrido num único passo.</td>
<td>Comprimento da passada: distância linear entre dois eventos sucessivos acompanhados pela mesma extremidade durante a marcha. Este parâmetro é afectado pelo comprimento da perna, altura, idade, género e outras variáveis.</td>
</tr>
<tr>
<td>Tempo da passada: quantidade de tempo decorrido na distância linear entre dois eventos sucessivos que são realizados pelo mesmo membro.</td>
<td></td>
</tr>
<tr>
<td>Cadência: número de passos por unidade de tempo; pode ser expressa como o número de passos por segundo ou por minuto.</td>
<td>Largura da base de sustentação: distância linear entre o ponto médio do calcâneo de um membro inferior e o mesmo ponto no membro contra lateral.</td>
</tr>
<tr>
<td>Velocidade: deslocamento realizado por unidade de tempo.</td>
<td>Grau de descolamento dos dedos: ângulo formado pela colocação do pé; pode ser encontrado medindo o ângulo formado por cada linha de progressão do pé e a linha que intersecta o centro do calcâneo e o segundo dedo.</td>
</tr>
</tbody>
</table>
3.3 Neurofisiologia/Controlo motor da marcha

O controlo motor do movimento constitui um assunto complexo. No estado normal, a organização neural permite tempos de activação muscular apropriados e uma activação coordenada, entre os sistemas musculares na execução de uma infinita variedade de padrões de ajustes e adaptações posturais, e sinergias de movimento de acordo com as necessidades. Torna-se assim pertinente a classificação de subgrupos clínicos, no sentido de detectar estratégias adoptadas para controlo postural e de padrões de movimento. É necessário reconhecer a disfunção do controlo motor e a necessidade de sistemas de classificação relacionados.

Os humanos produzem uma variedade de movimentos rítmicos através de padrões de marcha, corrida, ciclismo, natação, entre outros [Loeb, 1999]. Destes, será dada ênfase ao fenómeno da marcha. A marcha é influenciada por um conjunto multifactorial resultante da interacção ou do processo de organização própria de sistemas neurais e mecânicos, entre os quais a dinâmica músculo-esquelética, um programa central baseado num circuito espinal geneticamente determinado – Gerador de Padrão Central (GPC), a modulação pelos centros nervosos superiores e a modulação aferente [Arechavaleta, 2008; Borghese, 1996; Horak, 1996a; Mazzaro, 2005; McCollum, 1995; Segers, 2006].

O GPC designa as redes espinhais que podem gerar padrões de actividade rítmica mesmo na ausência de feedback externo ou controlo supraespinal, sendo capaz de gerar padrões locomotores básicos e, através de várias vias descendentes, controlar a marcha [Amstrong, 1986; Rossignol, 2006]. Consiste em duas metades de um centro gerador rítmico e uma rede geradora de padrão. O centro gerador rítmico define o ritmo da locomoção e a duração das fases flexoras e extensoras e controla a actividade da rede geradora de padrão. A rede geradora de padrão contém populações de interneurónios, cada uma delas promovendo excitação de motoneurónios sinergistas múltiplos, e está ligada a outras populações geradoras de padrão através de redes de conexão inibitórias. A activação de uma população geradora de padrão activa a sinergia muscular correspondente. A rede geradora de padrão medeia um input rítmico do gerador rítmico para motoneurónios e distribui-o...
através de conjuntos de motoneurónios. Dependendo do input do gerador rítmico e das interacções entre a rede geradora de padrão, cada população geradora de padrão é activa dentro de fases particulares do ciclo de marcha e produz uma activação sincronizada específica de cada fase do grupo correspondente de conjuntos de motoneurónios sinergistas. O feedback aferente e perturbações espontâneas podem afectar o GPC também a nível do gerador rítmico, produzindo alterações do ritmo da locomoção, ou ao nível da rede geradora de padrão, alterando o nível de activação dos motoneurónios e/ou o tempo de transição de fase sem mudar a fase do ritmo da locomoção gerado pelo gerador rítmico [Rybak, 2006], Figura 3.2.

No entanto, estas redes espinais são normalmente moduladas por inputs periféricos e supraspinhais. O feedback aferente adapta dinamicamente, através de uma relação recíproca, a resposta do GPC às exigências ambientais [Amstrong, 1986; Rossignol, 2006]. O estudo de interacções sensoriomotoras dinâmicas durante a locomoção é importante para perceber como é que respostas reflexas podem levar a correções na locomoção, resultantes de perturbações e para revelar mecanismos de integração sensoriomotora [Rossignol, 2006]. O feedback aferente assume vários papéis na regulação da produção de padrões motores, tal como a produção de detalhe no padrão temporal de sequência de activação muscular, controlo da transição de uma fase do movimento para outra, e o aumento da actividade motora decorrente [Pearson, 1993]. Os inputs provenientes do fuso neuromuscular (particularmente dos músculos da anca) podem redefinir o ritmo da locomoção fictícia. A transição entre as fase de apoio e de balanço é desencadeada por sinais aferentes provenientes da região da anca quando esta faz extensão próxima do final da fase de apoio. A fase de balanço é iniciada quando o membro está em extensão (estiramento dos músculos flexores da anca) e em descarga (força reduzida nos músculos extensores detectada pelos Orgãos Tendinosos de Golgi dos músculos extensores). Assim sendo, os sinais proprioceptivos regulam o tempo de passagem de uma rotação posterior para uma rotação anterior do membro durante o ciclo de marcha. Como já foi referido anteriormente, a coordenação intersegmento temporal representa uma variável de controlo do GPC, cujo grau de autonomia na produção das leis cinemáticas descritas em relação ao controlo supraspinal é ainda desconhecido [Lacquaniti, 1999].

Figura 3.2: Representação esquemática do conceito de dois níveis do GPC. (As esferas verdes representam populações de interneurónios. Os losangos representam conjuntos de motoneurónios sinergistas. *adaptado de* [Rybāk, 2006]).

O contexto determina a mistura de influências supraspinais e espinais na geração de movimento, tornando-se claro que o GPC gera padrões flexíveis e adaptáveis por mecanismos plásticos [Mackay-Lyons, 2002].
Figura 3.3: Ilustração dos mecanismos do GPC induzidos por impulsos excitatórios provenientes da Região Locomotora Mesencefálica. (As populações de interneurónios estão representadas por esferas. As conexões sinápticas excitatórias e inibitórias estão representadas através de linhas e círculos, respectivamente. As populações de motoneurónios estão representadas por losangos. adaptado de [Rybak, 2006]).

Existe evidência que suporta a ideia de que a cinemática global da marcha é controlada (Shen, 1995; Borghese, 1996; Grasso, 1998; Lacquaniti, 1999; Lacquaniti, 2002). A cinemática dos membros é relativamente invariante em vários modos de locomoção, enquanto os padrões de actividade electromiográfica necessários para produzir os padrões cinemáticos podem variar consideravelmente [Grasso, 1998; Ivanenko, 2004]. Estes dados sugerem que o circuito neural pode de certa forma especificar a cinemática dos membros [Lacquaniti, 1999; Lacquaniti, 2002]. Se assim for, os padrões de activação muscular devem derivar, de certa forma, de um sinal de controlo cinemático em concordância com os requisitos cinéticos do sistema biomecânico. O sinal de controlo biomecânico básico pode exercer a sua acção através de um apropriado modelo de dinâmica inversa e feedback periférico que determina o binário muscular necessário para atingir objectivos cinemáticos [Ivanenko, 2004].

Em [Ivanenko, 2004], é sugerido que as modulações que ocorrem nas redes espinais podem ser o elemento chave numa espécie de modelo inverso que adapta os padrões-modelo de actividades globais a requisitos cinéticos e cinemáticos dos
membros durante a locomoção. De acordo com [Bianchi, 1998] existem resultados experimentais que demonstram a existência de leis coordenativas que diminuem os graus de liberdade. Em humanos, as redes neurais envolvidas no controlo dos movimentos rítmicos durante a locomoção originam padrões complexos e variáveis de atividade num largo número de músculos. No entanto, quando a marcha é vista de uma análise mais global (cinemática, cinética e energia) os padrões parecem, segundo [Borghese, 1996], mais simples e consistentes. Por outro lado, segundo [Horak, 1996a; McCollum, 1995], os sinais neurais controlam sinergias musculares flexíveis para uma coordenação intersegmento, levando a uma diminuição dos graus de liberdade no parâmetro espaço da mecânica da marcha. Neste sentido, [Winter, 1991] mostra a existência de uma covariância cinemática entre o binário da anca e joelho, de tal modo que a soma das suas variabilidades é menor que a variabilidade de cada articulação isolada. Por sua vez, [Borghese, 1996] defende uma lei de coordenação cinemática. As alterações temporais dos ângulos de elevação dos membros inferiores relativamente às direcções vertical e anterior não são independentes, covariam ao longo de um plano comum às fases de apoio e oscilante.

3.4 Aspectos Biomecânicos da Marcha

A análise quantitativa do movimento humano insere-se no domínio da Biomecânica, ciência que envolve o estudo de sistemas biológicos de uma perspectiva mecânica, englobando a estática e a dinâmica [Hall, 1999]. A análise do movimento foca-se na cinemática, estudo do movimento dos corpos sem referência das forças envolvidas, e descreve aspectos temporais do padrão de movimento, como posição, ângulos, velocidade e aceleração dos segmentos corporais e articulações. Quando características antropométricas são aplicadas à dinâmica inversa, a análise quantitativa do movimento permite o cálculo da cinética: estudo das forças e momentos envolvidos.

Com o objectivo de aceder ao conceito simplificado do fenómeno de locomoção é conveniente considerar o comportamento do CM durante o ciclo de movimento. Estima-se que em adultos do género masculino e feminino este se situe na linha média a uma distância do solo que corresponde a 55% da estatura. Tomando como
referência a coluna vertebral, o CM situa-se aproximadamente antes da segunda vértebra sacral (S2) [Saunders, 1953].

A trajectória descrita pelo CM no plano de progressão é uma curva sinusoidal, verificando-se que este se desloca duas vezes na vertical durante um ciclo de movimento desde a posição de ataque ao solo do pé até o ataque ao solo subsequente do mesmo pé (passada). O CM do corpo desloca-se também lateralmente no plano horizontal com um plano de progressão que descreve uma curva sinusoidal. A curva é ondulada, sem irregularidades e é similar, em forma, à verificada no deslocamento vertical [Gard, 2004; Norkin, 1992]. A amplitude pico-a-pico é descrita como sendo de cerca de 4 a 5 cm para adultos, em velocidade livremente escolhida, segundo vários autores citados em [Gard, 2004], que cita ainda investigadores que usaram o deslocamento vertical do CM para estimar as trocas de energia mecânica, a eficiência, o trabalho, e para descrever a simetria, como indicador da qualidade da marcha. Segundo [Gard, 2004], a captura de imagem usando um marcador a nível sacral (S2) permite uma aproximação do movimento vertical do CM a velocidades baixas e livres durante a marcha. No entanto, a análise segmentar corporal ou técnicas com uso de plataformas de força promoverão provavelmente uma melhor estimativa a velocidades de marcha rápidas ou em indivíduos com marcha patológica.

A primeira lei de Newton para o movimento postula que todos os corpos mantêm o seu estado de repouso ou movimento uniforme, a menos que lhes seja imposta uma força. A translação do corpo com o menor dispêndio energético será a translação através de uma trajectória sinusoidal de pequena amplitude, na qual as deflexões são graduais. Tendo em conta que a força resulta do produto da massa pela aceleração em função do tempo, mudanças abruptas na direcção do movimento levam a um elevado dispêndio energético. Durante a translação do CM ao longo de uma trajectória sinusoidal de baixa amplitude existe conservação de energia [Saunders, 1953]. Em [Kerrigan, 1995], é confirmado o papel da biomecânica normal da marcha na minimização do consumo energético, dado que o deslocamento vertical da pélvis durante a marcha, quando controlado para o peso corporal, constitui um forte preditor do consumo energético com marcha a diferentes velocidades.
CAPÍTULO III: MARCHA HUMANA

3.5 MODELOS EXPLICATIVOS DA MARCHA

Como já referido anteriormente, a marcha humana resulta de uma complexa interacção de forças musculares, movimentos articulares e comandos motores neurais. Muitas das variáveis internas contribuintes da marcha têm sido medidas e quantificadas durante o último século, entre elas a actividade electromiográfica, o binário muscular, as forças de reacção do solo (FRS), o movimento dos membros e custos energético-metabólicos. Este conjunto de dados requer uma interpretação e organização dos princípios fundamentais que elucidam os mecanismos da marcha. Durante várias décadas duas teorias dominaram o estudo da marcha: os seis determinantes da marcha e a analogia a um pêndulo invertido.

3.5.1 TEORIA DO PÊNDULO INVERTIDO

Segundo o modelo do pêndulo invertido, a marcha humana pode ser comparada a um mecanismo semelhante a um pêndulo, onde a energia cinética é convertida em energia potencial gravítica e vice-versa, conservando mais de 60 a 70% da energia mecânica necessária (paradigma do pêndulo invertido) [Cavagna, 1966]. A força mais importante que determina o pêndulo invertido é a gravidade \((F=mg, \text{onde } m \text{ constitui a massa e } g \text{ a constante gravitacional})\), a qual tem de ser pelo menos igual à força centrípeta \((=mv^2/L, \text{onde } L \text{ corresponde ao comprimento da perna e } v \text{ à velocidade horizontal})\). A razão entre as duas forças corresponde ao número Froude \((=v^2gL\), apresentado por Alexander, 1989 e citado em [Komura, 2005].

Segundo este modelo, a maior parte do trabalho realizado durante a marcha não é realizado através de trabalho muscular activo, mas por um mecanismo passivo de troca de energia cinética e potencial, uma vez que o CM, por acção de um pêndulo invertido, oscila de acordo com o membro em fase de apoio, reduzindo o trabalho necessário para elevar e acelerar o CM. De modo similar, o trabalho muscular necessário para oscilar o membro é reduzido devido a um mecanismo semelhante a um pêndulo, onde ocorrem trocas entre energia cinética e potencial à medida que o membro se desloca no sentido anterior [Griffin, 2003].
Fazendo uma análise biomecânica do deslocamento do CM de acordo com este modelo verifica-se que no final da fase aérea o centro de gravidade da cabeça, membros e tronco se situa posteriormente; durante a fase inicial de apoio, este começa a elevar-se sobre o membro, seguindo o ataque ao solo. A elevação do centro de gravidade é gerada pela energia cinética. À medida que o centro de gravidade atinge a elevação máxima vertical na fase média de apoio, a velocidade do CM diminui à medida que a energia cinética é convertida em energia potencial na elevação do centro de gravidade. Esta energia potencial é reconvertida em energia cinética na fase final de apoio, quando o centro de gravidade passa sobre o pé, desce e a velocidade aumenta. Este processo possibilita a transferência de energia entre passos sucessivos, bem como a manutenção de um valor aproximadamente constante do nível de energia mecânica total (soma da energia cinética e potencial) [Waters, 1999].

3.5.2 Teoria dos Seis Determinantes da Marcha

Segundo esta teoria, a marcha é caracterizada pela existência de um conjunto de mecanismos que são considerados determinantes no padrão de marcha, Figura 3.4. Por exemplo, a rotação pélvica, a inclinação e a flexão do joelho na fase de apoio minimizam a absorção do choque e suavizam os pontos de inflexão do centro de gravidade e FRS vertical consequente [Griffin, 2003; Norkin, 1992]. São explicados de seguida os determinantes da marcha.

a) Rotação pélvica

Num nível de marcha normal, a cintura pélvica roda alternadamente para a direita e para a esquerda relativamente à linha de progressão, Figura 3.5. A magnitude desta rotação é de aproximadamente 8º (4º na fase de balanço e 4º na fase de apoio) [Norkin, 1992; Saunders, 1953]. Dado que a cintura pélvica é uma estrutura rígida, esta rotação ocorre alternadamente em cada lado que passa por uma rotação interna relativa, para externa durante a fase de apoio unipodal. A rotação pélvica baixa o arco de passagem do CM através da elevação das extremidades do arco, e como consequência, os ângulos de inflexão na intersecção de arcos sucessivos são menos abruptos e o custo energético é menor. A perda de energia potencial é mais gradual e a força necessária para alterar a direcção do CM no próximo arco é menor. A rotação angular da anca, em flexão e extensão, é
reduzida e a energia necessária para a oscilação interna do membro é conservada [Saunders, 1953].

Figura 3.4: Ilustração gráfica do conjunto dos seis determinantes da marcha (retirado de [Medved, 2001]).

b) Inclinação da pélvis

Como já mencionado, o CM desloca-se lateralmente sobre a extremidade em carga duas vezes durante um ciclo. O deslocamento é produzido pela inclinação lateral da pélvis do lado oposto ao membro em apoio. Para permitir a inclinação pélvica, o membro na fase aérea deve efectuar flexão do joelho, Figura 3.6. A inclinação pélvica do lado do membro em fase de balanço ocorre de forma abrupta no final da fase de duplo apoio. A trajectória do CM é diminuída, a trajectória pélvica suavizada e, através da flexão do joelho, a energia é conservada por um encurtamento efectivo do pêndulo [Medved, 2001].

Figura 3.5: Ilustração gráfica do primeiro determinante da marcha, a rotação pélvica (retirado de [Medved, 2001]).
c) Flexão do joelho na fase de apoio unipodálico

Constitui uma característica da marcha a passagem do peso do corpo sobre a extremidade enquanto o joelho está em flexão. O membro em carga inicia a fase de apoio unipodálico através do ataque ao solo com o joelho em extensão completa, de seguida o joelho começa a flexir e continua até o pé estar apoiado no solo, Figura 3.7. A média da flexão é de cerca de 15º. Imediatamente antes do período de carga completa médio o joelho, passa uma vez mais para extensão, o que é imediatamente seguido por flexão terminal do joelho. Este período de fase de apoio ocupa cerca de 40% do ciclo de marcha e é referido como o período de duplo bloqueio do joelho, uma vez que este é primariamente bloqueado em extensão, desbloqueado em flexão e bloqueado novamente em extensão seguido de uma flexão final [Saunders, 1953].

Estes três determinantes, rotação e inclinação pélvica e flexão do joelho agem no sentido de baixar o arco de translação do CM. A rotação pélvica eleva a extremidades do arco, a inclinação pélvica e flexão do joelho deprimem o seu pico máximo [Norkin, 1992; Saunders, 1953].

![Figura 3.6](image)

Figura 3.6: Ilustração gráfica do segundo determinante da marcha, a inclinação pélvica (retirado de [Medved, 2001]).
Figura 3.7: Ilustração gráfica do terceiro determinante da marcha, flexão do joelho em apoio unipodálico (retirado de [Medved, 2001]).

d) Pé e joelho

Os resultados encontrados e reportados revelam que existe uma estreita relação entre deslocamentos angulares do pé e joelho, podendo mesmo ser estabelecidos dois arcos que se intersectam durante a fase de apoio unipodálico. O primeiro arco ocorre no contacto do calcâneo e é descrito pelo raio formado pelo calcâneo. O segundo arco é formado pela rotação do pé sobre o centro estabelecido no ante pé em associação com a propulsão. No contacto do calcâneo, o pé está em dorsiflexão e o joelho em extensão completa, de modo que a extremidade está no seu comprimento máximo e o centro de gravidade encontra o seu ponto mais baixo de deslocação ascendente. A flexão plantar rápida associada ao início da flexão do joelho mantém o centro de gravidade na sua progressão a um mesmo nível durante algum tempo, baixando e revertendo suavemente a curvatura no início do seu arco de translação. O término deste arco é igualmente achatado e suavemente invertido pela flexão do segundo joelho associado à propulsão. O efeito da rotação do pé no deslocamento do joelho e o CM são ilustrados na Figura 3.8. A obliteração das inflexões abruptas nos pontos de interceptação dos arcos do centro de gravidade reduz o custo energético [Norkin, 1992; Saunders, 1953].
e) Deslocamento lateral da pélvis

O sexto determinante está relacionado com o deslocamento lateral da pélvis ou pela adução relativa da mesma, Figura 3.9. Se as extremidades fossem paralelas a quantidade de deslocamento seria metade do intervalo do eixo que passa pelas ancas, que é aproximadamente igual a 3 cm. O deslocamento lateral excessivo é corrigido pela existência do ângulo tibiofemural (ângulo Q), o que, juntamente com a adução relativa da anca, reduz o deslocamento para 1.75 cm, de maneira a aproximar o deslocamento vertical. Neste sentido, o desvio do CM é na maioria das vezes simétrico nos planos horizontal e vertical. Os factores que permitem o armazenamento de energia e a sua recuperação envolvem o tempo necessário para contracção muscular no deslocamento dos segmentos móveis. À medida que o CM se desloca ao longo da sua trajectória sinusoidal de baixa amplitude, a energia é dispendida durante a elevação e apenas uma parte da porção desta energia é recuperada na sua descida. O resultado é um dispêndio energético contínuo [Norkin, 1992; Saunders, 1953; Waters, 1999].
3.5.3 TEORIA DOS SEIS DETERMINANTES VERSUS TEORIA DO PÊNDULO INVERTIDO

A teoria dos seis determinantes da marcha, defendida em [Saunders, 1953], propõe um conjunto de aspectos cinemáticos que ajudam a reduzir a deslocação do CM corporal, baseando-se na premissa de que os deslocamentos verticais e horizontais são energeticamente dispendiosos. Movimentos como a flexão do joelho durante a fase de apoio e as rotações da cintura pélvica são coordenados para reduzir a deslocação do CM. Em contraste, a teoria do pêndulo invertido propõe que a marcha é energeticamente menos dispendiosa se durante a fase aérea o membro se comportar como um pêndulo descrevendo um arco. A teoria do pêndulo invertido entra em conflito com a teoria dos seis determinantes da marcha, Figura 3.10, sendo que as duas teorias de marcha servem o princípio da redução do dispêndio energético, mais no sentido de oposição do que no sentido de complementaridade [Doke, 2007].

A teoria dos seis determinantes da marcha tem sido largamente aceite; em [Kuo, 2005] são vários estudos que assentam nesta teoria. No entanto, a teoria carece de evidência experimental. Segundo [Kuo, 2007], estudos recentes revelam
que existem determinantes (flexão do joelho, rotação da cintura pélvica sobre um eixo vertical) que possuem um papel menos significativo na redução do deslocamento vertical do CM. O referido trabalho cita ainda outros estudos que revelam que existe um maior dispêndio metabólico quando os indivíduos reduzem de forma voluntária o deslocamento vertical do CM, comparando com a marcha normal. Os determinantes são talvez melhor vistos como descrições cinemáticas de certos aspectos da marcha, cuja origem é sujeita a debate.

Segundo [Cavagna, 1966], a energia cinética e potencial gravítica do centro de gravidade actua mais como seria esperado se o membro na fase de apoio unipodálico se comportar como um pêndulo invertido. Paralelamente, se o membro na fase aérea oscilar como um pêndulo, explica a fase de balanço, conforme [Mochon, 1980], citado em [Kuo, 2007]. Contudo, as teorias do pêndulo apresentam também algumas controvérsias. Se o pêndulo oscila livremente, qual a razão do dispêndio energético na marcha? É necessário perceber como a marcha se desvia do comportamento do pêndulo e de que forma esta alteração pode estar associada a dispêndio energético. Uma explicação possível para o custo energético do membro em apoio é de que este não se comporta passivamente. Em vez disso, pode agir como um pêndulo forçado com trabalho muscular utilizado para acelerar e desacelerar do pêndulo. No entanto, dada a possibilidade de acção passiva, sem dispêndio energético, não faz sentido a preferência por uma alternativa mais dispendiosa. Poderia também ser esperada a existência de uma determinada velocidade baixa para a qual o custo energético fosse zero. No entanto, custo metabólico é de facto substancial para todas as velocidades. Outra possibilidade é de que a energia seja despendida para produzir força muscular necessária para manter o joelho em extensão. No entanto, a configuração do membro inferior não requer elevadas forças musculares para a manutenção da extensão. Nem a produção de força isométrica explica a razão do dispêndio energético aumentar com a velocidade de marcha. Nenhuma explicação parece justificar o dispêndio energético na marcha. Para além do exposto, a teoria do pêndulo invertido não tem em consideração o trabalho realizado pelos membros individualmente na fase de duplo apoio [Griffin, 2003], nem é explicada a existência de dois picos de FRS [Pandy, 1988]. Outra limitação tem a ver com o facto de não serem tidos em consideração os custos que são considerados como não responsáveis por trabalho,
tal como a força isométrica para estabilização e suporte de peso corporal [Kuo, 2005].

![Diagrama da marcha humana](image)

Figura 3.10: Duas teorias explicativas da marcha (*adaptado de [Kuo, 2005]*): (a) Os seis determinantes da marcha reduzem o deslocamento vertical e horizontal do centro de gravidade; (b) A teoria do pêndulo invertido postula que o membro em fase de apoio é mantido em extensão, funcionando como um pêndulo invertido.

3.5.4 Teoria da Marcha Dinâmica

Uma explicação para o dispêndio energético na marcha é o trabalho mecânico realizado pelos músculos [Hill, 1953; Woledge, 1985]. Existe uma relação próxima entre o trabalho e o custo metabólico durante a marcha em declive. A eficiência da marcha em declive positivo e negativo, definida como o trabalho realizado contra gravidade dividido pelo custo metabólico, aproxima-se de 25% e -120%, respectivamente, e são semelhantes aos que se verificaram na realização de trabalho positivo e negativo em músculos isolados [Margaria, 1976]. Para marcha a nível do solo, no entanto, não é claro como se processa a exigência de trabalho mecânico, uma vez que não existem forças dissipativas externas ao sujeito, nem o trabalho é realizado contra gravidade, como em casos de declive [Donelan, 2002a; Kuo, 2007]. De acordo com [Kuo, 2007] e [Donelan, 2002a], o trabalho negativo não é realizado pelo ambiente externo, mas sim pelo próprio corpo. A marcha é assim vista como auto-resistida, com a realização de trabalho positivo para compensar o trabalho negativo. Existe uma variedade de métodos para quantificar o trabalho mecânico realizado no corpo e membros [Burdett, 1983; Cavagna, 1977; Willems, 1995], no entanto, nenhum deles não prediz nem explica onde e porquê a energia é dissipada. Assim, apesar da existência de estudos que procuraram explicar os fenômenos de dissipação de energia ocorridos, existem ainda muitas interrogações
acerca do modo como se estabelece a relação entre a não-conservação de energia mecânica e as variáveis cinéticas e cinemáticas do padrão de marcha.

Vários modelos de marcha baseados num pêndulo invertido prevêem que o trabalho não é solicitado dentro de cada passo, mas sim entre passos [Alexander, 1995; Garcia, 1998; Kuo, 2002; McGeer, 1990a]. A marcha dinâmica difere do modelo do pêndulo invertido na finalização de cada ciclo de marcha, fase de duplo apoio. Esta fase da marcha é de difícil modelização devido ao facto de os membros formarem uma cadeia cinética fechada, sem uma analogia óbvia e simples como no modelo do pêndulo invertido. A abordagem da marcha dinâmica, no entanto, resolve esta dificuldade, ao entender a transição entre passos como análoga a uma colisão. Na marcha dinâmica, a conservação de energia da fase de apoio unipodálico é interrompida pela colisão do membro oscilante com o solo, Figura 3.10. A colisão está associada a libertação de energia de forma inelástica no local de impacto, ao longo do membro e mesmo de outras partes corporais. Para além da perda energética, o maior efeito da colisão é alterar a velocidade dos membros e do CM. A alteração de velocidade é necessária devido à troca dos membros em apoio, onde o arco pendular descrito por um membro em apoio deve ser seguido por outro arco.

Os princípios da marcha dinâmica fornecem apenas uma abordagem simplificada para a mesma. O conceito de marcha dinâmica refere-se a um conjunto de sistemas nos quais a dinâmica passiva dos membros domina o movimento, com a mínima actuação no sentido de manter o comportamento periódico. A marcha dinâmica é uma extensão da teoria do pêndulo e oferece também uma potencial resolução para a controvérsia da teoria do pêndulo invertido sob a forma de colisões de dissipação de energia entre o membro e o solo, Figura 3.11. Estas colisões apresentam, elas próprias, a oportunidade para testar e, mais importante, distinguir novas formas de “ver e pensar” a marcha humana [Kuo, 2005, 2007].

De acordo com [Donelan, 2002a], o trabalho realizado na transição passo a passo pode explicar 60-70% do dispêndio energético da marcha. Os membros mais anterior e posterior devem realizar trabalho negativo e positivo, respectivamente, no CM, no sentido de redireccionar a velocidade entre os passos. Esta é uma forma de co-contracção entre os membros, que deve ser idealmente mantida curta em duração e distância. O trabalho realizado na transição entre os passos é menor do que aquele realizado para baixar o CM e prediz um maior componente do custo metabólico da marcha. Tal como a analogia a um pêndulo invertido explica como o apoio unipodálico pode ser realizado com pouco trabalho mecânico, uma nova analogia ajuda a explicar como o centro de gravidade requer redirecção e como o trabalho deve ser realizado. O custo de redirecção pode ser reduzido aumentando activamente a velocidade dos membros relativamente ao corpo [Kuo, 2005, 2007].
Em [Kuo, 2007], é apresentada uma analogia entre a marcha humana e o movimento de uma bola, Figura 3.12. A bola, quando impulsionada, descreve uma trajectória balística num arco parabólico, sendo redireccionada entre as fases de voo livre de uma velocidade de uma direcção inferior no final do arco de voo livre para uma direcção superior no início do próximo arco. Durante a redirecção é necessária a realização de trabalho positivo e negativo. Não há necessidade de impulsionar, elevar ou acelerar horizontalmente a bola. Durante a fase de apoio unipodal o péndulo suporta o CM, não havendo necessidade de realizar trabalho, processo similar à fase de voo livre da bola. Durante a fase de duplo apoio o CM tem de ser redirecionado através de forças direccionadas ao longo de cada membro. O membro posterior e anterior realizam trabalho positivo e negativo no centro de gravidade, respectivamente.

Figura 3.11: Os princípios da marcha dinâmica representados em robots (adaptado de [Kuo, 2007]): A fase de apoio unipodal pode ser produzida por dinâmica passiva, com os membros agindo como pêndulos, como na teoria do péndulo invertido. Uma característica da marcha dinâmica é que existe uma colisão entre o membro em fase de balanço e o solo de forma dinâmica passiva num plano inclinado ou activa através da propulsão [Kuo, 1999].

Tal como já foi referido, para manter uma velocidade constante é necessário trabalho positivo para substituir a perda de energia devida ao trabalho negativo. O trabalho positivo pode ser realizado em qualquer altura durante o passo, no entanto, o modelo simples proposto em [Kuo, 1999] prevê que seja mais vantajoso que a perna anterior realize trabalho negativo ao mesmo tempo que o membro posterior realiza trabalho positivo. Se o trabalho positivo é realizado predominantemente antes da fase de duplo apoio, será necessária maior quantidade de energia para redirecionar a velocidade do CM. Como consequência, é necessário mais trabalho positivo para manter a mesma velocidade [Donelan, 2002c]. Segundo [Kuo, 2005]
durante a fase de duplo apoio a aceleração é a taxa de variação da velocidade do CM (\hat{v}_{cm}) ou pela lei de Newton:

$$\hat{v}_{cm} = \frac{1}{M} (\vec{F}_{ant} + \vec{F}_{post}) + \hat{g},$$

onde \vec{F}_{ant} e \vec{F}_{post} são as FRS dos membros anterior e posterior, M a massa corporal e \hat{g} a aceleração gravitacional.

Figura 3.12: Diagrama esquemático do modelo do pêndulo invertido simples que não requer energia para o movimento do pêndulo mas sim para redirecionar o CM entre os passos (adaptado de [Kuo, 2007]).

O trabalho realizado pelos membros contribui para a energia cinética. A curta duração causa deslocamento durante a fase de duplo apoio de aproximadamente zero. A energia cinética antes e após cada impulso é proporcional ao quadrado da magnitude de v_{cm} a cada instante e o trabalho realizado em cada impulso à transformação em energia cinética que produz. Cada trabalho do membro é proporcional à diferença do quadrado da velocidade [Kuo, 2007]. Assim, tem-se:

$$\hat{v}_{cm}^+ - \hat{v}_{cm}^- = \frac{1}{M} \int \vec{F}_{ant} \, dt + \frac{1}{M} \int \vec{F}_{post} \, dt + \int \hat{g} \, dt$$

$$W_{post} = \frac{1}{2} M (v_{cm} \tan \alpha)^2.$$
onde v_{cm} constitui a velocidade escalar (dos membros que realizam trabalho positivo e negativo), e α metade do ângulo entre os membros [Kuo, 2005]. A transição passo-a-passo é ótima quando as fases de propulsão e colisão são de igual magnitude e realizadas com curta duração. A marcha é tecnicamente mais dispendiosa se os membros não realizarem igual quantidade de trabalho durante a fase de duplo apoio, uma vez que é necessário trabalho adicional para manter a velocidade constante. Por exemplo, se a colisão for maior que a propulsão, o pêndulo invertido irá iniciar o próximo passo de modo mais lento que o anterior, sendo necessário trabalho positivo durante a fase de apoio unipodal para fazer a diferença, Figura 3.13. Este trabalho pode ser realizado pela gravidade em declive ou por binários activos da tibiotalárse. Em contraste, uma propulsão que exceda a colisão irá causar uma energia adicional ao pêndulo. É vantajoso não realizar trabalho positivo e minimizar o tempo e deslocamento da transição passo-a-passo [Kuo, 2007].

Os modelos de colisão dinâmica podem ser escalados para uma variedade de massas e escalas de comprimento. Os joelhos possuem pouco efeito na transição entre passos, embora esse efeito seja útil para aumentar a distância ao solo e para a fase de oscilação. O rolamento do pé leva a uma translação do CM durante a fase de apoio unipodal. A inclusão da dinâmica do plano frontal com a antropometria da pelvis causa um trabalho de transição entre passos dependente da largura do passo [Donelan, 2001]. O modelo simples de [Kuo, 1999] prevê que os custos da colisão aumentam com o quadrado da largura do passo. No entanto, este constitui apenas uma pequena parte do custo metabólico da marcha normal, uma vez que os humanos realizam marcha com uma largura do passo relativamente pequena. Os custos de transição associados ao comprimento do passo compreendem uma fração maior do custo metabólico da marcha normal. Os modelos consideram dois componentes importantes para o custo da marcha: o custo associado ao comprimento do passo e o custo associado ao aumento da frequência do passo devido ao movimento dos membros relativamente ao corpo [Kuo, 2001]. Prevê-se que a taxa de trabalho para a transição entre passos aumenta com a quarta potência do comprimento do passo. No entanto, o aumento da velocidade é acompanhado pelo aumento proporcional do comprimento do passo. Assim sendo, o custo

\[W_{ant} = -\frac{1}{2}M(v_{cm} \tan \alpha)^2 \]
metabólico do movimento dos membros depende mais fortemente da frequência do passo [Kuo, 2001].

Figura 3.13: Diagrama geométrico da redirecção da velocidade do CM pelos membros posterior e anterior (adaptado de [Kuo, 2005]): O trabalho teórico realizado por cada membro é proporcional ao quadrado das forças integradas e normalizadas à massa com trabalho positivo realizado pelo membro posterior e negativo pelo membro anterior. (a) Se a propulsão é igual à magnitude da colisão, a quantidade de trabalho positivo e negativo é minimizada e não é necessário trabalho durante a fase de apoio unipodálico. b) Se a colisão exceder a propulsão, o próximo passo inicia com uma velocidade menor. Para manter a mesma velocidade é realizado trabalho positivo adicional durante a fase de apoio ou executada marcha em plano inclinado. (c) Se a propulsão excede a colisão é necessário trabalho negativo adicional para desacelerar o pêndulo.

O trabalho positivo realizado pelos músculos deriva de energia metabólica e mecânica armazenada nos componentes elásticos durante a fase precedente de trabalho negativo. A máxima eficiência da transformação de energia química é de cerca de 0 (zero) a 25. A eficiência global do trabalho positivo realizado durante o exercicio expresso pela razão trabalho positivo realizado pelos músculos/energia química usada pelos músculos, dá uma indicação da importância relativa dos componentes contráteis versus componentes elásticos. De facto, um valor entre 0 (zero) a 25 deve indicar que parte do trabalho positivo é realizada por elementos elásticos estirados por uma força externa durante a fase precedente de trabalho negativo. A contribuição da energia elástica é maior na corrida do que na marcha, aspecto que está de acordo com os mecanismos rígido versus capacidade de adaptação destes dois exercícios [Cavagna, 1977].

A marcha dinâmica ajuda a solucionar o conflito entre as duas teorias mais defendidas. A trajectória do CM referida pela teoria dos seis determinantes da
marcha requer trabalho positivo e negativo substancial realizado pelos dois membros no CM e uma larga magnitude de binário do joelho para suportar o peso corporal. A vantagem da marcha como um pêndulo invertido é que o centro de gravidade pode ser transportado durante o passo com baixo trabalho ou binário. No entanto, a consequência deste tipo de marcha é a necessidade de fazer a transição entre passos. A marcha dinâmica inclui transição passo-a-passo num ciclo de marcha periódico e completo, cujo movimento é gerado predominantemente por dinâmica passiva dos membros.

3.6 CONTROLO ENERGÉTICO DA MARCHA

A locomoção humana envolve o deslocamento do corpo no espaço com o mínimo de dispêndio energético mecânico e fisiológico. Embora o objectivo da marcha seja progressão na direcção anterior, o movimento de membros é baseado na necessidade de manter um deslocamento do CM da cabeça, tronco e membros superiores de baixa amplitude e simétrico nas direcções vertical e lateral. Este aspecto permite a conservação de energia cinética e potencial e é o princípio biológico de conservação de energia [Inman, 1981; Saunders, 1953].

No final da fase de balanço da marcha, o CM da cabeça, tronco e membros superiores está posterior em relação ao membro que se desloca no sentido anterior. Durante a fase inicial de apoio, o CM da cabeça, tronco e membros superiores começa a elevar-se sobre o membro inferior após o ataque ao solo. Esta elevação é gerada por energia cinética. Quando o CM atinge a elevação vertical máxima na fase média de apoio, a velocidade do CM diminui, à medida que a energia cinética é convertida em energia potencial. Esta energia potencial é convertida em energia cinética na fase final de apoio, quando o CM passa para a frente do pé e a velocidade aumenta. Este processo permite a transferência de energia entre passos sucessivos, bem como manter um nível aproximado de energia mecânica [Inman, 1981; Minetti, 1995; Saunders, 1953].

O design dos membros inferiores e o uso eficiente de músculos biarticulares permite aos músculos contraírem com alteração mínima do seu comprimento, aproximando-se da eficiência de contracções isométricas [Elftman, 1966]. Assim

Vários estudos apontam para a existência de um conjunto de factores que são responsáveis pelo dispêndio energético ocorrido durante a marcha. Por exemplo, em [Kuo, 2005] é evidenciada a necessidade energética durante a fase de duplo apoio para redirecionar a velocidade do CM. Por outro lado, outros investigadores consideram outras variáveis associadas ao dispêndio energético, tal como o suporte de peso corporal, o movimento de membros ou o controlo de estabilidade [Donelan, 2002b; Liu, 2006; Neptune, 2001a; Zajac, 2003].

Recolhas electromiográficas têm mostrado padrões de actividade em vários músculos que são activados durante a locomoção e que podem exibir uma grande variabilidade entre passos. No entanto, a média da actividade de um conjunto de passos possui um padrão de actividade média característico para cada ciclo e este é semelhante em indivíduos normais [Winter, 1991]. Estes padrões de actividade parecem ser diferentes para cada músculo, no entanto existem características que são comuns a vários. De facto existe uma evidência analítica de que vários músculos partilham certos padrões de actividade [Winter, 1991; Yakovenko, 2002]. Embora estejam descritos na literatura, por exemplo em [Inman, 1981; Perry, 1992; Sutherland, 1966; Winter, 1991], o mesmo padrão pode ser constituído por diferentes combinações de músculos. O padrão muscular varia não só de indivíduo para indivíduo como é afectado pela fadiga, velocidade [Whitle, 2007].

Indivíduos saudáveis que realizam marcha a velocidade auto-seleccionada geralmente adoptam um comprimento da passada de 1.4 a 1.5 m com comprimentos de passo de 0.7 a 0.75 m [Kabada, 1990; Murray, 1970; Murray, 1964]. A velocidade
de marcha é igual ao produto de metade do comprimento da passada e a cadência. Indivíduos saudáveis realizam marcha com uma cadência de 110 passos/minuto a velocidade livremente escolhida. Velocidades de marcha mais elevadas são acompanhadas pelo aumento simultâneo na cadência e comprimento da passada em indivíduos normais [Murray, 1967].

Tal como já foi referido, o modelo simplificado de [Kuo, 1999], prevê que os custos da colisão aumentam com o comprimento do passo, compreendendo uma fração significativa do custo energético da marcha. Estes modelos sugerem dois componentes principais para o custo da marcha: o custo relacionado com o aumento do comprimento do passo e o custo relacionado com o aumento da sua frequência [Kuo, 2001]. A taxa de trabalho mecânico aumenta nitidamente com a quarta potência do comprimento do passo [Kuo, 2001]. Vários padrões motores relacionados com energia têm sido identificados como influenciadores da magnitude do comprimento do passo [Winter, 1985]. De acordo com [Ralston, 1969; Winter, 1976], dado que a fase de balanço constitui a fase de maior requerimento energético durante a marcha, torna-se pertinente analisar as fases de geração de energia mecânica e de absorção de energia que aceleram e desaceleram o membro inferior imediatamente antes e durante a fase de balanço. Assim, a maior geração de energia, num segmento, no ciclo de marcha é gerada pelos flexores plantares durante o “pushoff” [Winter, 1983], e é responsável pela aceleração para cima e para a frente do membro inferior. Simultaneamente a esta actividade dos flexores plantares (durante 40%-60% da passada na marcha), o joelho flecte sobre o controlo excêntrico do músculo quadríceps femoral. No final da fase de apoio (50% da passada), os flexores plantares iniciam uma contracção concêntrica, iniciando a fase de “pull-off” que passa pelo “toe-off” até a fase média de apoio (80% da passada). Finalmente, a maior desaceleração do membro é conseguida pelos músculos isquiotibiais que contraem excêntricamente para reduzir a velocidade do pé para um valor próximo do zero para o ataque ao solo. Em [Winter, 1992], foi verificada a existência de quatro padrões motores concêntricos e excêntricos durante as fases final de apoio e oscilante para controlo do comprimento do passo. O comprimento do passo e a velocidade de marcha foram aumentados por um aumento da actividade dos flexores plantares durante a fase de “push-off” e pelo aumento da actividade dos flexores da anca durante a fase de “pull-off”. O comprimento do passo, pode ser reduzido pelo aumento da actividade excêntrica do músculo quadríceps femoral...
durante a fase final de apoio e pelo aumento da actividade excêntrica dos músculos isquiotibiais durante a fase final de balanço.

A maior parte dos indivíduos normais caminham na sua velocidade normal entre 1 a 1.7 m/s [Waters, 1989]. Neste intervalo, as curvas de dispêndio energético são relativamente achatadas, indicando a existência de uma eficiência uniforme virtual na marcha em velocidade auto-seleccionada [Masani, 2002; Murray, 1964]. Existem estudos que demonstram que existe uma velocidade óptima, na qual o dispêndio energético durante a marcha é mínimo [Bunc, 1997]. Em [Masani, 2002], é ainda indicado que a variabilidade do comprimento do passo é mínimo, durante a velocidade óptima. Segundo [Borghese, 1996], existe uma mudança de parâmetros de marcha em função da velocidade, do aumento do comprimento do passo, da diminuição da duração do ciclo e da duração da fase de apoio com o aumento da velocidade. O comprimento do passo aumenta com a velocidade, principalmente como resultado do aumento do deslocamento anterior durante a fase de apoio unipodálico. No entanto, a cinemática global dos membros parte de forma significativa de modelos previsíveis que envolvem movimentos do tipo pêndulo invertido. Os mesmos autores também constataram que a velocidade da rotação angular da anca sobre o pé é sinusoidal durante a fase de balanço mas é quase constante durante variações de velocidade.

As FRS constituem uma medição representativa da marcha, uma vez que constituem uma força externa na marcha e afectam a aceleração do CM corporal. Em [Masani, 2002], é verificada a existência de uma dependência entre a variabilidade das FRS e a velocidade da marcha, que indica que o sistema neuromuscular é mais estável a velocidades normais. Este fenómeno de optimização sugere que escolhemos a velocidade energeticamente mais eficiente durante a marcha. Segundo o estudo referenciado, o sistema de controlo motor é mais estável. De notar que foi encontrada uma velocidade óptima apenas para Fy e a variabilidade para Fx e Fz aumenta com a velocidade. Enquanto Fy afecta a fase de propulsão, Fx afecta o deslocamento lateral e Fz afecta o deslocamento vertical do corpo. Neste sentido, a variabilidade de Fx e Fy podem ser vistas como representativas da estabilidade do mecanismo do controlo de equilíbrio. Os resultados deste estudo sugerem que a optimização do sistema neuromuscular só é observada no caso do mecanismo de propulsão, enquanto a instabilidade do mecanismo de controlo de
equilíbrio aumenta com a velocidade [Masani, 2002]. Segundo vários autores, a estabilização do equilíbrio lateral na marcha humana requer um dispêndio energético significativo, dado que o movimento activo dos membros para ajustar a colocação mediolateral do pé no solo requer custo metabólico [Donelan, 2004; Donelan, 2002b]. Segundo [Borghese, 1996], o padrão de FRS altera sistematicamente com a velocidade. Este aspecto reflete as alterações paralelas que ocorrem na dinâmica do CM no plano sagital e no deslocamento lateral do peso corporal para o membro que suporta o peso. Os padrões de alteração nos ângulos de flexão-extensão da anca e tibiotalântica variam de acordo com a velocidade. O estudo realizado em [Raynor, 2002] tentou perceber qual a causa para a transição de marcha para corrida e de corrida para marcha. Entre as variáveis estudadas, constituiam factores determinantes para as transições referidas a necessidade de manter uma eficiência metabólica, a necessidade de manter uma carga esquelética abaixo de um nível de força crítico ou simplesmente devido a factores mecânicos, a variáveis cinéticas de tempo do primeiro pico de força e a taxa de carga.

A análise da marcha bípeda demonstra a existência de uma ressonância biomecânica associada ao comportamento semelhante a um pêndulo invertido da estrutura esquelética e rigidez muscular [Holt, 1990]. Estes factores podem contribuir para a estabilidade na velocidade normal [McGeer, 1990a]. A realização de marcha a velocidades que se encontram fora destes valores de frequência de ressonância requerem maior controlo activo neuromuscular para manter um movimento estável periódico [Ralston, 1958]. Por outras palavras, velocidades de marcha mais rápidas aumentam o momento segmentar, solicitando maior esforço para atenuar distúrbios cinemáticos. Por outro lado, durações de passo pequenas limitam o tempo para as correções neuromusculares para compensar distúrbios cinemáticos ou erros de controlo. Velocidades de marcha mais baixas requerem controlo activo que está fora de fase em relação aos mecanismos passivos do sistema do pêndulo invertido. Em [England, 2007], é sugerido que os sujeitos podem ser temporalmente menos estáveis a velocidades mais baixas do que em velocidades altas, mas espacialmente mais estáveis a velocidades mais baixas. Para além disso, os resultados sugerem que o controlo neural é mais efectivo no controlo de distúrbios cinemáticos a velocidades mais baixas do que mais altas.
Torna-se claro que os músculos trabalham em conjunto ao longo do ciclo de marcha para redistribuir energia ao longo dos segmentos para suportar a propulsão do corpo no sentido anterior. No entanto, os músculos não só têm de gerar força para causar redistribuição de energia segmentar mas também necessitam de produzir trabalho para repor a perda de energia ocorrida durante o impacto no solo, as perdas de energia mecânica quando os músculos agem excentricamente e a perda energética devido a viscosidade de estruturas que causam rigidez articular passiva. Simulações no plano sagital sugerem que os isquiotibiais, flexores plantares e extensores da anca uniarticulares produzem a maior parte da energia mecânica ao longo do ciclo [Neptune, 2002].

3.6 Análise da Actividade Muscular Durante o Ciclo de Marcha

O tipo de actividade muscular exigida durante a marcha depende da natureza do momento articular na extremidade em apoio e a direcção do movimento desejado. Se o momento do vector da força de reacção do solo tende a causar movimento numa determinada direcção, o músculo age para controlar ou restringir (contracção excêntrica) [Norkin, 1992]. De acordo com [Winter, 1987], os músculos distais são os mais activos e os que apresentam menor variabilidade enquanto os músculos proximais são menos activos e de padrão mais variável. Ainda de acordo com o mesmo autor, a variabilidade do padrão electromiográfico é maior nos músculos biarticulares, distais e proximais, relativamente aos músculos uniarticulares. É apresentada de seguida uma análise da acção muscular nos planos sagital e frontal ao longo do ciclo de marcha.

3.6.1 Plano Sagital

a) Fase de ataque ao solo

Durante a subfase de ataque ao solo (AS), em cada articulação, os músculos são activados no sentido de preparar a recepção de peso corporal. Segundo [Liu, 2006] e [Zajac, 2003], os músculos extensores do joelho e extensores da anca são os principais responsáveis pela desaceleração longitudinal durante a primeira fase
de apoio. Os músculos extensores da anca possuem um papel importante na desaceleração longitudinal, impedindo a progressão durante a primeira parte da fase de apoio [Liu, 2006]. A acção do músculo quadricípete é responsável por trabalho positivo quando o membro em apoio se estende antes da fase média [Kuo, 2007; Neptune, 2008]. No entanto, as condições de carga e tempo admitem a possibilidade de alguma recuperação elástica do joelho para um grau desconhecido, que pode ser considerada como consequência directa da colisão, uma vez que a quantidade de extensão depende da quantidade de flexão que ocorre durante a colisão. A extensão completa do joelho minimiza a força necessária para suportar o peso corporal na fase seguinte, minimizando o dispêndio metabólico na fase média de apoio, exigindo no entanto trabalho prévio [Kuo, 2007]. Em [Liu, 2006] e [Neptune, 2002], foi verificado que os músculos vastos são os que assumem um papel mais activo dentro do músculo quadricípete na fase de AS.

Já no que diz respeito à acção dos músculos flexores plantares, existe alguma controvérsia. Segundo [Liu, 2006; Neptune, 2008], os músculos flexores plantares possuem pouca influência na fase de ataque ao solo. No entanto, em [Neptune, 2001a], é indicado que os músculos solear e gastrocnemio medial iniciam o suporte do tronco na fase inicial de apoio, juntamente com outros músculos, devido à sua contribuição individual para a força segmentar da anca, que tem uma componente vertical elevada, o que acelera o tronco para cima antes da fase média de apoio (<30%) e desacelera o movimento para baixo do tronco.

b) Fase de recepção de carga/Foot Flat - Fase média de apoio

Segundo [Norkin, 1992], nesta fase ocorre trabalho positivo dos extensores da anca, que contraem concentricamente entre o ataque ao solo e o apoio completo do pé no solo. De acordo com [Perry, 1992], apenas os músculos vastos se encontram activos nesta subfase. Os extensores do joelho realizam também trabalho negativo (absorção de energia) actuando excentricamente para controlar a flexão do joelho na mesma fase. Os flexores plantares realizam trabalho negativo quando a tibia roda sobre o pé durante o período de apoio que vai desde o apoio do pé no solo à fase média de apoio. O modelo defendido por [Neptune, 2001b], permite concluir que a função primária do músculo gastrocnemio medial é suportar o troco durante a fase média de apoio agindo de forma isométrica [Holf, 1983; Woledge, 1985]. Durante a fase média de apoio, o joelho faz extensão cerca de 15º no final da fase de carga e
5º no final da fase média de apoio. Existe um momento de flexão no joelho, que constitui um movimento indesejado, sendo pois necessária uma contracção concêntrica dos extensores do joelho para opor o momento de flexão e produzir extensão [Norkin, 1992]

Após a fase média, a pré-carga é caracterizada por um trabalho substancial realizado pelo músculo gastrocnemio isometricamente, podendo realizar trabalho positivo. A pré-carga pode, em última instância, permitir o trabalho positivo gerado pela anca sobre a passada e contribuir para a fase de propulsão. Estes mecanismos podem explicar a razão do trabalho de pré-carga aumentar com o trabalho de propulsão [Kuo, 2007]. O trabalho positivo dos extensores do joelho ocorre durante este período para estender o joelho após a fase de apoio do pé [Norkin, 1992].

c) Fase de propulsão

Segundo [Liu, 2006], é na segunda fase de apoio que os músculos solear e gastrocnemio medial produzem a maior aceleração. O trabalho positivo durante a fase de propulsão (P) é atribuído à tibiotársica. Algum deste trabalho pode resultar de acumulação de energia elástica no tendão, no entanto, existem razões que explicam a razão de os músculos realizarem trabalho activo. Em primeiro lugar, a perda de energia na colisão não pode ser gerada pelo músculo e apenas uma fracção é armazenada e utilizada elasticamente. Em segundo lugar, a proporção entre o trabalho e a energia metabólica na transição entre passos indica que a propulsão é activa [Doke, 2007]

na P pelos flexores plantares corresponde ao maior trabalho realizado no ciclo de marcha e é responsável pela aceleração vertical e horizontal anterior. Por outro lado, segundo [Zajac, 2003], a fase final de P possui um maior contributo do músculo solear.

Simultaneamente à contracção dos flexores plantares (durante 40 a 60% do ciclo de marcha), no final da fase de apoio o joelho flecte sobre o controlo da acção excêntrica do músculo quadríceps contribuindo significativamente para a propulsão anterior do tronco na fase final de apoio [Neptune, 2008]. Segundo [Winter, 1991], na fase final de apoio o joelho flexiona com o controlo excêntrico do músculo quadríceps. Já de acordo com [Neptune, 2002], na fase final de apoio o recto femoral age para acelerar a extensão do joelho e da anca. Estas conclusões baseadas na análise de simulações, são consistentes com a noção que o reto femoral está activo quando há flexão rápida do joelho [Perry, 1992], mas são inconsistentes com a elevação da perna para a frente na fase de balanço ou flexão da anca para acelerar o membro na fase de balanço [Annaswamy, 1999]. Segundo [Neptune, 2002], o recto femoral na fase final de apoio age energicamente de modo próprio e como os vastos na fase inicial de apoio. Na fase final de apoio, o recto femoral é antagonista à contribuição do músculo gastrocnemio para iniciar a fase de balanço mas agonista para a contribuição do solear para acelerar o tronco para a frente.

d) Fase de balanço

Na fase de balanço não existe força de reacção ao solo, a extremidade move-se em cadeia cinética aberta. É necessária actividade muscular para acelerar e desacelerar a extremidade oscilante e elevar ou manter a extremidade contra a força de gravidade, de maneira a que o pé descole do chão e seja colocado numa posição óptima para o contacto do calcâneo. A aceleração é garantida pela contracção concêntrica dos flexores da anca e extensores do joelho, permanecendo estes inactivos na fase de balanço média e terminal. A desaceleração é garantida pela actividade excêntrica dos extensores da anca e flexores do joelho. Os músculos activos na fase final de balanço são o tibial anterior, o longo extensor dos dedos e o longo extensor do hálux [Norkin, 1992]. Em [Whitle, 2007], é referido o papel dos isquiotibiais para prevenção da hiperextensão do joelho no final da fase de balanço.
De acordo com [Jonkers, 2003], o músculo BF tem a capacidade de substituir a acção do músculo gluteo máximo quando este apresenta fraqueza.

3.6.2 Plano Frontal

Fazendo uma análise no plano frontal, verifica-se que durante a fase de apoio, a actividade muscular é essencial, uma vez que as articulações estão em posição de congruência articular mínima (*loose packed position*). A estabilização da anca é promovida pela actividade dos músculos glúteo médio e mínimo e tensor da fascia lata. A rápida transferência de carga mediolateral requer um suporte dinâmico do valgo do joelho pelo vasto medial, semitendinoso e gracilis, prevenindo um aumento do vagus fisiológico do joelho. Na tibiotalárica e pé, o peso corporal é transferido do calcâneo, passando pelo bordo lateral do pé durante a fase de carga. No final da fase de apoio os cinco metatarsos estão em carga; subsequentemente, o peso é transferido da cabeça dos cinco metatarsos para o hálux, na fase de pré-oscilação. A pronação da articulação subtalar é iniciada na fase de ataque ao solo, como resultado de ser exercida carga no calcâneo, lateralmente ao eixo de movimento. A pronação subtalar continua durante os primeiros 25% da fase de apoio, como resposta à aceitação de peso, e permite uma maior adaptação do pé à superfície de apoio. O músculo tibial anterior é o único inversor activo durante o ataque ao solo que pode restringir a eversão. Durante a fase de apoio é necessária actividade do músculo tibial posterior para controlar a pronação. Na fase média de apoio o pé inicia a supinação e retorna à posição neutra no final na fase média de apoio [Norkin, 1992].

A pronação do pé em cadeia cinética fechada provoca a rotação interna da tibia, enquanto a supinação provoca uma força para rotação lateral. Do mesmo modo, a rotação tibial também influencia a posição do pé. Os músculos tibial posterior, solear e gastrocnemio contraem excentricamente para controlar a pronação que ocorre após o ataque ao solo e para controlar a rotação interna da tibia [Norkin, 1992].

Durante a fase média de apoio, a necessidade de estabilidade mediolateral encontra-se diminuída. O tensor da fascia lata continua a sua estabilização. O músculo glúteo diminui a sua actividade durante a fase média de apoio e nenhuma
actividade é exercida na fase de pré-oscilação. Os músculos adutores da anca iniciam a sua actividade na fase terminal de apoio e contraem excentricamente na fase de pré-oscilação, para controlar a transferência de peso para o membro contralateral. Este controlo também é feito pelos flexores plantares. No joelho, a actividade dos estabilizadores dinâmicos (semitendinoso, gracilis e vasto medial obliquo) cessa na fase média de apoio [Norkin, 1992].

3.7 CARACTERIZAÇÃO CINÉTICA DA MARCHA

Para uma melhor compreensão dos requisitos energéticos da marcha e do papel dos factores determinantes da mesma é necessário perceber as forças envolvidas. Durante a marcha, as forças externas que agem no corpo são a inércia, a gravidade e as forças de reacção do solo (FRS). A força de inércia resulta das propriedades inerciais dos segmentos corporais, é proporcional à aceleração do segmento e age na direcção oposta da aceleração. A força de gravidade age no sentido de baixar o CM de cada segmento corporal. A FRS representa a força exercida pelo solo sobre o pé e é igual em magnitude e oposta em direcção à força que o corpo exerce sobre o solo [Norkin, 1992; Perry, 1992].

Como já foi anteriormente evidenciado, as acelerações do CM estão directamente relacionadas com a FRS. No início da fase de apoio, os músculos contribuem para uma força de reacção do solo vertical que excede o peso corporal, acelerando o CM no sentido superior. Durante a fase média de apoio, as forças de reacção do solo são inferiores ao peso corporal, causando uma aceleração do CM no sentido inferior. Durante a fase final de apoio os músculos contribuem novamente para um aumento da força de reacção do solo, que é maior que o peso corporal, acelerando o CM no sentido superior. Existem períodos similares de aceleração e desaceleração na direcção longitudinal, lentificando a progressão anterior do centro de gravidade [Kuo, 2007; Liu, 2006]. Durante a segunda fase de apoio os músculos geram FRS que aceleram o CM no sentido anterior.

A componente vertical da FRS é a que apresenta maior magnitude, o que conta com a aceleração do CM na direcção vertical durante a marcha [Inman, 1981]. Durante os primeiros 100 ms, a componente vertical da FRS (Fz) atinge um máximo
de 120% do peso corporal, caindo para 60 a 80% durante a fase de apoio unipodálico [Perry, 1992]. O centro de gravidade é localizado no centro da pélvis e descreve um movimento sinusoidal durante a marcha [Saunders, 1953]. Neste sentido, quando a aceleração é positiva, Fz tem de ser maior que o peso corporal. A aceleração positiva ocorre durante a fase de duplo apoio, quando o centro de gravidade está no seu ponto mais baixo. Quando o centro de gravidade está no seu ponto mais alto durante a fase de apoio unipodálico a aceleração é negativa e Fz tem de ser menor que o peso corporal [Inman, 1981; Perry, 1992; Winter, 1991]. As FRS horizontais (anteroposterior e mediolateral) são consideravelmente menores do que Fz. A componente anteroposterior (Fy) tem uma amplitude de 20% do peso corporal. Na fase de ataque ao solo, Fy é negativa. Este aspecto é causado pela acção de paragem do pé que se posiciona anteriormente ao CM. Na fase de propulsão Fy é positiva quando o corpo se move para a frente. A componente medio-lateral (Fx) está relacionada com o equilíbrio durante a marcha. A sua magnitude é menor que 10% do peso corporal na maior parte das situações. A componente Fx age primariamente na direcção medial durante a fase de resposta a carga, agindo depois lateralmente durante o resto do período de apoio. A força lateral atinge o seu pico máximo na fase terminal [Inman, 1981; Perry, 1992; Winter, 1991].

O peso e a força de atrito constituem duas forças básicas na força de reacção ao solo. O peso está relacionado com a Fz decorrente do peso corporal e de qualquer aceleração e/ou desaceleração que actua no corpo. Essa componente é necessária para se contrapor à acção da gravidade e deve ser igual ao peso corporal, para manter a altura do CM acima da superfície de contacto. Desta forma, uma força de reacção do solo vertical menor que o peso indica que o CM acelera para baixo. A força de atrito refere-se à componente horizontal e não é influenciada directamente pela gravidade. As acelerações são no sentido anteroposterior e mediolateral. A componente vertical da FRS apresenta uma magnitude maior que as restantes e é caracterizada por dois picos e um vale, e geralmente esses picos apresentam uma magnitude superior ao peso corporal. O primeiro pico é observado na primeira metade do período de apoio, e o segundo pico é observado no final do período de apoio e representa o impulso contra o solo para iniciar o próximo passo. O mínimo local resulta da amortização da componente vertical do movimento resultante da actividade no joelho representa o período em que o pé se encontra em
posição plana [Vaughun, 1999]. Verifica-se a existência de um pico nos primeiros milissegundos de apoio, nem sempre evidente na marcha que se refere à força de impacto [Nigg, 2002]. Ainda segundo [Nigg, 2002], esta força resulta do impacto entre dois corpos e a magnitude pode sofrer influência de vários factores, entre eles a velocidade e o tipo de calçado.

O CP durante a marcha move-se segundo um padrão característico que varia com e sem utilização de calçado e com diferentes tipos de calçado. Na marcha sem calçado, o CP inicia o deslocamento do bordo lateral do calcâneo no início da fase de apoio e move-se de uma forma praticamente linear através do mediopé lateralmente à linha média, movendo-se posteriormente para o lado medial com uma grande concentração na cabeça do primeiro metatarso. O CP move-se posteriormente para o primeiro e segundo dedos durante a fase terminal de apoio [Norkin, 1992].
IV. INSTRUMENTAÇÃO BIOMECÂNICA

4.1 INTRODUÇÃO

Como já referido nos capítulos anteriores o controlo postural estático e dinâmico constituem fenómenos multifactoriais, pelo que a sua análise requer a consciência de que esta possui vários componentes: 1) estabilização de uma estrutura multissegmentar esquelética, intrínseca e extrinsecamente; 2) produção interna de energia a partir dos músculos e a transmissão e modificação da energia através dos segmentos esqueléticos até ao ponto de uma reacção externa com a superfície de contacto; 3) um sistema de controlo apropriado, com redundância e retro-alimentação [Konin, 2006].

A análise de movimento constitui a quantificação de padrões de movimento e forças durante a tarefa, o que constitui, respectivamente, a cinemática e cinética. O processo actual para realizar esta análise envolve medições (cinéticas e cinemáticas), armazenamento, recuperação, processamento, análise e apresentação de resultados. Os sistemas tecnológicos ópticos revolucionaram a medição prática da cinemática. Medições cinéticas e cinemáticas permitiram a definição de padrões normais e várias variáveis chave que são atualmente vistas como características da marcha [Gill, 2007]. Em termos biomecânicos, o corpo em análise pode ser considerado como um conjunto de elementos rígidos, designados por segmentos corporais, ligados pelas articulações [Davy, 1987]. No caso de actividades dinâmicas, como a marcha, a posição e orientação dos segmentos variam consideravelmente com o tempo [Veltink, 1993].

Este capítulo discute aspectos relativos à instrumentação normalmente disponível para quantificar aspectos relativos a controlo postural e movimento. Numa primeira instância são referidos os mecanismos existentes para aceder aos componentes cinemáticos do movimento, sistemas de seguimento não visíveis e sistemas de seguimento visíveis. Do mesmo modo, é feita uma breve exposição
acerca dos vários mecanismos disponíveis, bem como das suas vantagens, desvantagens e limitações. Em segundo lugar serão apresentadas descrições tecnológicas e funcionais dos dispositivos necessários para aceder aos aspectos cinéticos, medição das forças de reacção, pressão plantar e actividade muscular.

4.2 ANÁLISE CINEMÁTICA DO MOVIMENTO

A cinemática pode ser descrita como o estudo da estrutura harmónica do padrão de movimento do qual importa obter informações de tempo, espaço, velocidade e aceleração. A base deste estudo, do ponto de vista clínico, constitui o padrão de movimento angular e o seu controlo [Konin, 2006]. Sendo a análise cinemática o estudo dos padrões e geometria do movimento, a chave principal é a observação no sentido de se obter um registo de dados visuais. Este registo permite uma análise detalhada no momento da avaliação e proporciona o registo permanente para comparação posterior.

A compreensão dos aspectos cinemáticos do movimento humano é importante para várias áreas do conhecimento, como a medicina e a biologia. A medição do movimento pode ser usada para avaliar a performance funcional dos membros inferiores em condições normais e anormais. O conhecimento cinemático é essencial para um diagnóstico correcto, um plano de intervenção adequado, nomeadamente em termos de intervenção cirúrgica ortopédica e design de dispositivos protésicos utilizados para restaurar a função da marcha, entre outras aplicações.

4.2.1. ANÁLISE DE IMAGEM

Nos últimos anos tem-se verificado um interesse crescente pela análise de imagem de movimentos humanos. Este domínio abrange, entre outros, o reconhecimento facial, reconhecimento de gestos e o seguimento e análise de movimentos corporais. De um modo mais abrangente, pode ser referido que as técnicas de captura de movimento humano são usadas para uma grande variedade de aplicações, desde a animação digital para entretenimento até à análise biomecânica no desporto e aplicações clínicas, sendo que as duas últimas requerem maior robustez e precisão [Corraza, 2006]. Efectivamente, o interesse pelo movimento humano assume um carácter multidisciplinar. A título de exemplo podem ser referidos estudos realizados no âmbito da psicologia com moving light displays.
(MLD) ligados a partes corporais, que mostram que os observadores humanos podem, quase instantaneamente, reconhecer padrões de movimento fisiológico. Na área gestual têm sido também realizados diversos estudos acerca do modo como os humanos usam e interpretam o gesto. Pode ser também salientada a aposta por parte de áreas de coreografia em disponibilizar descrições de nível elevado para o movimento humano para a notação de dança, ballet e teatro [Gravila, 1996]. Em cinesiologia, o objectivo principal tem sido desenvolver modelos do movimento humano que expliquem não só o seu funcionamento mecânico, como também identificar padrões associados a uma maior eficiência mecânica. O procedimento típico envolve a recolha de dados tridimensionais (3D) do movimento em análise, seguida de análise cinemática e computação das forças e binários. Os dados 3D são tipicamente obtidos de um modo não invasivo, por exemplo através da colocação de marcadores no corpo [Gravila, 1996]. De seguida, são apresentadas algumas soluções tecnológicas existentes relevantes para aquisição de dados cinemáticos.

De acordo com a localização do sensor os sistemas de seguimento podem ser classificados como visíveis com marcadores, visíveis sem marcadores ou não visíveis.

a) Sistemas de imagem com marcadores

Esta é uma técnica que usa sensores ópticos, isto é câmaras de imagem, para seguir movimentos humanos que são capturados através da colocação de identificadores anatômicos. Uma das grandes desvantagens do uso de sensores ópticos e marcadores é que estes são difíceis de usar quando se pretende aceder de maneira exacta à componente de rotação articular, levando à incapacidade de representação completa de um modelo 3D dos sujeitos [Zhou, 2004].

A colocação de marcadores na superfície cutânea constitui o método mais frequente para medir o movimento humano. A maioria das técnicas de análise correntes adoptam modelos onde o membro é assumido como um segmento rígido e aplicam algoritmos para obter uma estimativa óptima do seu movimento. Um dos modelos é proposto em [Spoor, 1988], sendo descrita uma técnica que, usando o erro mínimo da raiz quadrada da média, diminui o efeito da deformação entre dois passos. Este aspecto limita o campo de aplicação do método, uma vez que os marcadores colocados na pele irão sofrer um movimento não rígido. A abordagem do modelo rígido foi expandida em [Lu, 1999], passando da procura da
transformação do corpo rígido em cada segmento individual à procura de transformações rígidas múltiplas, concebendo modelos da anca, do joelho e da tibiotársica como articulações esferoidais. A dificuldade nesta abordagem é modelizar as articulações como articulações esferoidais onde todas as translações são tratadas como artefactos, o que constitui uma clara limitação visto que as articulações apresentam movimentos acessórios de translacção. A correlação entre os ângulos de flexão e extensão nas trajectórias dos artefactos dos marcadores cutâneos pode ser determinada pelo acesso a artefactos [Lucchetti, 1998]. Uma limitação desta abordagem é assumir que o movimento cutâneo durante movimentos quase estáticos é o mesmo do que em actividades dinâmicas [Lucchetti, 1998]. Uma técnica mais recente baseia-se na aplicação de um maior número de marcadores colocados em cada segmento corporal de forma a minimizar os efeitos do movimento dos tecidos moles. Contudo, o tempo necessário para a aplicação dos marcadores constitui uma limitação desta técnica [Corraza, 2006; Munderman, 2006].

Muitos dos métodos referidos introduzem um estímulo neurosensorial no sistema durante a medição do movimento humano. Por exemplo, a inserção de pinos ósseos pode introduzir artefactos na observação do movimento devido a anestesia local ou interferência com estruturas músculo-esqueléticas. Em alguns casos, estes artefactos podem levar mesmo a uma interpretação incorrecta do movimento [Corraza, 2006; Munderman, 2006].

Existem vários modos de captar o movimento humano. Actualmente, o método óptico passivo constitui a tecnologia dominante [Munderman, 2006]. Esta técnica serve-se da colocação de marcadores revestidos de um material reflector num ou mais segmentos móveis, articulações e outros pontos-chave para analisar o movimento. Várias câmaras de vídeo, geralmente com estreboscópios (strobes) próximos da lente, capturam a luz que incide nos marcadores e é reflectida para as mesmas, enviando posteriormente a informação para um software que determina vários aspectos do movimento capturado, incluindo posição, ângulos, velocidade e aceleração. Geralmente, o sistema computacional de análise de movimento consegue exportar a informação obtida para uso em software de animação [King, 2007; Munderman, 2006]. Existem outras estratégias para captura de movimento corporal, por exemplo, o uso de Light-Emitting Diodes (LEDs) como marcadores para promover a informação necessária para as câmaras. Tal representa uma técnica
óptica activa [King, 2007; Munderman, 2006]. Os sistemas activos emitem informação luminosa no espectro visível ou radiação infravermelha sob a forma de Light Amplification by Stimulated Emission of Radiation (LASER), padrões luminosos ou pulsos modulados. Em geral, os sistemas activos promovem boa definição em medições 3D mas requerem ambientes laboratoriais controlados e estão geralmente limitados a movimentos de baixa amplitude [Corraza, 2006; Munderman, 2006].

b) Sistemas de imagem sem marcadores

Embora a análise de movimento tenha sido comumente reconhecida como clinicamente útil, a rotina do uso da análise da marcha tem tido um crescimento muito limitado. Esta limitação está relacionada com vários factores, nomeadamente a aplicabilidade da tecnologia existente para aceder a problemas clínicos e o tempo e custo necessários para recolha, processamento e interpretação de dados [King, 2007; Munderman, 2006]. O movimento dos marcadores é usado para inferir o movimento relativo entre dois segmentos adjacentes com o objectivo de definir o movimento da articulação. O movimento dos tecidos moles relativamente à referência óssea é o factor primário que limita a resolução de um movimento articular detalhado usando marcadores sobre a pele [Corraza, 2006; Munderman, 2006; Rosenhahn, 2008].

O próximo avanço crítico na captura de movimento humano é o desenvolvimento de um sistema não invasivo e sem marcadores que seja de elevada resolução e fiabilidade. Uma técnica para estimar a cinemática que não requeira marcadores anatômicos pode expandir, de maneira significativa, a aplicabilidade da captura do movimento humano. A eliminação desta necessidade pode reduzir consideravelmente o tempo de preparação do indivíduo, possibilita uma maior eficiência de tempo e potencia melhor acesso ao movimento humano na investigação e prática clínicas [King, 2007].

O método de seguimento sem marcadores explora sensores externos, como câmaras, para seguir o movimento do corpo humano. A exploração deste método é assim motivada pela limitação dos sistemas baseados em marcadores: 1) a identificação de referências ósseas pode não ser exacta; 2) os tecidos moles que cobrem as referências ósseas podem mover-se, levando a dados com ruído; 3) o marcador por si só pode deslocar-se devido à própria inércia. No entanto, esta
técnica requer um grande potencial computacional para atingir a eficiência e reduzir o tempo de latência dos dados. São exigidas elevadas velocidades de aquisição das câmaras, pois uma taxa de aquisição inferior a 60 aquisições por segundo promove uma largura de banda insuficiente para uma representação de dados válida [Zhou, 2004]. Apesar dos avanços verificados nesta área, a velocidade de processamento e o preço constituem problemas para aplicações de captura de movimento mais especializadas e mais extensas. A validade externa constitui também um desafio, de acordo com o perito em captura de movimento biomecânico David J. Sturman, citado em [King, 2007].

A captura de movimento sem marcadores, como já foi referido, oferece uma solução atractiva para os problemas associados ao método baseado em marcadores. No entanto, o uso do método sem marcadores para capturar o movimento humano para aplicações biomecânicas e clínicas tem sido também limitado pela complexidade de adquirir aspectos cinemáticos 3D. O problema de estimar o movimento livre do corpo humano, ou mais geralmente de um objecto sem marcadores, do ponto de vista de várias câmaras não tem a correspondência espacial e temporal garantida intrinsecamente pelos marcadores [Corraza, 2006].

Alguns modelos promovem métodos para ultrapassar algumas das complexidades associadas ao uso de técnicas de aquisição sem marcadores. Um modelo a priori do sujeito, por exemplo, pode ser usado para reduzir o número total de graus de liberdade do problema. Uma outra opção consiste em aumentar o número de câmaras usadas, de maneira a que uma maior quantidade de dados esteja disponível para um dado número de graus de liberdade. Neste sentido, a robustez da abordagem sem marcadores pode ser aumentada incrementando o número de câmaras e limitando o espaço de pesquisa de possíveis configurações espaciais para as configurações anatômicas mais apropriadas. Esta última estratégia pode ser conseguida usando um modelo humano para identificar o movimento do sujeito [Corraza, 2006].

A capacidade para medir padrões de marcha sem o risco de um estímulo artificial produzir artefactos não desejados, que podem mascarar padrões naturais de movimento, constitui uma importante necessidade para aplicações clínicas emergentes. Até à data, os métodos sem marcadores não estão disponíveis em
larga escala, uma vez que a captura exacta do movimento sem marcadores constitui ainda um desafio técnico.

4.2.2 Sistemas de seguimento não visíveis

Neste tipo de sistemas, os sensores são colocados em determinadas localizações anatômicas para adquirir informação de movimento. Os sensores são normalmente classificados como mecânicos, acústicos, inerciais, de rádio, microondas e magnéticos [King, 2007; Munderman, 2006; Zhou, 2004]. Os sistemas acústicos seguem o movimento através de receptores que recebem sinais de transmissores aplicados geralmente através de uma cinta ao corpo do sujeito em estudo. Por outro lado, os sistemas mecânicos medem mecanicamente o movimento físico corporal. Já os sistemas electromagnéticos usam um transmissor central e sensores que recolhem a posição e orientação de partes de objectos que se movem com base em alterações do campo magnético envolvido [King, 2007; Munderman, 2006]. A título de exemplo, dentro dos sensores de inércia podem ser referidos os acelerómetros, que convertem acelerações lineares, angulares ou uma combinação destas num sinal de output [Baumberg, 1994]. Existem três tipos de acelerómetros: piezoelétricos, piezorresistivos, e capacitivos [Zhou, 2004]. Este tipo de sensor requer grande poder de processamento, o que aumenta o tempo de latência envolvido. Além disso, a resolução e a largura de banda são normalmente limitados pela interface do circuito usado [Bouten, 1997].

Sistemas exosqueléticos

Dentro destes sistemas está incluída a electrogoniometria, que consiste na medição de ângulos entre segmentos. Os dispositivos usados são designados de electrogoniômetros. Tipicamente, estes dispositivos usam transdutores electromecânicos e potenciômetros rotacionais. Nos potenciômetros rotacionais, as alterações da resistência eléctrica têm uma relação linear com o ângulo do eixo de rotação. Assim sendo, a aplicação de uma voltagem constante às extremidades fixas do potenciômetro, a voltagem entre as conexões móveis e fixas serão linearmente proporcionais ao ângulo de rotação do eixo:

\[\text{Ângulo} = \text{constante} \times \text{voltagem}. \]
As conexões do potenciômetro são fixas mecanicamente, devendo os cabos estar paralelos aos segmentos corporais entre os quais se pretende medir o ângulo. O sinal eléctrico resultante constitui uma medida análoga do ângulo. Os ângulos entre os segmentos corporais são espaciais, isto é, uma determinação completa do ângulo compreende três dimensões espaciais. O desenvolvimento destes dispositivos levou ao aparecimento de sistemas que usam três potenciômetros ortogonais posicionados em cada articulação a medir, criando uma unidade que é ligada à unidade correspondente de medida das articulações vizinhas. As medições decorrentes dos electrogoniómetros correspondem directamente aos ângulos. Dado que os ângulos são informação que é necessária para estudos da análise da locomoção, esta característica é vantajosa. É evidente, no entanto, que embora os electrogoniómetros sejam capazes de fornecer informação de movimento de articulações específica, não são capazes de quantificar uma informação cinemática global e completa. Os electrogoniómetros podem ser utilizados para a medição da locomoção a velocidade baixa, por exemplo em medicina de reabilitação, geralmente em medições clínicas da marcha e investigação. Constituem um instrumento de fácil utilização e pouco dispendioso, com fiabilidade satisfatória [Medved, 2001].

4.2.3 Outros métodos

O movimento do esqueleto pode também ser medido directamente usando abordagens alternativas aos usuais sistemas de marcadores cutâneos. Estas abordagens incluem estereorradiografia, pinos ósseos, dispositivos de fixação externos ou técnicas de fluoroscopia. Embora estes métodos promovam medidas directas do movimento do esqueleto, são invasivos ou expõem a sujeito em análise a radiação. Mais recentemente, a ressonância magnética a tempo real promove *in vivo* medições ósseas, ligamentares, musculares de forma não invasiva e praticamente inofensiva. No entanto, todos estes métodos impedem de certa forma padrões naturais de movimento, exigindo algum cuidado quando se tenta extrapolar este tipo de medições para padrões naturais de locomoção [Munderman, 2006; Rosenhahn, 2008].
4.3 ANÁLISE CINÉTICA

A cinética constitui o estudo das forças que influenciam o movimento. Estas forças têm relação com as tensões mecânicas, internas e externas [Konin, 2006; Norkin, 1992]. Em termos externos existem as forças de reacção do solo (FRS), gravidade e inércia. As forças musculares individuais constituem em grande parte as forças internas [Konin, 2006; Norkin, 1992].

4.3.1 MEDIÇÃO DAS FORÇAS DE REACÇÃO DO SOLO E PRESSÃO PLANTAR

a) Plataformas de forças

As plataformas de força permitem a medição do vector de força total (FRS) ocorrida na locomoção durante o contacto entre o corpo e o solo. Para além destes valores, a plataforma de força fornece também o momento do vector força, os valores das coordenadas planares de x e y do centro de pressão. O resultado destas medições é expreso através de gráficos de tempo. A plataforma de forças constitui um instrumento muito utilizado para estudos da locomoção e em posturas aproximadamente estáticas para analisar, por exemplo, a estabilidade postural e o equilíbrio [Medved, 2001].

As plataformas de força fornecem as FRS na superfície de apoio durante a marcha. Estas forças são representadas habitualmente na forma de um vector ao longo do tempo, considerando-se a sua acção 3D. Assim, a plataforma quantifica a variação dinâmica da FRS durante a fase de contacto. Nesta fase ocorre transferência de forças externas, o que determina alterações no movimento corporal [Orlin, 2000].

Geralmente, estes sensores possuem uma superfície de contacto relativamente dura em relação à planta do pé. São construídos a partir de metal, cerâmica ou outro material que tenha um elevado módulo de elasticidade [Urry, 1999]. As plataformas de força consistem em duas superfícies rígidas, uma superior e uma inferior, que são interligadas por sensores de força. Há três modos de construção da plataforma segundo o posicionamento dos sensores: 1) plataforma com um único sensor no
centro, 2) plataforma triangular com três sensores, e 3) plataforma rectangular com quatro sensores; esta última é a mais utilizada dentro das plataformas comerciais disponíveis para análise da marcha. Nas plataformas rectangulares que medem as três componentes de FRS, cada um dos quatro sensores regista a força aplicada nas direções mediolateral (X), anteroposterior (Y) e vertical (Z).

A capacidade para seguir um sinal com componentes de 10 a 15 Hz constitui um requisito mínimo de performance para um transdutor. Estudos que envolvam maiores frequências, tais como impactos, necessitam de um aumento proporcional na frequência natural do transdutor. Transdutores com frequência de resposta superior 200 Hz têm sido usados para forças sob o calcâneo, enquanto uma frequência de resposta 50Hz tem sido recomendada para o antepé [Urry, 1999].

Os problemas ligados ao uso de plataformas de forças estão ligados ao elevado número de passos necessários para recolher os dados e ao facto de os indivíduos alterarem o padrão de marcha de maneira a que os seus passos coincidam com a plataforma, problema este que pode ser anulado com o uso de palmilhas [Orlin, 2000].

b) Transdutores de pressão

Os componentes típicos de um sistema usado para medir pressões plantares e FRS incluem um dispositivo de medição de pressão e força, respectivamente, que consiste em sensores numa plataforma ou em palmilha; um computador para aquisição, armazenamento e análise; e um monitor para observação dos dados [Peterson, 1982].

A pressão plantar pode ser estudada através de sistemas de medição dedicados. Estes sistemas de medição originam mapas de pressão, dos quais é possível obter a magnitude das pressões, padrões da distribuição espacial das pressões e variações dinâmicas nos padrões de magnitude [Orlin, 2000]. Os sistemas de medição plantar actualmente utilizados são constituídos por transdutores de força resistivos e capacitivos, e podem apresentar-se sob a forma de tapete ou palmilha [Delisa, 1998].

As técnicas de medição podem utilizar transdutores de pressão individuais, posicionados em localizações anatômicas específicas na face plantar. Uma
O uso de sensores em palmilhas tem como desvantagem a existência de um menor número de sensores, resultando numa menor resolução. Acresce ainda que a grande maioria deste tipo de dispositivos apenas consegue aceder à componente vertical da força de reacção do solo [Orlin, 2000].
4.3.2 REPRESENTAÇÃO DO SINAL CINÉTICO

a) Diagrama de vetor

O diagrama de vetor constitui uma representação gráfica da sequência espaciotemporal dos dois vectores componentes da força de reacção do solo no plano sagital ou frontal. Este tipo de representação pode ser obtida após a medição e conversão analógica-digital do sinal através de plataformas de força.

Figura 4.1: Diagrama de vetor recolhido num indivíduo saudável durante a marcha (retirado de [Medved, 2001]).

b) Estabilometria

Uma aplicação das plataformas de força é a avaliação da estabilidade postural. Em posturas corporais aproximadamente estáticas, como já foi referido, a projecção do CM está dentro da base de suporte. Esta área é determinada pelo "perímetro lateral" dos dois pés. Mais precisamente, a base funcional de suporte pode ser definida como ligeiramente menor que a área de suporte. A razão para este aspecto reside no facto de os músculos agirem para controlar o peso corporal sobre o antepé ou retropé. Em princípio, para seguir o movimento do CM no espaço e tempo é necessária a aplicação de uma abordagem baseada numa dinâmica inversa baseada na medição de variáveis cinemáticas e num modelo biomecânico corporal, enquanto a electromiografia dá uma indicação da função neuromuscular. As plataformas de força permitem uma avaliação aproximada do tempo de alteração da posição do CM através de um procedimento simples, prático e rápido que permite medir a estabilidade postural. Normalmente é usada uma representação gráfica dos sinais de medição com um diagrama x-y da inter-relação dos valores das coordenadas do CP no plano horizontal, que dá uma indicação da oscilação corporal [Medved, 2001].
Numa medição aproximadamente estática, as forças horizontais e binários podem ser negligenciados. Presume-se que a plataforma é carregada somente na direcção vertical. Para satisfazer esta condição, deve observar-se o seguinte:

$$
\sum F_z = 0 = R - F_1 - F_2 - F_3 - F_4,
$$

ou

$$
R = F_1 + F_2 + F_3 + F_4 = F_z,
$$

onde F_z designa o sinal de output da plataforma, que é igual à soma eléctrica das quatro forças de reacção internas. Este sinal é a medição da força vertical resultante aplicada. O próximo requisito para o equilíbrio estático é de que a soma dos momentos em cada eixo seja igual a zero:

$$
\sum M_x = 0 = Rb + (F_1 + F_4 - F_2 - F_3)\frac{L}{2},
$$

ou

$$
Rb = (F_2 + F_3 - F_1 - F_4)\left(\frac{L}{2}\right) = M_x,
$$

onde M_x constitui o sinal de output correspondente, que iguala a combinação de quatro sinais de reacção multiplicado pelo factor representante do comprimento efectivo da alavanca, a metade da distância entre os sensores, cujo valor é constante e determinado pelo procedimento de calibração. Os símbolos a e b representam as coordenadas do ponto do CP nas direcções x e y, respectivamente. Substituindo R pela expressão 4.1 e dividindo com este valor obtém-se:

$$
b = \frac{(F_2 + F_3 - F_1 - F_4)L}{(F_1 + F_2 + F_3 + F_4)2} = \frac{M_x}{F_z},
$$

(4.3)

$$
a = \frac{(F_3 + F_4 - F_1 - F_2)L}{(F_1 + F_2 + F_3 + F_4)2} = -\frac{M_y}{F_z},
$$

(4.4)

Desta forma, as coordenadas do CP na plataforma são calculados em casos quasi estáticos [Medved, 2001].
4.4 ACTIVIDADE ELECTROMIOGRÁFICA

4.4.1 ELECTROMIOGRAFIA

O músculo é um tecido excitável que contrai em resposta a uma estimulação nervosa. Qualquer resposta mecânica é precedida de um padrão de activação neural assíncrono e uma resposta eléctrica das fibras musculares. A electromiografia (EMG) é o estudo da função muscular através da recolha do sinal eléctrico do músculo. Por outras palavras, detecta as alterações do potencial eléctrico muscular quando este é sujeito a um impulso nervoso motor [Basmajian, 1985; Soderberg, 1992; Whitle, 2007].

Tem sido demonstrado que a EMG constitui um método válido na medição da actividade muscular e que os resultados obtidos com os eléctrodos de superfície fornecem informação suficiente para a análise dessa actividade [Basmajian, 1985]. A EMG pode indicar o número de unidades motoras activadas em situações normais e patológicas do músculo [Basmajian, 1985].

Tendo em conta que na análise da marcha se pretende uma informação global de músculos superficiais, será dada maior atenção à EMG de superfície. O sinal obtido pela EMG de superfície tem sido considerado como representativo da actividade total das fibras do músculo.

4.4.2 CARACTERÍSTICAS DO SINAL ELECTROMIOGRÁFICO

Alguns factores influenciam a amplitude pico-a-pico do sinal electromiográfico detectado, o número e tamanho das fibras musculares activas, o tamanho e orientação dos eléctrodos de detecção relativamente às fibras musculares activas e a distância entre as fibras activas e os eléctrodos de detecção. A frequência do sinal é influenciada pelo tamanho e distância entre os eléctrodos e a distância entre os eléctrodos de detecção e as fibras activas. A confluência destes factores torna impossível especificar uma amplitude pico-a-pico e a frequência definida [DeLuca, 1993; Soderberg, 1992].

A frequência do sinal EMG varia entre 25 a vários kHz. A amplitude do sinal varia de 100 µV a 90 mV, dependendo do tipo de sinal e eléctrodos usados. No caso
de eléctrodos de superfície, os níveis de sinal são geralmente baixos, tendo picos de amplitude na ordem de 0.1 a 1 mV [DeLuca, 1993].

4.4.3 TÉCNICAS DE RECOLHA

a) Selecção dos eléctrodos

Os eléctrodos podem ter vários tamanhos, se de superfície ou de profundidade, e possuem um ou dois discos compostos por cloreto de prata de 1 a 5 mm de diâmetro. A escolha depende essencialmente do objectivo a que se propõe a medição [Soderberg, 1992].

Podem ser eléctrodos passivos ou activos. Na configuração passiva, o eléctrodo consiste na detecção da corrente na pele através da interface eléctrodo/pele e não possui elevada resistência de input, sendo por isso afectado pela resistência da pele (a resistência da pele é diminuída usando álcool a 70%, remoção de pêlos e abrasão no sentido de remover elementos electricamente não condutores) [Basmajian, 1985].

b) Localização dos eléctrodos

Segundo [Basmajian, 1985], a colocação dos eléctrodos deve efectuar-se no ponto médio da distância entre o ponto motor e o tendão, no caso de contracções isométricas, e no ponto médio do ventre muscular no caso de contracções isotônicas. Dado que a impedância do músculo é anisotrópica, os eléctrodos devem estar paralelos às fibras musculares. A magnitude da impedância na direcção perpendicular é maior 7 a 10 vezes do que ao longo da direcção longitudinal [Basmajian, 1985]. Dada a duração dos eventos eléctricos e a velocidade de condução, o espaçamento do eléctrodo deve rondar 1 a 2 cm [Merletti, 1997; Soderberg, 1992].

4.4.3 PROCESSAMENTO DO SINAL ELECTROMIOGRÁFICO

Tipicamente são utilizados dois tipos de análise: no domínio temporal são exemplos a amplitude média do sinal rectificado, o root mean square (RMS), o integral do sinal electromiográfico; no domínio das frequências podemos apontar a
frequência média, a mediana da frequência, a moda da frequência, a frequência máxima [Basmajian, 1985].

Durante várias décadas considerou-se que a melhor forma de processar o sEMG era calculando o integral do mesmo. Os avanços efectuados ao nível dos dispositivos electrónicos durante as últimas décadas tornaram possível calcular o RMS e a média do valor rectificado do sEMG. Embora estas duas variáveis representem a medição da área abaixo da curva do sinal considerado, somente o valor do RMS é provido de um significado físico, na medida em que é uma medida do poder do sinal e é o parâmetro que reflecte de forma mais completa a correlação fisiológica do comportamento da unidade motora durante a contracção muscular. Por esta razão, o valor do RMS é o mais utilizado na maior parte das aplicações [Basmajian, 1985]. Este valor depende do número de unidades motoras activadas, da taxa de activação, da área da unidade motora, da duração da activação da unidade motora, da velocidade de propagação do sinal eléctrico, da configuração eléctrica e das características dos instrumentos utilizados [Basmajian, 1985; DeLuca, 1993].

Em termos de aplicações, normalmente a EMG é utilizada no sentido de: determinar o tempo de activação do músculo, ou seja, detectar o início e o final da excitação muscular; detectar o grau de actividade recrutado pelo músculo e/ou obter um índice de fadiga muscular [Basmajian, 1985].

Os sinais devem ser livres de artefactos mecânicos, ruído eléctrico e cross talk (descrito a seguir). Se estes sinais não são eliminados e o sinal recolhido possui estes elementos não desejados será difícil separá-los posteriormente. É possível reduzir os artefactos eléctricos e mecânicos através de filtragem, no entanto, o mesmo não é possível relativamente ao cross talk [DeLuca, 1993; Soderberg, 2000; Soderberg, 1992; Turker, 1993].

a) Artefactos

Os artefactos podem resultar de movimentos dos eléctrodos e dos cabos [Reaz, 2006; Soderberg, 2000]. Contudo, a interferência da rede (50-60Hz) constitui o artefacto mais comum [Reaz, 2006]. Embora os artefactos de movimento correspondam a um nível baixo do espectro EMG (menos de 30 Hz), têm uma
amplitude suficiente para serem dificilmente removidos com um simples filtro passa-alto [Soderberg, 1992].

b) Ruído

O ruído térmico é essencialmente gerado nos eléctrodos, nos cabos que ligam os eléctrodos ao amplificador e componentes internos da instrumentação [Soderberg, 1992]. O ruído relativamente ao equipamento é causado em grande parte pela natureza dos eléctrodos de recolha e as características do amplificador. Os eléctrodos introduzem ruído térmico proporcional à raiz quadrada da resistência das superfícies de detecção e não pode ser totalmente eliminado; no entanto, pode ser reduzido pela limpeza dos contactos dos eléctrodos. Os amplificadores causam também algum ruído, devido às propriedades físicas dos semicondutores usados. Este ruído não pode também ser totalmente eliminado, podendo no entanto ser reduzido para baixos valores com o uso de amplificadores de baixo consumo alimentados por bateria. O ruído gerado internamente ao pré-amplificador constitui o maior componente do total do ruído do amplificador [Soderberg, 1992].

Normalmente é observado um ruído de frequência entre 50 a 60 Hz, especialmente quando a pele não é preparada, os eléctrodos não estão completamente ajustados à pele, e quando é usada uma configuração monopolar. Este ruído pode aparecer como uma onda sinusoidal no traçado EMG ou picos regulares quando os dados são filtrados com um filtro passa-alto. A eliminação deste ruído pode ser feita usando um eléctrodo-terra ou referência [DeLuca, 1996]. O eléctrodo-terra é colocado numa superfície electricamente neutra, tal como uma proeminência óssea próxima dos eléctrodos de recolha [Basmajian, 1985].

c) Crosstalk

O crosstalk resulta da recolha de actividade eléctrica de outros músculos que não estão em análise [Basmajian, 1985].
V. CONSIDERAÇÕES FINAIS

5.1 CONCLUSÕES

A análise biomecânica do movimento e controlo postural humano constitui um domínio complexo, que implica a conjugação de vários factores e a quantificação de múltiplas variáveis. Existe uma relação intrínseca entre movimento e controlo postural. Este último é controlado por vários subsistemas nos seus vários subcomponentes. Dada a complexidade deste sistema, a sua compreensão ainda não é clara na literatura, tornando pertinente e necessária a realização de estudos com vista a aprofundar factores determinantes no controlo postural, particularmente no que diz respeito à coordenação entre postura e movimento.

A marcha humana, vista como um movimento rítmico, constitui um fenómeno complexo modulado por um gerador de padrão central, informação aferente e comandos supra-espinais, podendo ser quantificada por variáveis cinéticas e cinemáticas. É a quantificação destas variáveis que permite aceder, classificar e comparar diferentes padrões de marcha como mais ou menos eficientes. Em termos biomecânicos, essa eficiência pode ser expressa em termos do trabalho desenvolvido e do dispêndio energético associado.

Dada a multidimensionalidade da análise do movimento existem ainda muitos aspectos que permanecem por explicar e/ou clarificar. Este défice condiciona a avaliação do movimento em casos de alterações biomecânicas que possam estar associadas a determinadas patologias ou disfunções, em casos de avaliação de próteses e/ou ortóteses, eficácia/sucesso de intervenções médicas, monitorização de um plano de intervenção, conjuntamente com mecanismos de biofeedback orientados no sentido de garantir uma maior eficiência energética e funcional.

5.2 PERSPECTIVAS DE TRABALHOS FUTUROS

De uma forma global, pretende-se no âmbito da Tese de Doutoramento em Engenharia Biomédica estudar do ponto de vista biomecânico diferentes movimentos
humanos, identificando e correlacionando factores, internos e externos, relevantes, e variáveis descritivas que permitam caracterizar adequadamente padrões cinéticos e cinemáticos, trabalho executado e energia despendida. Procurar-se-á estabelecer uma relação entre os diferentes níveis, nomeadamente dinâmica músculo-esquelética, modulação aferente e eferente. Dada a eficiência do movimento humano estar tão dependente do controlo postural, a análise acima referida será efectuada no sentido de perceber o processo de coordenação entre postura e movimento.

Numa perspectiva biomecânica, procurar-se-á examinar de que forma factores cinemáticos influenciam padrões cinéticos e de que forma o sistema se adapta em função de alterações destas variáveis. Paralelamente, torna-se pertinente detectar quais as variáveis, cinéticas e/ou cinemáticas, que possuem maior influência no deslocamento do centro de massa e consequentemente no dispêndio energético, traduzido, por exemplo, no consumo de oxigénio. A correlação entre as diferentes variáveis permitirá obter a caracterização de padrões de marcha mais eficientes em termos de dispêndio energético.

Constitui também objectivo de trabalho futuro a manipulação de factores externos que condicionam os padrões de movimento humano, nomeadamente, da marcha, e estratégias de controlo postural, em relação à qual irão ser analisados os factores identificados, de maneira a perceber de que forma o sistema biomecânico se adapta a alterações da informação aferente, como por exemplo, a variação da inclinação do plano de apoio, a instabilidade do calçado, entre outros. Procurar-se-á também perceber de que formas estas alterações na informação aferente afectam variáveis de outros sistemas.

A primeira fase do trabalho de Doutoramento corresponde ao estudo bibliográfico detalhado do controlo postural, caracterização biomecânica do movimento humano normal, com maior incidência nos movimentos de carácter rítmico, como a marcha, e metodologias para quantificação de variáveis biomecânicas. A segunda fase corresponderá a análise dos parâmetros acima referidos em subgrupos clínicos. Esta parte do projecto terá como objectivo principal verificar de que forma o sistema biomecânico se adapta, em termos de correlações cinéticas e cinemáticas, após lesão de áreas referidas como relevantes na marcha e controlo postural. Com base na análise efectuada em indivíduos sem patologia, será
procurado o principal problema causado pela lesão entre as adaptações biomecânicas inerentes. Adicionalmente, será estudada a evolução das adaptações biomecânicas com o tempo.
BIBLIOGRAFIA

[Corraza, 2006] Corraza, S; Mundermann, L; Chaudhari, M; Dermattio, T; Cobelli, C; Andriacchi, P. 2006. Motion Capture System to Study Musculoskeletal Biomechanics: Visual Hall Computer Vision and Image Understanding. *Anals of Biomedical Engineering* 34(6): 1019-1029.

[Perrin, 1998] Perrin, P; Schneider, D; Deviterne, D; Perrot, C; Constantinescu, L. 1998. Training improves the adaptation to changing visual conditions in maintaining human posture control in a test of sinusoidal oscillation of the support. Neuroscience Letters 245: 155-158.

BIBLIOGRAFIA

