
Computer techniques towards the automatic

characterization of graphite particles in metallographic

images of industrial materials

João P. Papaa, Rodrigo Y. M. Nakamuraa, Victor Hugo C. de
Albuquerqueb, Alexandre X. Falcãoc, João Manuel R. S. Tavaresd
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bPrograma de Pós-Graduação em Informática Aplicada, Universidade de Fortaleza,
Fortaleza, Brazil. Email: victor.albuquerque@fe.up.pt

cUniversidade de Campinas, Instituto de Computação, Campinas, Brazil. Email:
afalcao@ic.unicamp.br

dFaculdade de Engenharia, Universidade do Porto, Porto, Portugal. Email:
tavares@fe.up.pt

Abstract

The automatic characterization of particles in metallographic images has
been paramount, mainly because of the importance of quantifying such mi-
crostructures in order to assess the mechanical properties of materials com-
mon used in industry. This automated characterization may avoid problems
related with fatigue and possible measurement errors. In this paper, com-
puter techniques are used and assessed towards the accomplishment of this
crucial industrial goal in an efficient and robust manner. Hence, the use
of the most actively pursued machine learning classification techniques. In
particularity, Support Vector Machine, Bayesian and Optimum-Path Forest
based classifiers, and also the Otsu’s method, which is commonly used in
computer imaging to binarize automatically simply images and used here
to demonstrated the need for more complex methods, are evaluated in the
characterization of graphite particles in metallographic images. The statisti-
cal based analysis performed confirmed that these computer techniques are
efficient solutions to accomplish the aimed characterization. Additionally,
the Optimum-Path Forest based classifier demonstrated an overall superior
performance, both in terms of accuracy and speed.
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1. Introduction

Industrial applications that make use of computer methods of image pro-
cessing and analysis have grown in the last years, once that are efficient,
robust, accurate, non-subjective and can be easily integrated into solutions
of inspection and characterization based on images. Metwalli [1], for instance,
has considered the effect of surface quality on the spectral density of laser-
speckle images aiming to study the elastic and plastic deformations. Yoon et
al. [2] presented an effective fault inspection system to identify film defects
using image segmentation techniques. Li [3] applied a Support Vector Ma-
chine (SVM) based classifier [4] to the automatic inspection of local defects
embedded in homogeneous copper clad laminate surfaces. Torres-Treviño et
al. [5] optimized the welding process by the estimation of the Pareto optimal
set. Liao [6] investigated the imbalanced data problem in the classification of
different types of weld flaws. Zapata et al. [7] described an automatic sys-
tem to detect, recognize, and classify welding defects in radiographic images
using an artificial neuronal network (ANN) and an adaptive-network-based
fuzzy inference system. Valavanis and Kosmopoulos [8] used SVM, ANN and
k -nearest neighbor (k -NN) classifiers for the detection and classification of
defects in weld radiographs.

Computer methods of image processing and analysis have been applied
in order to characterize microstructures in metallic materials; examples in-
clude the segmentation and quantification of white cast iron microstructures
using mathematical morphology combined with an ANN [9], quantification
of the porosity in microscopy-based images of synthetic materials using an
ANN [10, 11], Brinell and Vickers values determination from hardness inden-
tation images based on an automatic image segmentation method [12] and
graphite nodules shape characterization using a ANN [13].

In cast irons, the fracture toughness and ductility strongly depend on
the quantity, size and shape of the graphite particles, in which spheroidal
graphite improve these properties, whereas more elongated particles or ones
with irregular borders are detrimental due to stress concentration points [14].
Hence, nodular cast iron has superior properties than lamellar irons, espe-
cially in terms of tensile strength and strain. Furthermore, cast irons offer a

2



reasonable resistance against corrosion. In general, the mechanical proper-
ties are inferior than those of cast or wrought steels, especially when loaded
in tension. In compression, high loads can be supported.

The main advantages of cast irons are their low price and ability to orig-
inate products of complex shapes, frequently in a single production step.
Therefore, cast irons have been often used in numerous industrial applica-
tions, such in base structures of manufacturing machines, rollers, valves,
pump bodies and mechanical gears. The main families of cast irons are clas-
sified according to the shapes of its graphite particles, mainly: nodular cast
iron, malleable cast iron, gray cast iron and white cast iron [15]. Their prop-
erties, as of all materials, are influenced by their microstructure and therefore,
its correct characterization is extremely important. Thus, the metallographic
based evaluation of materials is commonly used to determine the quantity,
appearance, size and distribution of their phases and constituents [16]. In
order to carry on the referred evaluation, human visual inspection of the mi-
crostructures are usually done based on metallographic samples. However,
manual microstructural characterization is an exhausting task because the
specialists spend much time exposed to high luminosities in the microscope
device, which can produce fatigue and, consequently, increase the probabil-
ity of measurement errors [17, 18]. Another point that should be stressed is
the subjectivity inherent to the manual characterization, which may lead to
different evaluations for the same metallographic sample.

In order to overcome the aforementioned drawbacks, we aimed the auto-
matic graphite particles characterization of cast irons from high resolution
metallographic images, using computer methods. The main contribution
of this paper is to present a comparison among the state-of-the-art com-
puter classifiers to accomplish this task, such as Support Vector Machine,
Optimum-Path Forest (OPF) [19] and Bayesian based classifiers [20]. Ad-
ditionally, as far as we know, we are the first to apply OPF, SVM and
Bayesian based classifiers in the context of graphite particles automatic im-
age based characterization. We also compared the results obtained by the
Otsu’s method [21]. The Otsu’s method was used here to demonstrate that
the classifiers, although their superior computer complexity, are more robust
and efficient.

The remainder of this paper is organized as follows. Section 2 revisits the
computer classifiers used. Section 3 addresses the experimental results and
Section 4 states the conclusions.
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2. Computer classifiers

This section addresses a review about the computer classifiers under com-
parison: Support Vector Machine, Optimum-Path Forest and Bayesian based
classifiers.

2.1. Support Vector Machine based classifier

Let X be a training set where each sample Xi ∈ ℜn may be associated
to a label yi = {+1,−1}. One of the fundamental problems of the computer
learning theory is stated as: given two classes of known objects, assign one
of them to a new unknown object. Thus, the objective in a two-class pattern
recognition is to infer a function [22]:

f : X → {±1}, (1)

regarding the input-output of the training data.
Based on the principle of structural risk minimization [23], the SVM opti-

mization process is aimed at establishing a separating function while accom-
plishing with the trade-off that exists between generalization and overfitting.
Vapnik [23] considered the class of hyperplanes in some dot product space
H:

⟨w,x⟩+ b = 0, (2)

where w,x ∈ H, b ∈ R, corresponding to the decision function:

f(x) = sgn(⟨w,x⟩+ b), (3)

in which sgn stands for the signal function. Based on the following two
arguments, the author proposed the Generalized Portrait learning algorithm
for problems which are separable by hyperplanes:

1. Among all hyperplanes separating the data, there exists a unique opti-
mal hyperplane defined by the maximum margin of separation between
any training point and the hyperplane;

2. The overfitting of the separating hyperplanes decreases with margin
increasing.

Thus, to obtain the optimal hyperplane, it is necessary to solve:
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minimize
w∈H,b∈R

τ(w) =
1

2
||w||2, (4)

subject to:
yi(⟨w,xi⟩+ b) ≥ 1 for all i = 1, ...,m, (5)

with constraints given by Equation 5 ensuring that f(xi) will be +1 for
yi = +1 and −1 for yi = −1, and also fixing the scale of w. A wide exposition
of these arguments is provided by Schölkopf and Smola [22].

The function τ in Equation 4 is called the objective function, while the
constraints given by Equation 5 are the inequality constraints. Together, they
form a so-called constrained optimization problem. The separating function is
then a weighted combination of elements of the training set. These elements
are called Support Vectors and characterize the boundary between the two
classes.

The replacement referred to as the kernel trick [22] is used to extend the
concept of hyperplane classifiers to nonlinear Support Vector Machine based
classifiers. However, even with the advantage of “kernelizing” the problem,
the separating hyperplane may still not exist.

In order to allow that some cases may violate Equation (5), the slack
variables ξ ≥ 0 were introduced [22], which leads to the new constraints:

yi(⟨w,xi⟩+ b) ≥ 1− ξi for all i = 1, ...,m. (6)

A computer classifier that generalizes well is then found by controlling
both the margin (through ||w||) and the sum of the slacks variables

∑
i ξi.

As such, a possible accomplishment of such a soft margin classifier is obtained
by minimizing the objective function:

τ(w, ξ) =
1

2
||w||2 + C

m∑
i=1

ξi, (7)

subject to the constraints given by Equation 6 and ξ ≥ 0, where the constant
C > 0 determines the balance between overfitting and generalization. Due
to the tunning variable C, these kinds of SVM based classifiers are normally
referred to as C-Support Vector Classifiers (C-SVC) [4].

However, the above formulation can be applied only for linearly separable
feature spaces. Boser et al. [24] have proposed an extension for non-linearly
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separable situations by applying the kernel trick to maximum-margin hyper-
planes. The idea is to replace the dot product in Equation (6) by a nonlinear
kernel function:

yi(K(w, xi) + b) ≥ 1− ξi for all i = 1, ...,m. (8)

It is important to highlight that the choice of kernel function strongly
depends on the problem. Some common kernels that have been used are:

• K(xi, xj) = (xi · xj + 1)p (polynomial kernel);

• K(xi, xj) = exp− ||xi−xj ||2
2σ2 (Gaussian radial basis function kernel);

• K(xi, xj) = tanh(axi · xj + b, a > 0 and b < 0) (hyperbolic tangent),

in which xi and xj stand for the samples, p is the polynomial degree and σ
is the Gaussian variance.

2.2. Optimum-Path Forest based classifier

The OPF based classifier works by modeling the problem of computer
classification as a graph partition in a given feature space. The nodes are
represented by the feature vectors and the edges connect all pairs of them,
defining a full connectedness graph. This kind of representation is straight-
forward, given that the graph does not need to be explicitly represented, al-
lowing the saving of computer memory. The partition of the graph is carried
out by a competition process between some key samples (prototypes), which
offer optimum paths to the remaining nodes of the graph. Each prototype
sample defines its optimum-path tree (OPT), and the collection of all OPTs
defines the optimum-path forest, which gives the name to the classifier [19].

The OPF can be seen as a generalization of the well known Dijkstra’s
algorithm to compute optimum paths from a source node to the remaining
ones [25]. The main difference relies on the fact that OPF uses a set of
source nodes (prototypes) with any path-cost function. In case of Dijkstra’s
algorithm, a function that summed the arc-weights along a path was applied.
For OPF, we used a function that gives the maximum arc-weight along a
path, as is explained below.

Let Z = Z1 ∪ Z2 be a dataset labeled with a function λ, in which Z1

and Z2 are, respectively, a training and test sets, and let S ⊆ Z1 be a
set of prototype samples. Essentially, the OPF based classifier creates a
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discrete optimal partition of the feature space such that any sample s ∈ Z2

can be classified according to this partition. This partition is an optimum
path forest (OPF) computed in ℜn by the image foresting transform (IFT)
algorithm [26].

The OPF algorithm may be used with any smooth path-cost function
which can group samples with similar properties [26]. Particularly, we use
the path-cost function fmax that is computed as:

fmax(⟨s⟩) =

{
0 if s ∈ S,
+∞ otherwise

fmax(π · ⟨s, t⟩) = max{fmax(π), d(s, t)}, (9)

in which d(s, t) means the distance between samples s and t, and a path π
is defined as a sequence of adjacent samples. As such, we have that fmax(π)
computes the maximum distance between adjacent samples in π, when π
is not a trivial path. The choice for fmax arises from the fact of avoiding
the “chain code problem”, because does not matter the size of the path
connecting samples, since the arc-weight between them be small.

The OPF algorithm assigns one optimum path P ∗(s) from S to every
sample s ∈ Z1, building an optimum path forest P (a function with no cycles
which assigns to each s ∈ Z1\S its predecessor P (s) in P ∗(s) or a marker nil
when s ∈ S).

The OPF based classifier has two distinct phases: (i) training and (ii)
classification. The former phase consists, essentially, into finding the pro-
totypes and computing the Optimum-Path Forest, which is the union of all
OPTs rooted at each prototype. After that, a sample is selected from the
test sample, connect it to all samples of the Optimum-Path Forest generated
in the training phase and the node associated the optimum path to it is
found. Notice that this test sample is not permanently added to the training
set, i.e., only used once. The next sections describe in more detail the two
classifier phases.

2.2.1. Training

We say that S∗ is an optimum set of prototypes when OPF Algorithm
minimizes the classification errors for every s ∈ Z1. S∗ can be found by
exploiting the theoretical relation between minimum-spanning tree (MST)
and optimum-path tree for fmax [27]. The training essentially consists in
finding S∗ and an OPF classifier rooted at S∗.
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By computing an MST in the complete graph (Z1, A), we obtain a con-
nected acyclic graph whose nodes are all samples of Z1 and the arcs are
undirected and weighted by the distances d between adjacent samples. The
spanning tree is optimum as that the sum of its arc weights is minimum as
compared to any other spanning tree in the complete graph. In the MST,
every pair of samples is connected by a single path which is optimum accord-
ing to fmax. That is, the minimum-spanning tree contains one optimum-path
tree for any selected root node. Thus, the optimum prototypes are the clos-
est elements of the MST with different labels in Z1; elements that fall in the
frontier of the classes.

After finding the prototypes, they will compete among themselves in order
to conquer the remaining training nodes offering to them optimum-path costs,
which are computed using Equation (9). Suppose we have path τ between
s ∈ S and t ∈ Z1: Equation (9) refers that the cost offered to t by s is the
maximum arc-weight along τ . Therefore, the prototype that will conquer t
will be the one that presents the minimum path-cost.

2.2.2. Classification

For any sample t ∈ Z2, we consider all arcs connecting t with samples
s ∈ Z1, as though t were part of the training graph. Considering all possible
paths from S∗ to t, we find the optimum path P ∗(t) from S∗ and label t with
the class λ(R(t)) of its most strongly connected prototype R(t) ∈ S∗. This
path can be identified incrementally by evaluating the optimum cost C(t) as:

C(t) = min{max{C(s), d(s, t)}}, ∀s ∈ Z1. (10)

Let the node s∗ ∈ Z1 be the one that satisfies Equation (10); i.e., the
predecessor P (t) in the optimum path P ∗(t). Given that L(s∗) = λ(R(t)),
the classification simply assigns L(s∗) as the class of t. An error occurs when
L(s∗) ̸= λ(t).

2.3. Bayesian based classifier

Let p(ωi|x) be the probability of a given pattern x ∈ ℜn to belong to class
ωi, i = 1, 2, . . . , c, which can be defined by the Bayes Theorem [28]:

p(ωi|x) =
p(x|ωi)P (ωi)

p(x)
, (11)

where p(x|ωi) is the probability density function of the elements that compose
the class ωi, and P (ωi) corresponds to the probability of the class ωi itself.
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A Bayesian based classifier decides whether a pattern x belongs to the
class ωi when:

p(ωi|x) > p(ωj|x), i, j = 1, 2, . . . , c, i ̸= j, (12)

which can be rewritten as follows by using Equation (11):

p(x|ωi)P (ωi) > p(x|ωj)P (ωj), i, j = 1, 2, . . . , x, i ̸= j. (13)

As one can see, the Bayes classifier’s decision function di(x) = p(x|ωi)P (ωi)
of a given class ωi strongly depends on the previous knowledge of p(x|ωi) and
P (ωi), ∀i = 1, 2, . . . , c. The probability values of P (ωi) are straightforward
obtained by calculating the histogram of the classes, for instance. However,
the main problem associated to the Bayesian based classifiers is to find the
probability density function p(x|ωi), given that the only information we have
is a set of classes and its corresponding labels. A common practice is to
assume that the probability density functions are Gaussian ones, and thus
one can estimate their parameters using the dataset samples [20]. In the
n-dimensional case, a Gaussian density of the patterns from class ωi can be
calculated using:

p(x|ωi) =
1

(2π)n/2 | Ci |1/2
exp

[
−1

2
(x− µi)

TC−1
i (x− µi)

]
, (14)

in which µi and Ci correspond to the mean and the covariance matrix of class
ωi. These parameters can be obtained by considering each element x that
belongs to class ωi using:

µi =
1

Ni

∑
x∈ωi

x (15)

and

Ci =
1

Ni

∑
x∈ωi

(xxT − µiµ
T
i ), (16)

in which Ni means the number of samples from class ωi.

3. Experiments

In this section, we describe the dataset addressed, the computer classifiers
used and explain the experiments conducted in order to automatic charac-
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terize three types of ferrous alloy samples: nodular, gray and malleable cast
irons.

3.1. Datasets

For the application of the computer methods used and under compari-
son here, firstly, it was necessary the metallographic preparation of the cast
iron samples under study. Then, the samples were microscopically analyzed,
accomplishing with suitable brightness and contrast adjustments, and the
correspondent images were acquired. We used a collection of three labeled
images of each cast iron for quantitative evaluation (Figure 1), each one
manually characterized by an expert.

(a) (b) (c)

(d) (e) (f)

Figure 1: Microstructure images of cast irons: (a) gray, (b) nodular and (c) malleable and
their respective labeled (manually characterized), images in (d), (e) and (f). All images
shown in this paper have 320x240 pixels and are according a magnification factor of 100x.

As we are regarding the characterization of each pixel in the input images,
each pixel has been described by a texture kernel around its neighborhood
and also by its gray value. Taking this into account, in order to extract the
texture information, we applied the Gabor filter [29], which can be mathe-
matically formulated as:

G(x, y, θ, γ, σ, λ, ψ) = e−
x′2+γ2y′2

2σ2 e
i
(
2π x′

λ
+ψ

)
, (17)
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where x′ = x cos(θ) + y sin(θ) and y′ = x sin(θ) + y cos(θ), and λ means the
sinusoidal factor, θ represents the orientation angle, ψ is the phase offset, σ
is the Gaussian standard deviation and γ is the aspect spatial ratio.

The main idea of the Gabor filter is to perform a convolution between
the original image I and Gθ,γ,σ,λ,ψ in order to obtain a Gabor-filtered repre-
sentation:

Îθ,γ,σ,λ,ψ = I ∗Gθ,γ,σ,λ,ψ, (18)

in which Îθ,γ,σ,λ,ψ denotes the filtered image. Thus, one can obtain a filter
bank of Gabor filtered images by varying its parameters. In this work, we
used a convolution filter of size 3× 3 with the following Gabor parameters:

• Six different orientations: θ = 0◦, 45◦, 90◦, 135◦, 225◦ and 315◦;

• Three spatial resolutions: λ = 2.5, 3 and 3.5. Notice that, for each one
of λ values, we applied different values for σ: 1.96, 1.40 and 1.68;

• ψ = 0;

• γ = 1.

These values were empirically chosen based on our previous experience [30,
31, 32].

Once we get the Gabor-filtered images (notice that we have used 6× 3 =
18 images), we then compute the texture features at pixel p as the set of
corresponding gray values among these images. Thus, each pixel is described
by 19 features, being 18 of them related with texture and the remaining one
is the original gray value. After the classification process, we applied a 3× 3
mode filter in order to post-processing the resultant image.

In regard to the computer classifiers, we have applied and evaluated the
SVM with Radial Basis Function (SVM-RBF), OPF and Bayesian (Bayes)
based classifiers. For the OPF based classifier we employed LibOPF [33],
which is a free tool to the design computer classifiers based on Optimum-
Path Forest, and for the Bayes based classifier we used our own computer
implementation. Finally, with respect to the SVM-RBF based classifier, we
have applied SVMTorch [34].

In addition, we compare the results obtained by the aforementioned ma-
chine learning techniques against the Otsu’s method [21], which has been
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commonly used in computer image processing to segment images. This seg-
mentation technique aims to automatic estimate a threshold based on the
image’s histogram shape. The algorithm assumes that the image to be thresh-
olded contains two classes of pixels or a bi-modal histogram (foreground and
background classes), and then it calculates the optimum threshold that sep-
arates those two classes so that their intraclass variance is minimal [35].

3.2. Experimental results

In this section, we present the results obtained in the automatic character-
ization of the graphite particles in metallographic images of cast irons. The
accuracy of the computer methods under comparison were assessed by the
Universal Image Quality Index (UIQI) [36], which considers the brightness
variance of the image pixels over a neighborhood, as follows:

UIQI =
4σxyxy

(σ2
x + σ2

y)(x
2 + y2)

, (19)

in which x, y, σ2
χ and σ2

y are the average and variance of each image under
comparison, respectively, and the σxy is the correlation coefficient between x
and y. The dynamic range of UIQI is [−1, 1], and the best value is achieved
when y = x; i.e., the two images under comparison are similar.

Table 1 indicates the mean UIQI values obtained as well as their standard
deviations, and the required times by the computer methods under compari-
son in the characterization of malleable, gray and nodular cast irons. For the
malleable and nodular cast irons, we used 10% of the correspondent image
shown in Figures 1b-c for training and the remaining 90% for testing the
computer classifiers. In regard to the gray cast iron (Figure 1a), we em-
ployed 50% for training and 50% for testing, since we have observed that
this cast iron revealed to be the most difficult to characterize due to the high
complexity of the related image. Notice for all cast irons we have employed
a cross-validation over 10 runnings. All experiments were conducted using
a personal computer with a Pentium Intel Core i7R⃝, 4 GB of RAM and
GNU/Linux Gentoo as the operational system. Figure 2 displays the results
obtained by all computer methods under comparison.

In Figure 2, one can clearly see that the quantitative results agree well
with the visual analysis. Also, the Otsu’s optimal threshold obtained a good
result for the gray cast iron; however, the computer classifiers outperform it
for the nodular cast iron. In regard to malleable cast iron, the Otsu’s method
was slightly better than the computer classifiers.
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Classifier Cast iron UIQI Training [s] Testing [s]

OPF Gray -0.0050±0.0033 128.13 230.14
Bayes Gray -0.0034±0.0036 35.25 286.32
SVM-RBF Gray 0.0010±0.0025 3892.33 155.30
Otsu Gray 0.16964 0.038

OPF Nodular 0.8516±0.0061 4.21 18.97
Bayes Nodular 0.8591±0.0049 0.52 45.46
SVM-RBF Nodular 0.8281±0.0028 2.47 11.21
Otsu Nodular 0.64642 0.018

OPF Malleable 0.5023±0.0150 4.28 35.80
Bayes Malleable 0.5417±0.0128 0.61 35.51
SVM-RBF Malleable 0.5253±0.0113 2.82 10.47
Otsu Malleable 0.6877 0.048

Table 1: Mean UIQI and execution times in seconds after cross-validation for OPF, SVM-
RBF and Bayes based classifiers and for Otsu’s method in the cast iron characterization.
(The most accurate results are in bolded).

In order to perform a statistical analysis, we compared all possible pair-
wise combination of computer methods using the McNemar test [37]. As
such, the value of χ2 was computed as:

χ2 =
((N01 −N10)− 1)2

N01 +N10

; (20)

in which N01 represents the number of times that a first method misclassifies
and a second one gives a correct classification, and N10 the number of times
that the first method correct classified and the second misclassified. As the
null hypothesis, we assumed that both methods had similar performance.
Hence, if the value of χ2 is greater than 10.83 (p = 0.001), we can reject the
null hypothesis and the computer methods under comparison had distinct
performance. Tables 2, 3 and 4 present the values of χ2 computed for all pairs
of computer methods considering the gray, malleable and nodular cast irons.
We have highlighted the pair of classifiers that accepted the null hypothesis
(similar classifiers).

One can realize from the values indicated in Table 2 that the null hy-
pothesis is rejected for the gray cast iron for all pairs of computer methods,
being the Otsu’s method the most accurate, which can be clearly confirmed
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2: Image based characterization results: (a)-(c) OPF, (d)-(f) SVM-RBF, (g)-(i)
Bayes based classifiers and (j)-(l) Otsu’s method. The left images correspond to the gray
cast iron, and the middle and right ones correspond to the nodular and malleable cast
irons, respectively.

by observing Figure 2j.
In regard to the nodular cast iron (Table 3), the most accurate computer

methods were the OPF and Bayesian based classifiers, which have accepted
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χ2 Bayes OPF SVM-RBF Otsu

Bayes - 52.612 71.158 10842.0
OPF 52.612 - 28.559 10416.0

SVM-RBF 71.158 28.559 - 9958.6
Otsu 10842.0 10416.0 9958.6 -

Table 2: Values of χ2 computed for all pairs of computer methods under comparison for
the gray cast iron (Figure 1a).

χ2 Bayes OPF SVM-RBF Otsu

Bayes - 7.5078 522.57 2631.7
OPF 7.5078 - 476.72 2566.8

SVM-RBF 522.57 476.72 - 1295.7
Otsu 2631.7 2566.8 1295.7 -

Table 3: Values of χ2 computed for all pairs of computer methods for the nodular cast
iron (Figure 1b). (The bolded values stand for similar classifiers).

χ2 Bayes OPF SVM-RBF Otsu

Bayes - 194.68 19.152 37.865
OPF 194.68 - 1.7673 110.92

SVM-RBF 19.152 1.7673 - 88.056
Otsu 37.865 110.92 88.056 -

Table 4: Values of χ2 computed for all pairs of computer methods under comparison for
the malleable cast iron (Figure 1c). (The bolded values stand for similar classifiers).

the null hypothesis; i.e., both computer classifiers obtained similar effective-
ness. However, the OPF based classifier was overall about 2.02 times faster
than the Bayesian based classifier. Finally, with respect to the malleable cast
iron, the Otsu’s method was the most accurate, and the OPF and SVM-RBF
based classifiers had similar results according to χ2 value obtained (Table 4).

Although one may argue that the Otsu’s threshold has outperformed the
machine learning techniques in about 66% of the experiments, there are situa-
tions in which the local basis of the Otsu’s method can not handle successfully
more complex images. In order to illustrate such cases, we have conducted an
extra round of experiment with a different gray cast iron image. Figures 3a
and 3b display, respectively, this new image and its labeled version. In this
new round of experiment, we employed the same set of computer classifiers
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as before against the Otsu’s method. Figure 4 displays the characterized
images. Table 5 presents the UIQI results. One can see that OPF and Bayes
have been the most accurate classifiers, and Table 6 confirms such results, in
which the χ2 value of the pair OPF-Bayes is lower than 10.83. Thus, they
accept the null hypothesis, being similar to each other. Analyzing by visual
inspection the quality of the characterization results, one can conclude that
the by Otsu’s method was not effective, since that pearlite or ferrite (that
should be classified as background) has been erroneously identified (view at
the top and bottom right corner).

(a) (b)

Figure 3: Gray cast iron images employed in the second round of experiments: (a) original
and (b) labeled version by an specialist in microstructural characterization.

Classifier Cast iron UIQI Training [s] Testing [s]

OPF Gray 0.9605±0.0031 5.07 20.02
Bayes Gray 0.9631±0.0024 0.43 68.57
SVM-RBF Gray 0.7124±0.0033 3.96 18.04
Otsu Gray -0.0837 0.01

Table 5: Mean UIQI and execution times in seconds after cross-validation for OPF, SVM-
RBF and Bayes based classifiers and for Otsu’s method with respect to the second round
of experiments. The most accurate computer methods are in bolded.

4. Conclusions

In this paper, we addressed the problem of automatic characterization
of cast iron in metallographic images; in particular, three types of cast iron
were considered: nodular, gray and malleable. Given that the analysis of
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(a) (b)

(c) (d)

Figure 4: Characterization results regarding the original image in Figure 3a: (a) OPF, (b)
SVM-RBF, (c) Bayes and (d) Otsu’s computer techniques.

χ2 Bayes OPF SVM-RBF Otsu

Bayes - 3.71 2346.0 6493.5
OPF 3.71 - 2339.0 6454.6

SVM-RBF 2346.0 2339.0 - 1967.7
Otsu 6493.5 6454.6 1967.7 -

Table 6: Values of χ2 computed for all pairs of computer methods for the extra round of
experiments with respect to the gray cast iron (Figure 3a). (The bolded values stand for
similar classifiers).

the microstructures present in materials may lead to several evaluations,
their identification for further quantification has been paramount. Therefore,
this paper has as main contribution a comparison among three state-of-the-
art supervised computer classifiers: Support Vector Machine, Optimum-Pat
Forest and Bayesian based classifiers, and also against the well-known Otsu’s
method. In addition, to the best of our knowledge, we are the first to applied
OPF, SVM and Bayesian based computer classifiers into this field.
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We conducted the experiments as follows: we compared the OPF, SVM
and Bayesian based classifiers and Otsu’s method for the gray, malleable and
nodular cast irons automatic characterization. Each sample of the dataset,
i.e., each image pixel, was described by 18 Gabor texture features and its
original gray value in order to be characterized by the computer classifiers
under comparison. In this experimental round, we used 50% of the gray
cast iron image for training and the remaining 50% for characterization, i.e.,
classification, purpose. In regard to the nodular and malleable cast irons, we
employed 10% for training and 90% for characterization. In regard to the
gray and malleable cast irons, the UIQI accuracy and the statistical analysis
confirmed that the best results were obtained by the Otsu’s method, and
that for the nodular cast iron the most accurate methods were the Bayesian
and OPF based classifiers, which obtained similar results according to the
χ2 statistical analysis.

From the experimental findings, we can conclude that computer classifiers
studied are suitable for the automatic characterization of graphite particles
of cast irons in metallographic images, since they overcome successfully the
traditional problems inherent to the visual inspection methods. Although
the Otsu’s method has outperformed the Bayesian, SVM-RBF and OPF
based classifiers in 2 of the 3 datasets used, this good performance has been
questioned in more complex situations. In fact, the Otsu’s method is efficient
when applied on simply images, but not so effective when used in more
complex images, which can be easily found in several industrial applications.
Additionally, this method does not present the ability to learn from the
previous experience, as the machine learning techniques can present. As
such, this means that the Otsu’s method perform a blind characterization of
each input image in an independent manner, without addressing any prior
knowledge about the structures involved. Therefore, the use of machine
learning techniques for image classification in industrial applications has been
demonstrated to be an outstanding procedure, as well as to employ the OPF
classifier in this context.
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