Tracking Moving Objects in Image Sequences

João Manuel R. S. Tavares

tavares@fe.up.pt www.fe.up.pt/~tavares
Outline

• Motion Tracking
 – Introduction
 – Kalman and Unscented Kalman Filters
 – Matching, Registration and Morphing

• Research Team

• Conclusions and Future Work
Introduction
Introduction

- The researchers of the Computational Vision domain aim the development of algorithms to perform operations and tasks carried out by the (quite complex) human’s vision system in a full or semi-automatic manner.

Azevedo et al. (2010), *Three-dimensional reconstruction and characterization of human external shapes from two-dimensional images using volumetric methods*, Computer Methods in Biomechanics and Biomedical Engineering 13(3): 359-369
Introduction

• Motion tracking and analysis of objects in images are topics of the most importance in Computational Vision

• Algorithms of motion tracking and analysis of objects in image sequences are frequently used, for example, in:
 – Medicine
 – Biology
 – Industry
 – Engineering
 – and Biomechanics

• Examples of common tasks involved in computational motion tracking and analysis of objects in images are:
 – noise removal
 – geometric correction
 – segmentation (2D/3D)
 – motion tracking and analysis, including matching, registration and morphing (2D-4D)
Introduction: Usual Computational Pipeline for Motion Tracking and Analysis

- **images**
- **images enhancement**
- **images segmentation / features extraction**

image processing

- **tracking**
- **matching**
- **registration**
- **morphing**

motion analysis

image analysis
Motion Tracking
Motion Tracking

- Computational framework to track features in image sequences (Kalman Filter or Unscented Kalman Filter, optimization, Mahalanobis distance, management model)

Pinho & Tavares (2009), Comparison between Kalman and Unscented Kalman Filters in Tracking Applications of Computational Vision, VipIMAGE 2009

Pinho & Tavares (2009), Tracking Features in Image Sequences with Kalman Filtering, Global Optimization, Mahalanobis Distance and a Management Model, Computer Modeling in Engineering & Sciences 46(1):51-75
Motion Tracking

• Kalman Filter
 – Optimal recursive Bayesian stochastic method
 – One of its drawbacks is the restrictive assumption of Gaussian posterior density functions at every time step
 • Many tracking problems involve non-linear motions (i.e. human gait)
Motion Tracking

- Example: tracking marks in gait analysis (Kalman filter, Mahalanobis distance, optimization, management model)

Pinho et al. (2005), Human Movement Tracking and Analysis with Kalman Filtering and Global Optimization Techniques, ICCB 2005, 915-926
Pinho & Tavares (2009), Tracking Features in Image Sequences with Kalman Filtering, Global Optimization, Mahalanobis Distance and a Management Model, Computer Modeling in Engineering & Sciences 46(1):51-75
Motion Tracking

- Example: tracking mice in long image sequences (Kalman filter, Mahalanobis distance, optimization, management model)

Pinho et al. (2005), A Movement Tracking Management Model with Kalman Filtering, Global Optimization Techniques and Mahalanobis Distance, LSCCS, Vol. 4A:463-466

Pinho et al. (2007), Efficient Approximation of the Mahalanobis Distance for Tracking with the Kalman Filter, International Journal of Simulation Modelling 6(2):84-92
Motion Tracking

• Unscented Kalman Filter
 – A set of sigma-points from the distribution of the state vector is propagated through the true nonlinearity, and the parameters of the Gaussian approximation are then re-estimated
 – Addresses the main shortcomings of the Kalman Filter, and of the Extended Kalman Filter, and is more suitable for nonlinear motions
Motion Tracking

- Example: tracking the centre of a square that is moving according to a linear model (Kalman Filter (KF) and Unscented Kalman Filter (UKF))

Motion equations:

\[
\begin{align*}
 x_i &= x_{i-1} + 30 \\
 y_i &= y_{i-1} + 250
\end{align*}
\]

with \(x_0 = 5, y_0 = 250 \)
Motion Tracking

- Example: tracking the centre of a square that is moving according to a nonlinear model (Kalman Filter (KF) and Unscented Kalman Filter (UKF))

Kalman Filter results:

Motion equations:

\[
\begin{align*}
 x_i &= x_{i-1} + 2(i-1)^2 + 12.5, \\
 y_i &= x_{i-1} + 12.5
\end{align*}
\]

with \(x_0 = 6, y_0 = 10 \)

+ predictions
 x measurements
 x corrections

(8 frames)
Motion Tracking

- Example: tracking the centre of a square that is moving according to a nonlinear model (Kalman Filter (KF) and Unscented Kalman Filter (UKF)) – cont.

\[
\begin{align*}
 x_i &= x_{i-1} + 2(i-1)^2 + 12.5 \\
 y_i &= x_{i-1} + 12.5
\end{align*}
\]

with \(x_0 = 6, \ y_0 = 10 \)

(8 frames)

Tracking error associated to nonlinear movement

+ predictions
x measurements
x corrections

KF
UKF
Motion Tracking

- Example: tracking the motion of three mice in a real image sequence (Kalman Filter (KF) and Unscented Kalman Filter (UKF))

<table>
<thead>
<tr>
<th></th>
<th>#15</th>
<th>#16</th>
<th>#17</th>
</tr>
</thead>
<tbody>
<tr>
<td>KF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

+ predictions
× measurements
× corrections

(22 frames)
Motion Tracking

• Example: tracking the motion of three mice in a real image sequence (Kalman Filter (KF) and Unscented Kalman Filter (UKF)) – cont.

Kalman Filter results

Unscented Kalman Filter results

(22 frames)
Motion Tracking

- Example: tracking the motion of three mice in a real image sequence (Kalman Filter (KF) and Unscented Kalman Filter (UKF)) – cont.
Motion Tracking

• Influence of the adopted filter: Kalman Filter (KF) and Unscented Kalman Filter (UKF)
 – If the motion is highly nonlinear, then the UKF justifies its superior computational load
 – Otherwise, the KF with the undertaken matching (association) methodology accomplishes efficiently the tracking
 – Hence, the decision between KF or UKF is application dependent
 • Frequently, the UKF gets superior results
 • However, when the computational load is somewhat constrained, the KF with a suitable matching strategy can be a good tracking solution
Motion Analysis: Matching, Registration and Morphing of Objects
Matching of Objects

• Using physical or geometrical modeling and modal matching

Matching of Objects

- Example: matching contours in dynamic pedobarography (FEM, modal matching, optimization)

Tavares & Bastos (2010), Improvement of Modal Matching Image Objects in Dynamic Pedobarography using Optimization Techniques, Progress in Computer Vision and Image Analysis, Chapter 19, 339-368
Matching of Objects

• Example: matching contours and surfaces in dynamic pedobarography (FEM, modal analysis, optimization)

Matching found between two contours

Matching found between iso-contours (two views)

Matching found between two intensity (pressure) surfaces (two views)

Registration of Objects

- Registration of contours in images (geometrical modeling, optimization, dynamic programming)

Oliveira & Tavares (2008), Algorithm of dynamic programming for optimization of the global matching between two contours defined by ordered points, Computer Modeling in Engineering & Sciences 31(11):1-11
Registration of Objects

• Example: registration of contours in images (geometrical modeling, optimization, dynamic programming)

Oliveira & Tavares (2009), Matching Contours in Images through the use of Curvature, Distance to Centroid and Global Optimization with Order-Preserving Constraint, Computer Modeling in Engineering & Sciences 43(1):91-110
Registration of Objects

• Example: registration of images in pedobarography
 (geometrical modeling, optimization, dynamic programming)

Oliveira et al. (2009), Rapid pedobarographic image registration based on contour curvature and optimization, Journal of Biomechanics 42(15):2620-2623
Registration of Objects

- Example: registration of images in pedobarography (Fourier transform)

Oliveira et al. 2010, Registration of pedobarographic image data in the frequency domain, Computer Methods in Biomechanics and Biomedical Engineering (in press)
Registration of Objects

- Example: registration of images in pedobarography (Hybrid method: Contours registration or Fourier transform based registration + Optimization of a Similarity Measure – MSE, MI or XOR)

Oliveira & Tavares 2010, Novel Framework for Registration of Pedobarographic Image Data, Medical & Biological Engineering & Computing (submitted)
Registration of Objects

- Registration of image sequences in dynamic pedobarography (spatial and temporal registration)

1. Read the two image sequences
2. Noise removal and image smoothing
3. Use the geometric transformation computed to register the image sequences in space domain
4. Register the image sequences over the time (modeled by a linear or polynomial transformation, and based on the optimization of a similarity measure)
5. Final spatial registration based on the optimization of a similarity measure
6. Build the output image sequences
7. Build a model image for each image sequence (each model represents the complete foot shape)
8. Compute the geometric transformation that best registers the model images based on a geometric transformation model and a similarity measure

Registration of Objects

- Example: registration of image sequences in dynamic pedobarography (spatial and temporal registration)

Original image sequences
Preprocessed sequences
Sequences after registration

Original sequences before registration
Morphing of Objects

• Physical morphing/simulation of contours in images (FEM, modal analysis, optimization, Lagrange equation)
Morphing of Objects

- Example: morphing contours in images (FEM, modal analysis, optimization, Lagrange equation)

Morphing of Objects

- Example: morphing contours in images (FEM, modal analysis, optimization, Lagrange equation)

Original images

Matching found

Deformations estimated
Research Team
(Computational Vision)
Research Team (Computational Vision)

- **PhD students (15):**
 - In course: Raquel Pinho, Patrícia Gonçalves, Maria Vasconcelos, Ilda Reis, Teresa Azevedo, Daniel Moura, Zhen Ma, Elza Chagas, Victor Albuquerque, Francisco Oliveira, Eduardo Ribeiro, António Gomes, João Nunes, Alex Araujo, Sandra Rua

- **MSc students (13):**
 - In course: Carlos Faria, Elisa Barroso, Ana Jesus, Veronica Marques, Diogo Faria
 - Finished: Daniela Sousa, Francisco Oliveira, Teresa Azevedo, Maria Vasconcelos, Raquel Pinho, Luísa Bastos, Cândida Coelho, Jorge Gonçalves

- **BSc students (2):**
 - Finished: Ricardo Ferreira, Soraia Pimenta
Conclusions and Future Work
Conclusions and Future Work

- The motion tracking and analysis of objects in image sequences is a very complex task, but of raised importance in many domains.
- Numerous hard challenges exist, as for example, objects with topological variations, complex motions, occlusions, adverse conditions in the image acquisition process, etc.
- Considerable work has already been developed, but important and complex goals still to be reached.
- Methods and methodologies of other research areas, as of Mathematics, Computational Mechanics, Medicine and Biology, can contribute significantly for their attainment.
- For that, collaborations are welcome.
Thank you!

Tracking Moving Objects in Image Sequences

João Manuel R. S. Tavares

tavares@fe.up.pt

www.fe.up.pt/~tavares