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Abstract

Data acquisition technologies can provide large datasets with millions of sam-
ples for statistical analysis. This creates a tremendous challenge for pattern
recognition techniques, which need to be more efficient without loosing their
effectiveness. We have tried to circumvent the problem by reducing it into
the fast computation of an optimum-path forest (OPF) in a graph derived
from the training samples. In this forest, each class may be represented by
multiple trees rooted at some representative samples. The forest is a classi-
fier which assigns to any new sample the label of its most strongly connected
root. This methodology has been successful with different graph topologies
and learning techniques. In this work we have focused on one of the super-
vised approaches, which has offered considerable advantages over Support
Vector Machines and Artificial Neural Networks to handle large datasets.
We propose (i) a new algorithm that speeds up classification and (ii) a solu-
tion to reduce the training set size with negligible effects on the accuracy of
classification, further increasing its efficiency. Experimental results show the
improvements with respect to our previous approach and advantages over
other existing methods, which make the new method a valuable contribution
for large dataset analysis.
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1. Introduction

New data acquisition technologies can provide large datasets for statisti-
cal analysis. Especially imaging devices, such as digital cameras, multispec-
tral remote sensors and tomographic scanners, create images with millions
of pixels for classification (segmentation). Large image collections are also
available for content-based image retrieval. In both cases, image and pixel
classification may also require user feedback, retraining, and interactive time
response during some iterations [1, 2, 3.

However, popular approaches, such as Support Vector Machines [4] (SVMs)
and Artificial Neural Networks [5, 6] (ANNs), present a prohibitive compu-
tational time for large datasets, especially in the training phase. Although
there are efforts, such as LASVM [7] and SVMs without kernel mapping [8],
to speed up SVMs, for instance, the former is limited to binary classifica-
tion and the latter considerably reduces the accuracy of classification in the
case of overlapped classes. Therefore, it seems paramount to develop more
efficient and effective pattern recognition methods for large datasets.

In order to circumvent this problem, we applied a methodology to de-
velop pattern classifiers based on the fast computation of an optimum-path
forest (OPF) in a graph derived from the training samples. This provided
both effective supervised [9, 10] and unsupervised [11] learning techniques
for training sets of reasonable sizes (thousands of samples). The training
samples are interpreted as the nodes of a graph whose arcs are defined by an
adjacency relation. Any path in the graph has a value given by a connectivity
function. The maximization (minimization) of a connectivity map results in
an optimum-path forest rooted at representative samples of classes/clusters.
This methodology only assumes that two samples in a same cluster/class
should be at least connected by a chain of nearby samples (transitive prop-
erty). Classes/clusters may present arbitrary shapes and some degree of over-
lapping, and there is no need to use parametric models. The class/cluster
label assignment to new samples is also efficiently performed based on a lo-
cal processing of the forest’s attributes and the distances between the new
sample and some training nodes. By changing the adjacency relation, con-
nectivity function and learning technique, one can derive different pattern
classifiers. In this work, we focus on the supervised classification method
proposed in [9], because it has been the most successfully used for different



applications [12, 13, 14, 15, 16, 17, 18, 19]. Here forth, we will refer to this
approach as the OPF classifier for sake of simplicity.

The OPF classifier [9] interprets the training set as a complete graph,
weighted by the distance between nodes in a given feature space, and assigns
to any path the maximum arc weight along it. It does not require opti-
mization of any parameter and its training phase can be considerably faster
(from tens to thousands) than the training phases of SVMs and ANNs, with
accuracies better than or equivalent to the ones obtained with these ap-
proaches. However, for a small number of support vectors, it might take
more time for classification than SVMs [20]. In order to speed up its classi-
fication time, we propose here two improvements: (i) a faster classification
algorithm, which avoids to visit all training nodes during classification, and
(ii) a supervised learning-with-pruning approach, which can considerably re-
duce the training set size, providing faster classification with negligible loss
in accuracy. The contribution in (i) was recently accepted for conference
publication [21]. Here, we validate the new algorithm using more datasets
and discuss its worst-case time complexity. We are also combining the new
algorithm with the approach in (ii) to further speed up classification. The
learning-with-pruning algorithm is also an improvement with respect to our
previous work [12]. It shows better accuracy, robustness, and allows the
user to specify a maximum loss in accuracy as stopping criterion for prun-
ing. The experiments demonstrate the improvements of this enhanced OPF
classifier (EOPF) with respect to our previous approach and its advantages
over SVMs and ANNs. For large datasets, the results represent a significant
contribution.

Section 2 provides an overview of the OPF methodology for pattern recog-
nition and of its main contributions. Sections 3 and 4 present, respectively,
the new methods (i)—(ii) above and their experimental results. Section 5
states conclusion.

2. Pattern recognition by optimum-path forest

Given a training set with samples from distinct classes, we wish to design
a pattern classifier which can assign the true class label to any new sam-
ple. Each sample is represented by a set of features and a distance function
measures their dissimilarity in the feature space. The training samples are
then interpreted as the nodes of a graph, whose arcs are defined by a given
adjacency relation and weighted by the distance function. It is expected that



samples from a same class/cluster are connected by a path of nearby samples.
Therefore, the degree of connectedness for any given path is measured by a
connectivity (path-value) function, which exploits the distances along the
path. In supervised learning, the true label of the training samples is known
and so it is exploited to identify key samples (prototypes) in each class. Opti-
mum paths are computed from the prototypes to each training sample, such
that each prototype becomes root of an optimum-path tree composed by its
most strongly connected samples. The labels of these samples are assumed
to be the same of their root. In unsupervised learning, each cluster is repre-
sented by an optimum-path tree rooted at a single prototype but we do not
know the class label of the training samples. Therefore, we expect that each
cluster contains only samples of a same class and some other information
about the application is needed to complete classification. The basic idea
is then to specify an adjacency relation and a path-value function, compute
prototypes and reduce the problem into an optimum-path forest computation
in the underlying graph. The training forest becomes a classifier which can
assign to any new sample the label of its most strongly connected root. Essen-
tially, this methodology extends a previous approach, called Image Foresting
Transform[22], for the design of image processing operators from the image
domain to the feature space.

In [9], we presented a first method for supervised classification using a
complete graph (implicit representation) and the maximum arc weight along
a path as connectivity function. The prototypes were chosen as samples that
share an arc between distinct classes in a minimum spanning tree of the train-
ing set [23]. This OPF classifier has been widely used in several applications,
such as remote sensing [12], pathology detection by means of biomedical
signal recognition [13], emotion recognition through speech processing [14],
automatic vowel classification [15], biometrics [16, 17], petroleum well drilling
monitoring [18], medical image segmentation [24], and robust object track-
ing [19]. In the present paper, we propose considerable improvements to
make this OPF classifier efficient for large datasets.

Another supervised learning method was proposed in [10]. In this case,
the arcs connect k-nearest neighbors (k-nn) in the feature space. The dis-
tances between adjacent nodes are used to estimate a probability density
value of each node and optimum paths are computed from the maxima of
this probability density function (pdf). For large datasets, we usually use a
smaller training set and a much larger evaluation set to learn the most rep-
resentative samples from the classification errors in the evaluation set. This
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considerably improves classification accuracy of new samples. This strategy
was assessed with k-nn graphs in [25]. The accuracy results can be bet-
ter than using similar strategy with complete graph [9] for some situations,
but the latter is still preferred because it is faster and does not require the
optimization of the parameter k.

For unsupervised learning, the k-nn graph has presented excellent results
for medical image segmentation by computing clusters as optimum-path trees
rooted at the maxima of the pdf [11, 26]. In this work, however, our focus
is on improving efficiency of the supervised OPF classifier based on com-
plete graph and maximum arc weight function. Given that it may take more
time to classify a large testing set than SVMs [20], depending on the number
of support vectors, we have proposed strategies to reduce the training set
size [12] and increase efficiency of classification [21]. As explained in Sec-
tion 1, we are now revisiting, combining, and extending both previous works
with a new learning-with-pruning algorithm. The new method is called En-
hanced OPF Classifier (EOPF).

3. The Enhanced OPF Classifier (EOPF)

We present here two ideas to speed up the supervised OPF classifier with
complete graph and maximum arc weight function: (i) a new classification
algorithm (Section 3.2), which avoids to visit all training nodes during classi-
fication, and (ii) a supervised learning-with-pruning approach (Section 3.3),
which can considerably reduce the training set size, providing faster classifi-
cation with negligible loss in accuracy.

3.1. Training the EOPF classifier

In large datasets, the number of labeled samples for training is usually
large. Therefore, a first strategy to make a classifier more efficient is the
use of two labeled and disjoint sets, Z; and Zs, |Z;| < |Z3|, being the first
the actual training set and the second an evaluation set. The purpose of
the evaluation set is to improve the quality of the samples in the training
set, without increasing its size, by replacing classification errors in Z, by
non-prototype samples of Z; [9]. After this learning process, the classifier
is ready to be tested on any unseen dataset Z3. For validation, this process
must also be repeated several times, with different random and disjoint sets
Zy, Zs, and Z3, in order to obtain the average accuracy results. The training



of the EOPF classifier is very similar to the one used for the OPF classifier [9],
except for an important detail that will be explained in Algorithm 1.

Let (Z1, A) be a complete graph whose nodes are the samples in Z; and
any pair of samples defines an arc in A = Z; x Z;. The arcs do not need to
be stored and so the graph representation is implicit. A path is a sequence of
distinct samples m; = (s, So, . . ., Sg_1, t) with terminus ¢, where (s;, s;11) € A
for 1 <i <k —1. A path is said trivial if m, = (t). We assign to each path
m a cost f(m) given by a path-value function f. A path m is considered
optimum if f(m;) < f(r) for any other path 7, with the same terminus ¢. We
also denote by 7 - (s,t) the concatenation of a path 7y and arc (s, ).

Training essentially consists of finding an optimum-path forest in (77, A),
which is rooted in a special set S C Z; of prototypes. As proposed in [9)],
the set S is represented by samples that share arcs between distinct classes
in a minimum-spanning tree (MST) of (Z;, A) [23]. For path-value function
fmax, these prototypes (roots of the forest) tend to minimize the classification
errors in Z7, when their labels are propagated to the nodes of their trees.

fmaz({5)) - = {3_00 i)ftlslefvxise,
frmaz(Ts - (8,1)) = max{fra(ms),d(s, 1)}, (1)

such that fy,q.(7s) computes the maximum distance between adjacent sam-
ples in a non-trivial path 7.

The training algorithm for the OPF classifier [9] assigns one optimum
path P (s) from S to every sample s € Z;, forming an optimum path forest
Py (a function with no cycles which assigns to each s € Z;\S its predecessor
Pi(s) in Pf(s) or a marker nil when s € S). Let Ri(s) € S be the root
of Py(s) (which can be reached from Pj(s)), the OPF algorithm computes
for each s € Z;, the minimum cost Cy(s) of P (s), the class label L(s) =
A(R1(s)), and the predecessor P (s).

An important difference here is that the training algorithm for the EOPF
classifier also outputs a new set Z; with all training nodes in a non-decreasing
order of optimum cost. As we will see in the next section, this information
can be exploited to speed up classification. Algorithm 1 implements this
training procedure.



Algorithm 1. — TRAINING ALGORITHM FOR THE EOPF CLASSIFIER

INPUT: A M-labeled training set Z; and the pair (v,d) for feature vector
and distance computations.

OuTPUT: Optimum-path forest P;, cost map C1, label map Ly, and ordered
set Z7.

AUXILIARY: Priority queue @), set S of prototypes, and cost variable cst.

1. Set Zj < 0 and compute by MST the prototype set S C Z;.

2. For each s € Z1\S, set C1(s) < +oo.

3. Foreach s€ S, do

4. L Cy(s) « 0, Pi(s) + nil, Li(s) + A(s), and insert s in Q.
5. While Q is not empty, do

6. Remove from Q a sample s such that C1(s) is minimum.
7. Insert s in Z7.

8. For each t € Zy such that t # s and Cy(t) > Ci(s), do

9. Compute cst <— max{C1(s),d(s,t)}.

10. If cst < Cy(t), then

11. If C1(t) # +o0, then remove t from Q.

12. \‘ Pl(t) — 8, Ll(t) — Ll(S), Cl(t) < cst.

13. Insertt in Q.

14. Return a classifier [Py, C1, L1, Z}].

The time complexity for training is O(|Z;|?), due to the main (Lines 5-13)
and inner loops (Lines 8-13) in Algorithm 1, which run O(|Z;|) times each.

3.2. EOPF Classification

In [9], the classification of each new sample t € Z, (or Z3) is done based
on the distance d(s,t) between ¢ and each training node s € Z; and on the
evaluation of the following equation.

Cy(t) = min{max{C1(s),d(s,t)}}, Vs € Z. (2)

Let s* € Z] be the node s that satisfies this equation. It essentially considers
all possible paths 7, from S in (77, A) extended to ¢ by an arc (s, t), finds the
optimum path Py (s*)-(s*,t), and label ¢ with the class A(R;(s*)) of its most
strongly connected prototype Ry(s*) € S (i.e., La(t) < L1(s*) = A(R1(s%))).

Note that Z; can be replaced by Z] in Equation 2 and its evaluation
can halt when max{Ci(s),d(s,t)} < Cy(s’) for a node s’ whose position in
Z; succeeds the position of s. This avoids to visit all nodes in Z{ in many
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cases and the efficiency gain increases with the time complexity of d(s,t).
Algorithm 2 implements this faster classification procedure.

Algorithm 2. - EOPF CLASSIFICATION

INPUT: Classifier [Py, C1, L1, Z}], evaluation set Zy (or test set Z3), and
the pair (v,d) for feature vector and distance computations.
OUTPUT: Label Lo and predecessor P, maps defined for Zs.

AUXILIARY: Cost variables tmp and mincost.

1. For eacht € Zy, do

2 i < 1, mincost < max{C1(k;),d(k;,t)}.

3 LQ(t) — Ll(k‘i) and Pg(t) — k’z

4 While i < |Z{| and mincost > Cy(kiy1), do

5. Compute tmp < max{Cy(k;y+1,d(kiz1,t)}.
6. If tmp < mincost, then

7 L mincost <— tmp.

8 Lg(t) — L(ki-i-l) and Pg(t) — ki—i—l-
9. L 11+ 1.

10. Return [Lo, Py].

In Algorithm 2, the main loop (Lines 1 — 9) performs classification of
all nodes in Z;. The inner loop (Lines 4 — 9) visits each node k;y1 € Z7,
i=1,2,...,|Z]| until an optimum path 7y, - (kit1,t) be found. In the worst
case, it visits all nodes in Z] (Line 4). Line 5 evaluates fiaz(mg,,, - (Kit1,1))
and Lines 7—8 updates cost, label and predecessor of ¢ whenever 7y, | - (kit1, )
is better than the current path m, (Line 6). Figure 1 illustrates this process.

In the worst case, when unbalanced classes present elongated shapes for
instance, the time complexity of Algorithm 2 is the same O(|Z]||Zs|) of the
previous one. However, in practice, its time complexity is O(p|Zs|), for some
p < |Z1]. Figure 2a illustrates a bad case using two unbalanced classes of
white and black nodes, in which four prototypes will be elected as nodes
that share an arc between distinct classes in the MST of the complete graph
(bounded nodes in Figure 2b). An optimum-path forest from these proto-
types is shown in Figure 2c. Note that, almost all training nodes will be
visited in Z] in order to find the training node s* that reaches a new sample
t € Zy with minimum cost for classification, as shown in Figure 2d, because
(4 (s*) is high due to that long arc before its predecessor node and the access
of t through other nodes would be even more expensive.



0.2 0.2
@ 2 @
o 05 0.0 0.5
k1 0-"/3// //. k3 k1 ' .k3

" 04

oo 09 05

’””5_‘2”’Ok4 t‘ CO%M
(a) (b)

Figure 1: (a) Example graph with two classes represented by black and white nodes. The
values over the nodes indicate their minimum costs after training. A new gray sample
t is assumed connected to all training nodes. The previous algorithm would visit all
nodes k; € Z7, i = 1,2,3,4, to classify . The new algorithm halts when the cost value
of the next node in Z] is greater than or equal to the minimum cost already offered
to t. (b) The classification process of sample ¢ is then terminated at node ks, because
Ci(k4) = 0.9 > 0.5} and so La(t) < Lq(ks) = black.
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Figure 2: Example of a bad case for the EOPF classifier: (a) training set where classes
present elongated shapes, (b) prototypes (bounded nodes) obtained from the MST, (c)
optimum-path forest generated from the prototypes, (d) classification of a new sample
t € Z5 through its best predecessor node s* € Z].

3.3. Pruning of irrelevant patterns

Large datasets usually present redundancy, so at least in theory it should
be possible to estimate a reduced training set with the most relevant patterns



for classification. The use of a training set Z; and an evaluation set Z, has
allowed us to learn relevant samples for Z; from the classification errors in
Zy, by swapping misclassified samples of Z; and non-prototype samples of
7y during a few iterations [9]. In this learning strategy, Z; remains with the
same size and the classifier instance with the highest accuracy is selected to
be tested in the unseen set Z3. In this section, we use this learning procedure
(as described in Algorithm 3) within a new method (Algorithm 4) to reduce
the training set size by identifying and eliminating irrelevant samples from
Zl.

Algorithm 3. - OPF LEARNING ALGORITHM

INPUT: A M-labeled training and evaluating sets Z; and Zs, respectively,
number T of iterations, and the pair (v, d) for feature vector and
distance computations.

OuTPUT: Optimum-path forest P;, cost map C1, label map Ly, and ordered
set Z.

AUXILIARY: Arrays F'P and F'N of sizes ¢ for false positives and false negatives,
set S of prototypes, and list LM of misclassified samples.

Set MaxAcc + —1.
For each iteration I =1,2,...,T, do

1

2

3 LM < () and compute the set S C Z of prototypes.

4. [P1,Ch, Ly, Z1] < Algorithm1(Z1, S, (v,d)).

5. For each class i =1,2,...,¢c, do

6 L FP(i) < 0 and FN(i) < 0.

7 [Lo, Po] < Algorithm2(Z}, Za, (v,d))

8. For each sample t € Zy, do

9. If Lo(t) # A(t), then

10. FP(Ly(t)) < FP(La(t)) + 1.

11. L EFN(A(t)) < FN(A(t)) + 1.

12. LM+ LM Ut.

13. Compute accuracy Acc according to [9].

14. If Ace > MaxAcc then save the current instance [Py, Ch, L1, Z{]
15. of the classifier and set MaxAcc < Acc.

16. While LM # ()

17. | LM« LM\t.

18. L L Replace t by a non-prototype sample, randomly selected from Z.

19. Return the classifier instance [Py, C4, L1, Z]] with the highest accuracy in Zs.
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The efficacy of Algorithm 3 increases with the size of Z;, because more
non-prototype samples can be swapped by misclassified samples of Z5. How-
ever, for sake of efficiency, we need to choose some reasonable maximum size
for Z;. After learning the best training samples for Z;, we may also mark
paths in P; used to classify samples in Z5 and define their nodes as relevant
samples in a set R. The “irrelevant” training samples in Z;\R can then
be moved to Z,. Algorithm 4 applies this idea repetitively, while the loss
in accuracy on Z, with respect to the highest accuracy obtained by Algo-
rithm 3 (using the initial training set size) is less or equal to a maximum
value M Loss specified by the user.

Algorithm 4. — LEARNING-WITH-PRUNING ALGORITHM

INPUT: Training and evaluation sets, Z; and Zs, labeled by A, the pair
(v,d) for feature vector and distance computations, maximum loss
M Loss in accuracy on Zs, and number T of iterations.

OUTPUT: EOPF classifier [Py, C1, L1, Z}] with reduced training set.

AUXILIARY: Set R of relevant samples, and variables Acc and tmp.

1. [Pl,Cl,Ll,Z{] — Algom'thmf)’(Zl,Zg,T, (’U,d)).

2. [Lo, Py < Algorithm2(Z}, Za, (v,d)) and store accuracy in Acc.
3. tmp < Acc and R + 0.

4. While |Acc — tmp| < M Loss and R # Z1 do

5. R « 0.

6. For each sample t € Zs, do

7. s<—P2(t)eZl.

8. While s # nil, do

9. L R+ RUs.

10. s < Pi(s).

11. Mowve samples from Z1\R to Zs.

12. [Pl, Cl, Ly, Zﬂ — Algom'thmf)’(Zl, Zs, T, (’U, d))

13. L [La, Po] + Algorithm2(Z}, Zs, (v,d)) and store accuracy in tmp.

14. Return [Py, Ch, L1, Z7].

Lines 1 —3 compute learning and classification using the highest accuracy
classifier obtained for an initial training set size. Its accuracy is stored in
Acc and used as reference value Acc in order to stop the pruning process,
when the loss in accuracy is greater than an user-specified value M Loss
or all training samples are considered relevant. The main loop in Lines

11



4 — 13 essentially marks the relevant samples in Z; by following backwards
the optimum paths used for classification (Lines 5 — 10), moves irrelevant
samples to Z5, and repeats learning and classification from a reduced training
set until it reaches the above stopping criterion. This process is actually
different from and better than the one previously proposed method in [12].
The previous method is good when there is a lot of redundancy in Z;, but it
does not provide any mechanism to avoid a significant loss in accuracy. The
present algorithm consistently provides higher accuracy than the previous
one independently of the redundancy degree in Z;.

4. Experimental results

We first demonstrate the need for more efficient classifiers with minimum
loss in accuracy (Section 4.1) by comparing the previous OPF with other
popular approaches. The efficiency gain of the EOPF classifier over the
previous OPF is evaluated in Section 4.2 using several datasets from different
applications. Finally, we extend this evaluation in Section 4.3 by considering
EOPF with and without the proposed pruning approach.

4.1. Why do we need more efficient classifiers?

Popular methods, such as Support Vector Machines (SVM) and Artificial
Neural Networks (ANN), present high computational cost for training, be-
ing impractical in the case of training sets with thousands of samples or in
applications that require multiple retraining with interactive response times
(e.g., interactive segmentation [1, 2]). In the case of redundant training sets,
it is still possible to reduce them in order to improve efficiency of these ap-
proaches. However, reduced training sets usually affect the efficacy of them
in a significant way.

By choosing a small dataset, the MPEG-7 Shape Database Part B [27],
which contains only 1,400 shape samples and 70 classes, it is already possible
to understand the shortcomings of the popular approaches with respect to
the EOPF method. For this database, the BAS (Beam Angle Statistics)
shape descriptor is known as one of the best to represent and distinguish its
classes [28]. We then compared the performance of the following classifiers
in this database using the BAS descriptor with 180 features. The previous
OPF classifier using the C code available in [29], SVM-RBF (with Radial
Basis Function) using LibSVM [30], SVM no-kernel (without kernel mapping)
using LibLINEAR [8], ANN-MLP (Multilayer Perceptrons) using the FANN
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Library [31], and our own implementation of SOM (Kohonen Self Organizing
Maps).

For both, SVM-RBF and SVM no-kernel, we applied cross validation for
parameter optimization. In ANN-MLP, we used the following empirically
chosen architecture: 180:8:8:70, i.e., 180 neurons in the input layer, two
hidden layers with 8 neurons on each one and 70 neurons on the output
layer. For SOM, we used a neural lattice with 100x100 neurons with 10
learning iterations.

The experiments were executed 10 times with randomly generated train-
ing Z; and test Z3 sets for each classifier and for different training set sizes.
Figure 3 displays the average results of training time (using the logarithmic
scale in seconds) and accuracy with different training set sizes. These exper-
iments were performed using a PC with Intel® Core I5 processor and 4Gb
RAM. Note that OPF is much faster than all other classifiers (Figure 3a).
Using 90% of the samples for training, OPF was 4,107.48 times faster than
SVM-RBF, for instance. This becomes really relevant in the case of large
training sets. Besides its advantage in efficiency for training, the accuracy of
OPF is also equivalent to the one of SVM-RBF, being both the most effective
classifiers (Figure 3b).

One may argue that reduced training sets would be enough to increase ef-
ficiency of the SVM approaches, for example, with negligible loss in accuracy.
Table 1 shows that this is not possible in the case of this database. Mean
accuracy (z) on the test set and training time (y in seconds) are presented
using the x : y format for training sets with 10%, 5%, 2.5%, and 0.8% of the
data samples. SVM-RBF and SVM no-kernel considerably loose accuracy
with respect to their initial values using 10% of the samples. OPF obtains
the highest accuracy with 10% of the samples, being still 10,000 faster than
SVM-RBF and 3,000 times faster than SVM no-kernel when they use only
0.8% of the samples for training.

Hence, it should be clear that OPF can achieve higher accuracy and
efficiency using much larger training sets than those that are feasible for the
SVM approaches. Now it is important to show that EOPF improves the
classification time with respect to OPF and the pruning of training samples
is possible to increase efficiency of the EOPF classification with negligible
loss in accuracy.
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Efficiency of the classifiers with respect to variations on the training set size
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Figure 3: Results for increasing training set sizes: (a) Mean training time in seconds using
the logarithmic scale for OPF, ANN-MLP, SVM-RBF, SVM no-kernel and SOM. (b) Mean
accuracy of the classifiers on a test set.
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Training set percentage ‘ OPF ‘ SVM-RBF ‘ SVM no-kernel ‘

10% 78.40%:0.0027 | 77.12%:50.62 | 75.10%:22.86
5% — 72.25%:27.88 | 71.16%:7.86
2.5% — 72.96%:28.02 | 71.69%:7.82
0.8% — 72.50%:27.46 | 71.04%:8.02

Table 1: The training efficiency of an OPF classifier with the highest accuracy is still much
higher than the training efficiency of the SVM approaches using considerably reduced
training set sizes.

4.2. EOPF versus the previous OPF classifier

The experiments from now on use 5 datasets from different application
domains.

e IBSR - Internet Brain Segmentation Repository’: this dataset is com-
posed of 18 T1 weighted images with 1.5mm slice thickness. In this
dataset, each voxel is considered as a sample for training and classi-
fication, and each image contains more than 1 million of voxels. The
feature vector of each voxel is composed of its intensity value and the
five intensities around the median value of the voxels within its 26-
neighborhood. This feature vector preserves the border of the tissues
and is robust to high-frequency noise. The idea is to automatic distin-
guish white matter from gray matter voxels. We used only one image of
this dataset, which contains 1,079,258 voxels (samples), with 6 features
each, distributed in two classes (white and gray matter). Figures 4a
and 4b display a 3D image slice of this dataset and its corresponding
ground truth.

e Poker: the purpose of this dataset, which contains 1,025,010 samples, is
to predict poker hands. Each sample is an example of a hand consisting
of five playing cards drawn from a standard deck of 52. Each card
is described using two attributes (suit and rank), for a total of 10
predictive attributes. The number of classes is 10 [32].

e [JCNN: this dataset was used in the International Joint Conference

'URL: www.cma.mgh.harvard.edu/ibsr/
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on Neural Networks (IJCNN) competition. It consists into 141,691
samples with 13 features each, distributed in 2 classes [32].

e Chess: this dataset contains 28,056 samples with 6 features each, dis-
tributed in 18 classes. The idea is to predict players’s movements, and
the details about this dataset can be found in [32].

e Metallographic: this dataset is composed by pixels of one labeled met-
allographic image with 76,800 pixels to be classified into 2 classes: cast
iron and background. The number of features is 3, which corresponds
to the RGB values of each pixel. Figures 4c and 4d display one image
of this dataset and its corresponding ground truth.

For each dataset, we used different percentages of samples in the train-
ing Z,, evaluation Z,, and test Z3 sets:

— IBSR: | Z1| = 1%, |Z5] = 49%, and Z3 = 50% of the samples.
— Poker: |Z1]| = 1%, |Zs| = 49%, and Z3 = 50% of the samples.
— LJCNN: | Zy| = 5%, |Z5| = 45%, and Z3 = 50% of the samples.
— Chess: |Z1| = 5%, |Zs| = 45%, and Z3 = 50% of the samples.

— Metallographic: |Z| = 5%, |Zs| = 45%, and Z3 = 50% of the
samples.

Table 2 displays the results of the experiments using Algorithm 1 on Z;
for training both OPF and EOPF classifiers and their respective classification
algorithms for testing on Z3. Note that Z, is used only in the next section,
where the learning-with-pruning algorithm is applied. These experiments
were also repeated 10 times with randomly selected sets to compute the
average accuracies. The results are displayed as follows: x £ y[z], in which z,
y and z indicate, respectively, the average accuracy, standard deviation and
mean classification time (in seconds).

Note that, EOPF and OPF provide similar accuracies, being the former
from 1.5 to 5 times faster than the latter for the same training and test sets.

4.8. EOPF with and without pruning

The experiments in this section show that it is possible to improve the
quality of samples in Z; by learning from the classification errors in Z, and,
at the same time, considerably reduce the size of Z; (increasing classification
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Figure 4: Some images used in the experiments. (a)-(b) MRI-T1 images from a human
brain: (a) slice number 10 from IBSR-01 image and its corresponding labeled image in
(b), in which the white matter is represented by the white pixels and the gray matter
by the gray ones. These are 256 x 256 images encoded with 256 bits per pixel. (c)-(d)
Metallographic images from nodular cast iron: (c¢) original and (d) labeled, in which the
red pixels indicate the cast iron. These are 256 x 300 images encoded with 256 bits per
pixel. The red pixels were used as the positive samples (cast iron) and the remaining ones
were associated to the background.

efficiency) with negligible loss in accuracy. For a limit M Loss = 5% in
Algorithm 4, for example, the results are shown in Table 3. The average
numbers of accuracy, standard deviation and mean classification time (in
seconds) were obtained after 10 runs of the methods with different training,
evaluating and test sets.

The results indicate that the EOPF classifier using the learning-with-
pruning approach can be from 1.1 to 6.19 times faster in classification with
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| Dataset | OPF | EOPF |
Brain 71.95%=+2.22[393.00] | 71.22%=+2.16[292.84]
Poker 53.61%0.10[295.80] | 53.96%+0.12[266.85]
IJCNN 88.10%+0.43[31.65] | 88.10%+0.43[23.39)]
Chess 64.88%0.48[1.03] | 64.13%0.62[0.93]

Metallographic | 100%=0.0[7.98] 100%0.0[1.61]

Table 2: Mean accuracy and classification times for OPF and EOPF.

‘ Dataset ‘ EOPF ‘ EOPF+Pruning ‘ Pruning rate ‘
Brain 71.22%42.16[292.84] | 71.22%+2.36[307.12] 0.0%
Poker 53.96%40.12[295.80] | 53.02%=0.08[266.85] 0.58%
IJCNN 88.10%40.43[23.39] | 93.92%+0.25[13.85] 58.87%
Chess 64.13%40.62[0.93] 65.03%40.65[1.06] 0.55%

Metallographic 100%=+0.0[1.61] 100%=+0.0[0.26] 94.69%

Table 3: Mean accuracy, classification times for EOPF and EOPF+pruning. We also show
the mean pruning rate for EOPF+pruning.

respect to EOPF without pruning. This speed up was not possible in the
first case only of the Brain dataset using M Loss = 5%, because all samples
were considered relevant.

5. Conclusion

We presented an enhanced version of the OPF classifier (EOPF) and its
combination with a new approach to learn relevant training samples from an
evaluation set and, at the same time, eliminate irrelevant samples from the
training set, reducing its size and increasing efficiency of classification with
negligible loss in accuracy.

Experiments with large datasets from distinct applications showed that
the new approach achieves the desired result. We conclude that OPF is more
suitable to handle large datasets than popular methods, such as SVMs and
ANNSs, by showing that OPF can provide better accuracy and at the same
time be extremely faster than SVM-RBF and SVM no-kernel for training.
We also demonstrated that EOPF classification can be from 1.5 to 5 times
faster than the OPF classification due to a new algorithm which reduces the
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original time complexity from O(|Z1||Z3|) to O(p|Z3|) for some p << |Z1].
The experiments also demonstrated that it is possible to reduce the training
set size up to 95%, increasing efficiency in classification from 1.1 to 6.19 times
faster.

Considering that new technologies have provided large datasets for many
applications and the popular approaches present prohibitive training times
in such situations, we may then conclude that the proposed methods are
important contributions for pattern recognition. For future works, we will try
to speed up OPF training phase by studying other algorithms to calculate the
Minimum Spanning Tree, which is used to find prototypes and is responsible

for almost 50% of the training step execution time. Other future work will
be guided to adapt LibOPF to be executed in GPUs.
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