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Abstract 

Artificial neuronal networks have been used intensively in many domains to 

accomplish different computational tasks. One of these tasks is the segmentation of objects in 

images, like to segment microstructures from metallographic images, and for that goal several 

network topologies were proposed. This paper presents a comparative analysis between 

Multilayer Perceptron and Self-Organizing Map topologies applied to segment 

microstructures from metallographic images. The multilayer perceptron neural network 

training was based on the backpropagation algorithm, that is a supervised training algorithm, 

and the self-organizing map neural network was based on the Kohonen algorithm, being thus 

an unsupervised network. Sixty samples of cast irons were considered for experimental 

comparison and the results obtained by multilayer perceptron neural network were very 

similar to the ones resultant by visual human inspection. However, the results obtained by 

self-organizing map neural network were not so good. Indeed, multilayer perceptron neural 

network always segmented efficiently the microstructures of samples in analysis, what did not 

occur when self-organizing map neural network was considered. From the experiments done, 

we can conclude that multilayer perceptron network is an adequate tool to be used in Material 

Science fields to accomplish microstructural analysis from metallographic images in a fully 

automatic and accurate manner. 

 

Keywords: Nondestructive testing and evaluation; image processing and analysis; pattern 

recognition; multilayer perceptron and self-organizing map neural networks; cast irons; 

metallographic images; material sciences. 
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1 Introduction 

The use of artificial neural networks is quite common in Artificial Intelligence and 

Pattern Recognition domains. In particularly, they have been used in applications that involve 

shapes recognition with a high degree of parallelism, considerable classification speed and 

important capacity to learn through examples [1]. The smallest unit of an artificial neural 

network is the artificial neuron which is a mathematical representation of a natural neuron that 

compounds living neural systems. 

Some domains in which artificial neural networks have been widely applied can be 

found in Material Sciences. For example, they can be employed in welding control [2], to 

obtain relations between process parameters and correlations in Charpy impact tests [3], to 

obtain the composition of ceramic matrices [3], in the modeling of alloy elements [4], to 

estimate welding parameters in pipeline welding [5], in the modeling of microstructures and 

mechanical properties of steel [6], to model the deformation mechanism of titanium alloy in 

hot forming [7], for the prediction of properties of austempered ductile iron [8], to predict the 

carbon content and the grain size of carbon steels [9], to build models for predicting flow 

stress and microstructures evolution of a hydrogenized titanium alloy [10], to perform 

segmentation and quantification of microstructures in metals from images [11, 12], to classify 

internal damages in steels working in creep service [13], and to perform the optimal 

binarization of images in the morphological analysis of ductile cast iron [14]. 

Artificial neural networks have been also extremely applied to perform image 

segmentation tasks. Actually, many Computational Vision systems are developed based on 

artificial neural networks, essentially because of their main characteristics, like robustness to 

noisily input data or outliers, execution speed and possibility to be parallel implemented. 

In this work were considered two neural network topologies widely used in pattern 

recognition applications: Multilayer Perceptron and Self Organizing Map, based on 
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backpropagation (supervised) and Kohonen (non-supervised) algorithms, respectively. In 

particularly, these neural architectures were used and compared in the automatic segmentation 

of the microstructures of metallic materials from metallographic images. To evaluate 

experimentally their efficiency, it was used samples of nodular, malleable and gray cast irons. 

Those materials were selected mainly due to their widespread use in industrial applications, as 

in, for example, machine base structures, lamination cylinders, main bodies of valves and 

pumps and gear elements. 

This paper is organized as follows. In next section, some essential aspects of 

Multilayer Perceptron neural networks are reviewed and the topology used is presented. The 

equivalent is done in third section considering Self Organizing Map neural networks. In next 

section the experimental work accomplished is explained and results are discussed. In last 

section the main conclusions are presented. 

 

2 Multilayer Perceptron Neural Network 

A human brain is composed by about ten billion neurons and their organization is of 

high structural and functional complexity. These units are densely interconnected, which 

results in a very complex architecture and with an intelligence level that was not yet achieved 

by any artificial system. Several mathematical models have been developed to represent 

neurons and their interconnection. In this direction, artificial neural networks have appeared 

as an attempt to reproduce human brain potentialities, specially its learning ability [15]. 

The first neuron mathematical model was proposed by McCulloch and Pitts [16]. It 

has a binary output and several inputs, each one with a different excitatory or inhibitory gain. 

These gains are known as synaptic weights (or only weights). Input signal values and 

associated weights determine the neuron output [15]. 
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Thus, perceptron or artificial neuron is the mathematical model of a neuron cell and 

the basic unit that compounds an artificial neural network. Perceptron architecture consists of 

a set of n inputs (xi), each one associated to a weight (wi) and an activation function (fi). 

Perceptrons can be organized to form a layer, in which all perceptrons are linked to the same 

inputs but have distinct outputs. This kind of network is designated as a perceptron network. 

Perceptron networks can achieve good performances only when the pattern to be recognized 

is linearly separable [15]; therefore, they should not be used to solve complex classification 

problems involving non-linearly separable patterns, instead multilayer perceptron networks 

can be used. 

 

2.1 Multilayer perceptron networks architecture 

Multilayer perceptron networks are formed by an input layer (Xi), one or more 

intermediary or hidden layers (HL) and an output layer (Y). A weight matrix (W) can be 

defined for each of these layers. This artificial neuronal network topology can solve 

classification problems involving non-linearly separable patterns and can be used as a 

universal function generator [15]. 

Multilayer perceptron networks have two distinct phases: training and execution. With 

this network topology, it is impossible to use directly the usual delta rule [15] for the training 

phase, since this rule does not permit weight recalculation for hidden layers. Therefore, the 

most widely used algorithm for multilayer perceptron networks training is the 

backpropagation and its variants. This learning approach is more complex than the one for a 

perceptron network and it is of the type supervised [16]. 

 

2.1.1 Backpropagation Algorithm 
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Standard backpropagation algorithm is one of the most used algorithms to train 

neuronal networks [15, 17]. This algorithm is applied by initializing the weights randomly 

and presenting examples to the neuronal network as an input signal. Then, this signal is 

propagated through the hidden layers and achieves the output layer where the network outputs 

are obtained. Afterwards, the weights (w) are modified according to equation: 
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and i is the current neuron input, j is the neuron, l is the current layer and, s is neuron output, 

d is the desired output, fi is a derivative activation function. Finally, this procedure is repeated 

until the error is less than a previously adopted threshold value. 

This algorithm presents some disadvantages like, for example, during the search for a global 

minimum, the surface where the error derivative is almost null can be achieved and remain 

there forever. The convergence of the neural network can be very time-consuming since the 

trajectory of the initial weights set towards the final one is randomly defined. 

 

2.2 Topology of the multilayer perceptron network used 
 

In this work was used a multilayer perceptron with two layers. Since the main task was 

the segmentation of material microstructures from metallographic images, it was used to 

classify the pixels of a metallographic image as belonging to one of these material 

microstructures: graphite, pearlite or ferrite. For that, we choose a 3/2/3 (three inputs, two 

perceptrons in hidden layer and three perceptrons in output layer) topology. For each input 

was assigned one color component (R, G and B) of each pixel of the input image to be 

segmented. Each output was assigned to the three possible pixel classifications: graphite, 

pearlite or ferrite. The number of perceptrons used in the hidden layer was established using 



7 

the method proposed by Yin, Liu and Han [18]. Finally, to perform microstructures 

quantification, for each microstructure segmented, the associated pixels were counted and the 

relative percent value for the whole image was calculated. 

As already referred, to train the artificial network was used backpropagation algorithm 

and the examples considered were microstructure pixels chosen from representative input 

images. It should be noted that the training phase just needed to be done once for each kind of 

metallic material to be segmented. 

 

3 Self-organizing map neural networks 

Self-organizing map neural network is a topology proposed by Kohonen [19] that 

consists in a feedforward neural network that uses a non-supervised training. This model is 

usually built by a neuron layer disposed linearly (1D) or through a plane (2D) and is classified 

as a self-organizing map since the neurons are disposed in an one-dimensional or bi-

dimensional reticulated, as shown in figure 1. In this figure is illustrated a self-organizing 

neural network with a 1D topology and a bi-dimensional network in a squared topology with 

nine neurons organized in a 3x3 array. 

When a pattern is presented to a self-organizing map neural network, their neurons 

compete among themselves in order to determine the one that has the best response to the 

input pattern. The neuron that generates the least Euclidian distance between the input and 

weights vector is the chosen winner, and it has its weights adjusted to respond better to the 

input pattern. Kohonen network, then, has the characteristic of modifying internally so that 

the neurons respond better to a determined input pattern [20]. 

Concerning self-organizing non-supervised learning model, not only the winner 

neuron but also the ones in its neighborhood have their weights adjusted, as is explained in 

the next section. This paradigm is based on the theory that the cells from brain cortex are 
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anatomically arranged in function of its stimulus originated from sensors that are directly 

connected to them [20]. 

Each neuron of a self-organizing neural network represents an output. Another 

characteristic of this network topology is that its neurons are totally connected (synaptic 

links), so that if there are ten inputs, each neuron has ten inputs, each one linked to a point in 

the input layer. Then, each synaptic connection has a weight so that if they are ten input 

points, and should be three neurons in the network, then we should be thirty connections (ten 

for each neuron) and consequently, thirty synaptic weights (ten for each neuron). 

 

3.1  Neighborhood 

A neuron in a self-organizing map network has a set of neighbors that can be 

topologically organized in regions to have the best response to a given stimulus. This 

characteristic is similar to the one that occurs in human brain, where, depending on the 

activity that is happening, there are some neural centers of more intensified activity. 

In the beginning of the training step, the set of neighbors is large, but it decreases 

along time, while the network organizes itself. In fact, for its better organization, the 

neighborhood begins wide and decreases monotonically, because if the neighborhood begins 

very small, comparing to the whole map, the network does not become globally in order [20]. 

Usually, at the end of the process, neighborhood radius must be null and only the winner has 

its weights adjusted. 

Neighborhood weight adjustment permits that neurons near to the winner have good 

conditions to dispute with the same during next iterations, improving in this way the 

competition for the best network learning. 

 

3.2 Neuron adaptation 



9 

Neuron adaptation consists in weight adjustment, looking for response improvement to 

determined stimulus. This process is fundamental for the formation of an ordered network. 

The first step to achieve weight adjustment is to determine the winner neuron. So, the winner 

will be the neuron that presents the least Euclidean distance dt(n) between an input pattern and 

its weights, calculated as: 

∑
=

−=
I

1i

2))i(t,nw)i(tx()n(td ,            (2) 

where xt(i) is the ith input vector component at time t, wn,t(i) is the ith weights vector 

component of a neuron n at time t, i is the input and weight index of a network with I inputs 

and dt(n) is Euclidean distance of neuron n at time t. 

Euclidian distance, as presented in equation 2, is the sum of squared differences 

between each input and its correspondent weight. In fact, the least Euclidean distance 

represents the neuron which weight value is the most similar to input value presented [20]. In 

this way, in each iteration, the neuron that has the least Euclidian distance and its neighbors 

must have their weights adjusted to have a better response to that input, while the other 

neurons remain equal. Weight adaptation at next instant t + 1 is a simple process. It consists in 

taking the difference between vectors X (input) and W (weights) and sum a fraction of this 

difference to the weight vector at time t (actual). Neighbor weights are adjusted using the 

same principle, expressed by: 

2))()().(()()1( twtxtatwtw nsnn −+=+ ,                                            (3) 

where as(t) is the learning rate and corresponds to a fraction of difference between X and W 

that is summed to W. So that, 0 < as < 1 [15]. 

Usually as(t) (equation 3) is initialized with a high value (around one), and 

successively decreases, following any rule or function, until its value achieves approximately 
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zero. Then, map ordering that takes place in the beginning of training is affected by a large 

neighborhood radius and by a high as(t) value. 

 

3.3 Iterations 

The number of iterations or epochs corresponds to the number of times that the input 

patterns are presented to the network. On each epoch, it must be presented all input data. For 

each pattern a winner neuron is determined. Then, its weights and the weights of its neighbors 

are adjusted. After the last pattern is presented, a new epoch begins and all input data must be 

presented again [19]. 

 

3.4 Training algorithm for a self-organizing map neural network 

The self-organizing training algorithm used can be described as follows [19]: 

1. specify the number of epochs; 

2. initialize the network weights using random values; 

3. specify the initial neighborhood radius for each neuron (it is recommended to use 

the whole network as initial radius); 

4. present an input to the network; 

5. calculate the output for each neuron, using Euclidean distance between input and 

network weight; 

6. select the winner neuron; 

7. adjust winner weights and the ones of its neighbors; 

8. if still there are neighbors, then decrease neighborhood radius; 

9. if still there are input data, then go to step 4; 

10. increment number of epochs and if allowed maximum number of epochs was still 

not achieved, then go to step 4 and present all input data again. 
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It is important that the initial weight values are different from each other and much 

smaller than input data. If the weights are initialized with values similar to input data, then the 

network has the tendency to choose specific winners, avoiding its self organization. 

 

3.5 Winner neuron 

After network training, we can label each neuron according to the pattern it classifies. 

By this way, if, for example, a network is classifying objects, and the winner neuron 

represents a determined object, this neuron can be labeled with that object name. 

Nevertheless, many neurons can classify the same object. In fact, this can occur because of its 

neighborhood situation. If this case happens, then there will be more than a neuron with the 

same label and a post-processing step can be necessary. 

 

3.6 Topology of the self-organizing map neural network used 
 

The applied self-organizing map topology was a 1-D self-organizing network and its 

main task was to perform the segmentation of material microstructures from metallographic 

images. Thus, self-organizing map neuronal network was used to recognize the pixels of a 

metallographic image that belong to each of these material microstructures: graphite, pearlite 

or ferrite. Hence, we choose a three neurons network having three inputs on each of them. To 

each input is assigned one color component of input image pixels (R, G and B). Each neuron 

is assigned to three possible pixel classifications: graphite, pearlite or ferrite. To perform 

microstructures quantification, segmented pixels were counted and the associated percent was 

calculated. Kohonen training algorithm was used to train the network and the examples used 

were microstructure pixels obtained automatically from representative input images. 
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4 Results and discussion 

The aim of this work was to segment material microstructures from metallographic 

images; for this, we used two types of artificial neural network topologies to identify the 

following microstructures: graphite, pearlite and ferrite. The experimental results were 

obtained applying multilayer perceptron and self-organizing map neural networks on samples 

of nodular, malleable and gray cast irons. Here we present a comparative analysis between 

these two artificial neural network topologies in the automatic segmentation of metal 

microstructures from metallographic images. For that comparison, we consider the analysis 

presented by the Albuquerque et al. [12], which validated the quality of the segmentation and 

quantification results obtained by the multilayer perceptron network on the microstructures of 

cast irons from metallographic images. In the referred work, the results obtained by the 

multilayer perceptron network were very similar to the ones obtained by visual human 

inspection and better than the results obtained using a commercial system that is awfully 

common and well accepted in the microstructures analysis area. Thus, we adopted the results 

obtained by the multilayer perceptron network as a reference basis. 

In the previous sections, we describe the neuronal network topologies to identify three 

different microstructures in input images, however both networks were only used to identify 

two classes, where one class indicates the presence of graphite (associated with black color in 

the input images) and the other class refers to the presence of pearlite or ferrite (associated 

with the gray color in the input images). The reason for the association pearlite/ferrite in one 

class was because we were not able to visually distinguish these two microstructures in the 

input images, which could affect the further results analysis. 

The experimental images considered here had size of 640 x 480 pixels, the training 

phase was performed once by an experimented operator considering four representative 

images of each iron considered. This number of training images was defined in function of the 



13 

number of microstructures involved, and the training images were manually elected by the 

operator through visual inspection. The same operator accomplished the experimental results 

analysis and comparison. It should be noticed that different results could be obtained if the 

networks were trained using different sets of training images. In other words, the quality of 

the results accomplished depends on the quality of the image training set used and of each 

image considered. That is, if all microstructures involved are or not properly represented in 

the training images, the samples were or not well metallographic prepared or the images were 

or not appropriately acquired as, for example, using inadequate contrast and illumination 

conditions, the results quality can be affected. 

In the training of the multilayer perceptron network, the backpropagation algorithm 

was employed, adopting a learning rate of 0.1, a moment rate of 0.001, and as stopping 

criterion the number of epochs equal to 2500 or an absolute error not greater than 0.01. In the 

training of the self-organizing map network was used the Kohonen algorithm, adopting a 

learning rate of 0.1 and as stopping criterion the number of epochs equal to 2500. 

In table 1, are shown the results obtained using multilayer perceptron and self-

organizing map neural networks in the case of the nodular cast iron. It should be noticed that 

the results obtained are similar, presenting a minimum difference of 1.00% and a maximum of 

5.59%, for samples 20 and 17, respectively. Moreover, it can be noticed that the multilayer 

perceptron network presented an average of graphite equal to 12.09% and pearlite or ferrite to 

87.91% and that self-organizing map network presented 15.35% and 84.65% of graphite and 

pearlite or ferrite, respectively, being the difference average equal to 3.26%. 

Figures 2 (a), (b) and (c), present an original image of a nodular cast iron, and the 

images resulting of the segmentation process accomplished using multilayer perceptron and 

self-organizing map neuronal networks, respectively. These images are the ones that 

presented the major difference in the results obtained by the two neuronal networks. 
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Additionally, images of figures 2 (d), (e) and (f), are the ones that presented the minor 

difference. 

It should be noticed that the segmentation done using multilayer perceptron network is 

more accurate than the one obtained using the self-organizing map network, since part of the 

pearlite or ferrite was erroneously segmented and classified as graphite by self-organizing 

map network. This fact is the main justification for the existing difference in the results 

obtained. 

In table 2, the results of the segmentation done using multilayer perceptron and self-

organizing map networks on samples of a gray cast iron are presented. These results were the 

most dissimilar for the studied irons, presenting a minimum difference of 1.86% and 

maximum of 14.70%, for samples 15 and 18, respectively. Moreover, it can be noticed that 

multilayer perceptron network presented an average of graphite equal to 10.28% and of 

pearlite or ferrite to 89.62%, and that self-organizing map network presented 19.62% and 

80.38% of graphite and of pearlite or ferrite, respectively, being the difference average 

between the two neural networks equal to 9.24%. 

Figures 3 (a), (b) and (c), present the original image of a gray cast iron, and the 

resulting images of the segmentation done using multilayer perceptron and self-organizing 

map neural networks, respectively. These images are the ones that presented the minor 

difference between results obtained by the two neural networks. Additionally, images of 

figures 3 (d), (e) and (f), are the ones that presented the major difference. 

Analyzing the results obtained, one can conclude that the segmentations accomplished 

using multilayer perceptron and self-organizing map neural network topologies are similar for 

sample 1. Relatively to sample 11, the segmentation done by visual inspection is very similar 

to the one obtained using multilayer perceptron network which not occurs with self-

organizing map network, because pearlite or ferrite was erroneously segmented as graphite. 
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In table 3, the results obtained by the segmentation done using multilayer perceptron 

and self-organizing map methods on a malleable cast iron are presented. These are the most 

similar results obtained by the two neural networks on all samples analyzed, presenting a 

minimal difference of 1.54% and maximum of 5.62% for samples 3 and 19, respectively. 

Moreover, it can be noticed that multilayer perceptron network presented an average of 

graphite equal to 14.98% and of pearlite or ferrite to 85.02% and self-organizing map network 

presented 17.70% and 82.30% of graphite and pearlite or ferrite, respectively, being the 

involved difference average between the neural networks equal to 2.72%. 

Figures 4 (a), (b) and (c), present an original image of a malleable cast iron and the 

images resulting from the segmentation done using multilayer perceptron and self-organizing 

map neural network, respectively. Notice that these images presented the minor difference 

verified between the results obtained by the used networks. Additionally, the images of 

figures 4 (d), (e) and (f), presented the major difference. 

Verifying the results obtained, it can be noticed that the segmentations performed 

using multilayer perceptron and self-organizing map neural networks are analogous on 

sample 3. For sample 19, the segmentations obtained are distinct, because self-organizing 

map network segments great part of pearlite or ferrite as graphite (figure 4(f)). However, that 

error is not verified when used multilayer perceptron network that segmented correctly the 

graphite from the other two constituents. 

In the results obtained by self-organizing map network on samples of nodular, gray 

and, in particularly, malleable casting iron, we can verify its considerable difficulty to 

segment graphite successfully when the background of the input image was not uniform. 

However, multilayer perceptron network did not show this difficulty, and so it could get 

segmentation results very effectively. 
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Multilayer perceptron neural network showed to be a versatile and easy to use solution 

to perform automatic segmentation of material microstructures from metallographic images, 

even when the input images were of low quality. Moreover, when compared with self-

organizing map network, solution network needed less time to accomplish the segmentation 

of the structures presented. Self-organizing network had as main advantage its training 

algorithm that was easier and faster. 

5 Conclusions 

This paper described two neural network topologies here considered to perform the 

segmentation of metallic material constituents from images. The neural network solutions 

were based on multilayer perceptron and self-organizing map neural topologies and use 

backpropagation and Kohonen algorithms. These solutions are more robust to noisy input and 

illumination irregularities during image acquisition than traditional segmentation techniques, 

as usual threshold approach, for example. 

In this work was accomplished a comparative analysis on the experimental results 

obtained using two network topologies in the segmentation of microstructures from 

metallographic images of nodular, malleable and gray cast irons. The one that showed better 

results was the multilayer perceptron network. 

From the experimental results accomplished, we can conclude that multilayer 

perceptron network can be successfully used in applications of Materials Science fields; in 

particular, for the segmentation of material microstructures from metallographic images. 

Comparatively to self-organizing map network, multilayer perceptron network presents as 

main advantages the reduction of the segmentation time and results of higher quality. 
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FIGURES CAPTION 

 

Figure 1: Two models for self-organizing map networks: a) 1-D and b) 2-D. 

Figure 2: Two original images of a nodular cast iron, a) and d); resultant segmentation using 

multilayer perceptron, b) and e), and self-organizing map, c) and f), neural networks. 

Figure 3: Original images of a gray cast iron, a) and d); resultant images of the segmentation 

done using multilayer perceptron, b) and e), and self-organizing map, c) and f), neural 

networks. 

Figure 4: Original image of a malleable cast iron, a) and d); resultant images of the 

segmentation done using multilayer perceptron, b) and e), and self-organizing map, c) and f), 

neural networks. 
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TABLES CAPTION 

Table 1: Results obtained using multilayer perceptron (MLP) and Kohonen self-organizing 

map based neural networks on samples of a nodular cast iron. 

Table 2: Results obtained using multilayer perceptron (MLP) and Kohonen self-organizing 

map (SOM) based neural networks on samples of a gray cast iron. 

Table 3: Results obtained using multilayer perceptron (MLP) and Kohonen self-organizing 

map (SOM) based neural networks on samples of a malleable cast iron. 



22 

Acknowledgments 

To Federal Center of Technological Education of Ceará - CEFET CE, for the support 

given for the accomplishment of this work, in particular to Mechanical Testing Laboratory 

and to Teleinformatic Laboratory. The authors would like to thank also to CAPES for their 

financial support. 



23 

FIGURES 

 

Figure 1a 

 

 

Figure 1b 

 

 

Figure 2a 

 



24 

 

Figure 2b 

 

 

Figure 2c 

 

 

Figure 2d 

 



25 

 

Figure 2e 

 

 

Figure 2f 

 

 

Figure 3a 

 



26 

 

Figure 3b 

 

 

Figure 3c 

 

 

Figure 3d 

 



27 

 

Figure 3e 

 

 

Figure 3f 

 

 

Figure 4a 

 



28 

 

Figure 4b 

 

 

Figure 4c 

 

 

Figure 4d 

 



29 

 

Figure 4e 

 

 

Figure 4f 



30 

TABLES 

Table 1 
 

Nodular cast iron 

Samples MLP network (%) SOM network (%) 
Graphite Ferrite/Pearlite Graphite Ferrite/Pearlite 

1 11.51 88.49 14.58 85.42 
2 13.36 86.64 16.28 83.72 
3 13.19 86.81 15.80 84.20 
4 13.46 86.54 16.34 83.66 
5 12.46 87.54 14.80 85.20 
6 11.79 88.21 15.47 84.53 
7 14.58 85.42 16.88 83.12 
8 12.50 87.50 14.37 85.63 
9 14.02 85.98 15.80 84.20 
10 13.30 86.70 15.55 84.45 
11 9.08 90.92 14.04 85.96 
12 9.25 90.75 14.07 85.93 
13 11.56 88.44 16.33 83.67 
14 9.24 90.76 13.80 86.20 
15 10.22 89.78 15.26 84.74 
16 9.89 90.11 14.52 85.48 
17 8.31 91.69 13.90 86.10 
18 7.66 92.34 13.21 86.79 
19 14.66 85.34 13.28 86.72 
20 21.73 78.27 22.73 77.27 

Average 12.09 87.91 15.35 84.65 
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Table 2 

 
Gray cast iron 

Samples MLP network (%) SOM network (%) 
Graphite Ferrite/Pearlite Graphite Ferrite/Pearlite 

1 12.21 87.79 16.37 83.63 
2 6.80 93.20 12.70 87.30 
3 8.56 91.44 16.77 83.23 
4 6.80 93.20 13.79 86.21 
5 8.03 91.97 18.44 81.56 
6 5.02 94.98 19.16 80.84 
7 8.73 91.27 17.85 82.15 
8 9.15 90.85 13.87 86.13 
9 7.90 92.10 14.41 85.59 
10 6.67 93.33 14.40 85.60 
11 40.41 59.59 49.27 50.73 
12 7.47 92.53 19.38 80.62 
13 9.83 90.17 17.36 82.64 
14 7.52 92.48 22.72 77.28 
15 21.69 78.31 23.55 76.45 
16 8.79 91.21 19.00 81.00 
17 7.76 92.24 21.29 78.71 
18 6.77 93.23 21.47 78.53 
19 7.64 90.28 19.73 80.27 
20 7.78 92.22 20.86 79.14 

Average 10.28 89.62 19.62 80.38 
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Table 3 

 

Malleable cast iron 

Samples MLP network (%) SOM network (%) 
Graphite Ferrite/Pearlite Graphite Ferrite/Pearlite 

1 18.95 81.05 20.57 79.43 
2 15.71 84.29 17.73 82.27 
3 14.96 85.04 16.50 83.50 
4 14.00 86.00 15.63 84.37 
5 15.16 84.84 17.28 82.72 
6 16.07 83.93 18.32 81.68 
7 19.11 80.89 20.76 79.24 
8 19.22 80.78 22.17 77.83 
9 15.64 84.36 17.60 82.40 
10 17.64 82.36 19.40 80.60 
11 11.84 88.16 16.82 83.18 
12 12.04 87.96 17.32 82.68 
13 13.72 86.28 18.84 81.16 
14 14.06 85.94 18.07 81.93 
15 11.83 88.17 16.07 83.93 
16 11.40 88.60 16.19 83.81 
17 11.30 88.70 15.54 84.46 
18 10.68 89.32 15.15 84.85 
19 21.05 78.95 15.43 84.57 
20 15.27 84.73 18.57 81.43 

Average 14.98 85.02 17.70 82.30 
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