
Influence of wearing an unstable shoe on thigh and leg muscle activity 

and venous response in upright standing 

 

Andreia Sousa (MSc) 

Escola Superior da Tecnologia de Saúde do Porto, 

Área Científica de Fisioterapia 

Centro de Estudos de Movimento e Actividade Humana 

Rua Valente Perfeito, 322 - 4400-330 Vila Nova de Gaia, PORTUGAL 

E-mail: asp@estsp.ipp.pt 

 

João Manuel R. S. Tavares (PhD) 

Faculdade de Engenharia da Universidade do Porto, 

Departamento de Engenharia Mecânica /  

Instituto de Engenharia Mecânica e Gestão Industrial 

Rua Dr. Roberto Frias, s/n, 4200-465 Porto, PORTUGAL 

E-mail: tavares@fe.up.pt 

(corresponding author) 

 

Rui Macedo (MSc) 

Escola Superior da Tecnologia de Saúde do Porto, 

Área Científica de Fisioterapia 

Centro de Estudos de Movimento e Actividade Humana 

Rua Valente Perfeito, 322 - 4400-330 Vila Nova de Gaia, PORTUGAL 

E-mail: rmacedo@estsp.ipp.pt 

 

mailto:asp@estsp.ipp.pt
mailto:tavares@fe.up.pt
mailto:rmacedo@estsp.ipp.pt


Albano Manuel Rodrigues (Bsc) 

Escola Superior de Tecnologia da Saúde do Porto, 

Área Científica de Cardiopneumologia 

Rua Valente Perfeito, 322 - 4400-330 Vila Nova de Gaia, PORTUGAL 

Hospital de São João 

Alameda Prof. Hernâni Monteiro, 4200-319 Porto, PORTUGAL 

E-mail: albanomr@hotmail.com 

 

Rubim Santos (PhD) 

Escola Superior da Tecnologia de Saúde do Porto, 

Área Científica  de Física 

Centro de Estudos de Movimento e Actividade Humana 

Rua Valente Perfeito, 322 - 4400-330 Vila Nova de Gaia, PORTUGAL 

E-mail: rss@estsp.ipp.pt 

 

mailto:albanomr@hotmail.com
mailto:rss@estsp.ipp.pt


Abstract 

Purpose: To quantify the effect of unstable shoe wearing on muscle activity 

and haemodynamic response during standing. 

Methods: Thirty volunteers were divided into 2 groups: the experimental group 

wore an unstable shoe for 8 weeks, while the control group used a conventional shoe 

for the same period. Muscle activity of the medial gastrocnemius, tibialis anterior, 

rectus femoris and biceps femoris and venous circulation were assessed in quiet 

standing with the unstable shoe and barefoot. 

Results: In the first measurement there was an increase in medial 

gastrocnemius activity in all volunteers while wearing the unstable shoe. On the other 

hand, after wearing the unstable shoe for eight weeks these differences were not 

verified. Venous return increased in subjects wearing the unstable shoe before and 

after training. 

Conclusions: The unstable shoe produced changes in electromyographic 

characteristics which were advantageous for venous circulation even after training 

accommodation by the neuromuscular system. 
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1. INTRODUCTION 

The primary function of venous circulation is to return blood to the heart. 

Effective venous return requires the interaction of a central pump, a pressure 

gradient, a peripheral venous pump, and competent venous valves to overcome the 

forces of gravity (Araki, Back et al., 1994; Ludbrook, 1966; Meissner, Moneta et al., 

2007). Depending on activity and posture, 60 to 80% of the resting blood volume 

resides in the venous system (Katz, Comerota et al., 1994) and in the upright but 

motionless individual the hydrostatic pressure is higher (Meissner, Moneta, et al., 

2007). As the thin-walled veins readily distend with relatively small increases in 

transmural pressure (Rothe, 1983), compensatory mechanisms must be present to 

prevent the blood from pooling in the extremities and aid in the return of blood to the 

heart. Indeed the peripheral pump may “drive” the circulation during exercise 

(Rowland, 2001). 

The muscle pumps of the lower limb include those of the foot, calf and thigh. 

Among these, the calf muscle pump is the most important, as it is the most efficient, 

has the largest capacitance and generates higher pressures (Katz, Comerota, et al., 

1994). The normal limb has a calf volume ranging from 1500 to 3000 cm3, a venous 

volume of 100 to 150 cm3, and ejects over 40 to 60% of the venous volume with a 

single contraction (Araki, Back, et al., 1994; Stewart, Medow et al., 2004). Evidence 

suggests that dynamic exercise produces increased blood flow when compared to 

continuous isometric exercise (Laughlin & Armstrong, 1985). During dynamic 

exercise, the muscle pump plays an important role in initial increase and 

maintenance of blood flow (Laughlin & Schrage, 1999) as blood flow increases 

between contractions, even for low intensity ones (Radegran, 1997). With walking, 

the limb venous pressure is reduced by approximately 78 mmHg within 7 to 12 steps 



(Pollack & Wood, 1949). Similar pressure changes are observed during standing with 

ankle flexion or heel raising, with weight transferred to the forefoot (Nicolaides, 

Hussein et al., 1993; Pollack & Wood, 1949). 

Chronic venous insufficiency explains those manifestations of venous disease 

resulting from ambulatory venous hypertension, which is associated with failure of 

the lower extremity muscle pumps due to outflow obstruction, musculo-fascial 

weakness, loss of joint motion or valvular failure (Araki, Back, et al., 1994; 

Nicolaides, Hussein, et al., 1993; Stewart, Medow, et al., 2004). Efficient peripheral 

pumps may compensate for some degree of reflux and obstruction and prevent 

chronic venous insufficiency symptoms (Padberg, Johnston et al., 2004; Plate, 

Brudin et al., 1986). It has been demonstrated that calf muscle strengthening 

exercises restore the pumping ability of the calf muscle and improve the 

haemodynamic performance in limbs with active ulceration subsequent to severe 

venous valvular and calf muscle pump impairment (Padberg, Johnston, et al., 2004). 

It has been suggested that balance training devices, such as wobble-boards or 

unstable surfaces, can significantly improve ankle and knee muscle strength and 

proprioception (Waddington & Adams, 2004; Waddington, Seward et al., 2000; 

Wester, Jesperson et al., 1996). Previous experiments dealt with changes in gait 

characteristics, posturography and electromyographic activity (EMG) of several lower 

extremity muscles (gastrocnemius, tibialis anterior, vastus lateralis and medialis, 

rectus femoris, and semitendinosus) in healthy subjects (Nigg, Hintzen et al., 2006; 

Romkes, Rudmann et al., 2006; Stewart, Gibson et al., 2007), in children with 

development disabilities (Ramstrand, Andreson et al., 2008), in women aged over 55 

years (Ramstrand, Thuesen et al., 2010), and in patients suffering from osteoarthritis 

(Nigg, Emery et al., 2006) in response to unstable shoe wearing. 



Therefore, the purpose of this study was to quantify the effect of wearing an 

unstable shoe on muscle activity and haemodynamic response in lower extremities 

during standing before and after training intervention. Specifically, the purposes 

were: 

(a) to evaluate the immediate effect of unstable shoe wearing on EMG 

activity of medial gastrocnemius (MG), tibialis anterior (TA), biceps femoris (BF) 

and rectus femoris (RF) muscles during standing, to provide evidence for 

changes in muscle activation; 

(b) to analyse the influence of 8 weeks of unstable shoe wearing on EMG 

activity, to provide evidence for changes in muscle activation; 

(c)   to quantify the immediate effect of unstable shoe wearing on lower 

limb venous circulation; 

(d) to quantify the influence of 8 weeks of unstable shoe wearing on lower 

limb venous circulation. 

In all situations the values obtained before and after 8 weeks of intervention 

with the unstable shoe were compared to standard measures obtained during 

barefoot standing. 

The following hypotheses were tested: 

EMG activity 

H1 - During quiet standing, the EMG intensity of all muscles analysed is higher 

for the unstable shoe condition compared to barefoot standing before and after the 

unstable shoe intervention. 

H2 - During quiet standing, the EMG intensity levels are lower after 8 weeks of 

unstable shoe wearing. 

Lower limb venous circulation 



H3 - During quiet standing, lower limb venous circulation is higher for the 

unstable shoe condition compared to barefoot standing before and after the unstable 

shoe intervention. 

H4 - During quiet standing, lower limb venous circulation is lower after 8 weeks 

of unstable shoe wearing. 

2. METHODS 

2.1 Subjects 

Thirty healthy female individuals between the age of 20 and 50 years, 

distributed in 2 groups matching in age, weight and height were included. The study 

excluded subjects presenting one or more of the following aspects: (1) recent 

osteoarticular or musculotendinous injury of the lower limb; (2) background and signs 

of neurological dysfunction which could affect lower limb motor performance, sensory 

afferences and balance; (3) history of surgery in lower extremities; (4) pain in lower 

extremities and trunk for the past 12 months; (5) taking medication; (6) balance 

disorders and visual deficits; and (7) individuals who had used unstable footwear 

prior to the study. The same exclusion criteria were adopted for both groups. 

The study included individuals whose professional occupation was mainly 

executed while standing statically. The experimental group included 14 individuals 

(age = 34.6 ± 7.7 years, height = 1.6 ± 0.1 m, weight = 65.3 ± 9.6 kg; mean ± SD) 

and the control group included 16 individuals (age = 34.9 ± 8.0 years, height = 1.6 ± 

0.1 m, weight = 61.1 ± 6.3 kg; mean ± SD). In both groups, the dominant lower limb 

was the right. The study was conducted according to the institution ethical norms and 

conformed to the Declaration of Helsinki, with informed consent obtained from all 

participants. 

2.2 Instrumentation 



The EMG activity of the MG, TA, RF and BF was monitored using the MP 150 

Workstation model from Biopac Systems, Inc. (USA), bipolar steel surface 

electrodes, spaced 20 mm apart, and a ground electrode (Biopac Systems, Inc.). 

EMG signals during quiet standing show excellent repeatability (Lehman, 2002). Skin 

impedance was measured with an Electrode Impedance Checker (Noraxon USA, 

Inc.). 

The cross-sectional area and the venous velocity of the common femoral (CFV) 

and popliteal (PV) veins were determined using an Acuson CV 70 duplex ultrasound 

unit (Siemens Medical Solutions, USA), with a 5-10 MHz linear array probe. 

2.3 Procedures 

2.3.1 Skin preparation and electrode placement 

We have prepared the subjects’ lower limbs to reduce electrical resistance to 

less than 5000 Ω (Basmajian & De Luca, 1985) by (1) shaving the skin surface of the 

muscle belly area; (2) removing dead cells with alcohol; and (3) removing non-

conductor elements between electrode and muscle with abrasive pad (Hermens, 

Freriks et al., 2000). 

Electrodes were placed at the centre of the muscle belly of the MG, TA, RF and 

BF. The reference electrode was placed at the centre of the patella. To avoid 

movement and to ensure homogeneous and constant pressure, the electrodes were 

fixed to the skin with adhesive tape (Hermens, Freriks, et al., 2000). We waited 5 

minutes after electrode placement to begin measurements as evidence suggest that 

there is a reduction of 20 to 30% in impedance values during the first 5 minutes after 

electrode placement (Vredenbregt & Rau, 1973). 

2.3.2 Data collection 



In the experimental group, the EMG and haemodynamic data were collected in 

2 conditions: (1) prior to using the unstable shoe and (2) after wearing it for a period 

of 8 weeks. Subjects in the control group were also assessed at 2 moments 

separated by 8 weeks, but using a conventional shoe between them. In both groups 

and in all assessments the variables evaluated were monitored under 2 conditions: 

(1) upright barefoot standing and (2) upright standing wearing the unstable shoe 

(Figure 1). Trials were randomised to reduce the order effect, which can be caused 

by previous muscle activation or learning. Measurements were performed on the 

dominant limb, which was the right limb. Before data acquisition, all subjects 

underwent an instruction session by a qualified instructor who explained how to use 

the unstable test shoe, followed by approximately 10 minutes of walking, until the 

instructor felt they walked properly and were comfortable using the shoe (Nigg, 

Hintzen, et al., 2006). 

All individuals were asked to remain comfortably standing, with the support 

base aligned at shoulder width, keeping their arms by their sides. To ensure optimum 

test-retest reliability, they were also given a target 2 meters away at eye level on 

which to focus during the 30 seconds of data acquisition. Data acquisition initiated 3 

seconds after the beginning of the testing procedure and was done in a total of 3 

trials. 

EMG signals were acquired at a sample rate of 1000 Hz, then digitised and 

stored on a computer for subsequent analysis by the Acqknowledge software (Biopac 

Systems, Inc. USA). Signals were pre-amplified at the electrode site and then fed into 

a differential amplifier with adjustable gain setting (12-500 Hz; Common Mode 

Rejection Ratio (CMRR): 95 dB at 60 Hz and input impedance of 100 MΩ). The gain 

range used was 1000. A 30 second window of EMG signal was used for analysis, 



and signals were band-pass filtered between 20 and 450 Hz. This window of raw 

EMG activity was processed using the Root Mean Square (RMS) procedure. The 

mean of the RMS was normalised in relation to a maximal isometric contraction, 

performed after a warm-up consisting of 3 submaximal isometric contractions 

(Lehman & McGill, 1999). TA and MG maximal isometric contractions (MIC) were 

measured with the ankle in neutral position. MIC for the BF and RF were measured 

with the knee at 90º. For all muscles manual resistance was applied. 

The cross-sectional area and venous velocity were monitored in the CFV and 

PV. PV measurements were examined directly behind the knee joint and CFV 

measurements were taken approximately 2 cm above the saphenofemoral junction. 

Three separate measurements of venous velocity were obtained and the mean 

values computed. As the peripheral blood flow is affected by respiratory manoeuvres 

(Tortora & Anagnostakos, 1990; Willeput, Rondeaux et al., 1984), subjects were 

asked to maintain a stable respiratory pattern during data acquisition. The 

maintenance of constant temperature conditions was also provided (Henry & Gauer, 

1950). The volume flow rate (Q ) in the blood vessel was calculated by multiplying the 

cross-sectional area of the blood vessel ( A ) by the mean velocity ( v ) of the blood 

within it (Brown, Halliwell et al., 1989): 

Q v A   

Following an initial evaluation, subjects in the experimental group were given a 

pair of the unstable test shoe. They were instructed to wear them as much as 

possible, for at least 8 hours a day, 5 days a week, for 8 weeks, as it has been 

demonstrated that wearing unstable shoes during a period of 8 weeks induces 

improvements on postural control (Ramstrand, Andreson, et al., 2008; Ramstrand, 

Thuesen, et al., 2010). Also, there is evidence that 6 weeks of unstable wearing 



induces training effects (Kalin & Segesser, 2004; Nigg, Hintzen, et al., 2006; 

Romkes, Rudmann, et al., 2006; Vernon, Wheat et al., 2004). Subjects were given a 

guide on how to use the shoes and participants in the control group were asked to 

continue their normal activities and not begin any new exercise regime. The second 

evaluation was performed 8 weeks after the first, using the same protocol. The 

experimental group wore the unstable shoe only during working time (at least 8h per 

day). As all subjects were hairdressers, they were most of the time in upright 

standing. 

2.4 Statistics 

Statistical analysis was processed with Statistic Package Social Science 

(SPSS) from IBM Company (USA). The sample was characterised by descriptive 

statistics. 

Differences in lower extremity venous return and EMG activity between the first 

and second evaluation were analysed using the Paired Samples t-test and the 

Wilcoxon test, respectively, as EMG values did not follow a normal distribution. To 

analyse differences between groups, the Independent Samples t-test was used to 

compare venous return measurements and the equivalent non-parametric test. The 

Mann-Whitney U test was used  to compare EMG measurements. Differences 

between measurements with the unstable test shoe and barefoot were analysed 

using the Wilcoxon test for the EMG measurements, as these values did not follow a 

normal distribution, and the equivalent parametric test, the Paired Samples t-test, for 

the venous flow. A 0.01 significance level was used for inferential analysis. 

3. RESULTS 

3.1 Influence of unstable footwear on muscle activity 



Comparing the mean of EMG activity of each muscle between the experimental 

and control groups, it can be stated that there were no significant differences in TA, 

MG, BF and RF muscles in the first and the second evaluation (Figure 2). There were 

no significant differences in muscle activity level in the experimental group, before 

and after 8 weeks of wearing the unstable shoe, and in the control group, before and 

after 8 weeks of conventional shoe wearing (Figure 2). 

In the first measurement, both groups presented significantly higher MG activity 

while wearing the unstable shoe when compared to barefoot (experimental group: 

p=0.006; control group: p=0.009), with no significant differences for the other 

muscles studied (Figures 2). In the second measurement, the experimental group 

showed no statistically significant differences in MG, TA, BF and RF activity between 

the 2 evaluated conditions (Figure 2). In the control group, both before and after the 

8-week period, MG activity was higher when using the unstable shoe (p=0.007), 

while all other muscles studied showed no significant differences (Figure 2). 

3.2 Influence of unstable footwear on venous return 

Comparing the mean of flow rate at CFV and PV between the experimental and 

control groups, it can be stated that there were no significant differences between the 

control group and the experimental group for both the first and second evaluations 

(Figure 3). 

A comparison between measurements taken with and without the unstable shoe 

shows a higher level of venous return with the unstable shoe in both groups during 

the first and second evaluation in PV (experimental group: p=0.006 and p=0.002, 

respectively; control group: p=0.004 and p=0.001, respectively) and CFV 

(experimental group: p=0.002 (for both situations); control group: p=0.001 (for both 

situations)) (Figure 3). As to the influence of 8 weeks of unstable shoe wearing, there 



were no differences between the first and second evaluation, both with and without 

the unstable shoe (Figure 3). The same was verified in subjects that wore 

conventional footwear (Figure 3). 

4. DISCUSSION 

In upright standing small postural adjustments occur, mainly at the ankle (one of 

several possible balancing strategies), and these adjustments are accompanied by 

small fluctuations in the activity and muscle length of plantar flexors (Loram, 

Maganaris et al., 2005), resulting in centre of mass (CoM) displacements (Gatev, 

Thomas et al., 1999). The results of this study show that using an unstable shoe 

(versus barefoot) leads to increased MG activity. In the study of Romkes, Rudmann 

et al. (2006) it has been demonstrated that using an unstable shoe changes 

movement patterns during gait, especially at the ankle, and increases muscle activity 

as well. It has also been shown that accommodations to a rockered sole during 

running occur only at the ankle (Boyer & Andriacchi, 2009). It seems that wearing an 

unstable shoe leads to changes in the ankle control pattern in a variety of activities. 

According to Ivanenko, Levik et al. (1997), when standing on a rocking support 

(seesaw), the CoM deviation is accompanied by changes in ankle movement pattern 

and plantar pressure distribution, which are compensated by gastrocnemius muscle 

activation as in this condition, instead of moving the CoM, subjects shift the point of 

contact of the rocking platform with the ground under the CoM. Nigg, Hintzen et al. 

(2006) reported an increase only for the TA during standing with the unstable shoe, 

when compared to the conventional shoe. Based on its construction, the unstable 

shoe used in this study forced the user to land more towards the midfoot. There is 

evidence that standing in unstable footwear leads to increased plantar flexion at the 



ankle joint, which corroborates the increased MG activity observed in this study (New 

& Pearce, 2007). 

The experimental group results show that after 8 weeks of unstable shoe 

wearing, the MG activity with the unstable test shoe was not significantly different 

from the values obtained in the barefoot measurement, as verified before training. 

The design of unstable footwear used in the present study (MBT) is based on 

observations of the Masai tribe, who are not accustomed to wearing shoes. This 

design recreates natural uneven walking surfaces to reduce problems caused by 

today’s rigid soled shoes and hard ground. The adaptation of the human biological 

system for movement control (Ferrel, Leifflen et al., 2000) includes changes in the 

response of neural receptors (Theunissen, Kroeze et al., 2000) and changes in the 

function of central and autonomous nervous systems (LeBlanc, Dulac et al., 1975; 

Pia, 1985). Exercises repeated daily or weekly can improve postural control (Hu & 

Woollacott, 1994) and generate structural and functional adaptations in the 

neuromuscular system (Hakkinen, Kallinen et al., 1996). Our results as to the MG 

corroborate the idea that wearing an unstable shoe leads to neuromuscular system 

functional adaptations. Results obtained in the control group reinforce that 

differences between conditions in the first and second evaluations in the 

experimental group resulted from wearing the unstable shoe for 8 weeks. According 

to Ramstrand, Thuesen et al. (2010), reactive balance can be improved by prolonged 

and regular use of shoes incorporating an unstable sole construction. Standing with 

unstable shoes effectively activates extrinsic foot muscles and can have implications 

for strengthening and conditioning these muscles, as postural sway while standing 

with unstable shoes also decreases over a 6-week accommodation period (Landry, 

Nigg et al., 2010). Although the triceps surae is involved in plantar flexor activity, the 



gastrocnemius muscle seems to play a central role in the phasic control of balance 

(Borg, Finell et al., 2007). Results obtained by Gatev, Thomas, et al., (1999) showed 

that there is a significant statistical correlation between gastrocnemius activity and 

the position of spontaneous body sway, which was measured as the CoM position. 

This supports the notion that active torque is provided by gastrocnemius muscle 

contractions in response to body sway. 

As to venous return, the results of this study show an increase in both PV and 

CFV measurements made while wearing the unstable shoe. This increase was 

observed in both groups and for both veins. Dynamic exercise causes higher and 

less heterogeneous blood flow than intermittent isometric exercise at the same 

exercise intensity (Laaksonen, Kalliokoski et al., 2002). During exercise the 

contraction rhythm of peripheral skeletal muscles results in the compression of 

intramuscular veins, granting the venous blood a considerable amount of kinetic 

energy that facilitates its return to the heart (Stewart, Medow, et al., 2004). The 

results of this study show that wearing an unstable shoe led to increased MG activity, 

which can lead us to think that venous return variations were more associated to MG 

EMG activation. Instantaneous changes in surface EMG amplitude may provide a 

good estimate of intramuscular pressure changes during the rising part of isometric, 

but also of concentric, voluntary contractions (Maton, Thiney et al., 2006). During 

contraction, the gastrocnemius and soleus muscles drive blood into large capacity 

PV and CFV. Although thigh veins are surrounded by muscle, the contribution of 

thigh muscle contraction to venous return is minimal when compared to the calf 

muscle pump (Ludbrook, 1966). 

During quiet standing, measurement of low intrinsic ankle stiffness (Loram & 

Lakie, 2002a), analysis of ballistic character of sways (Loram & Lakie, 2002b) and 



investigations of balance in an analogous task using a weak spring (Lakie, Caplan et 

al., 2003) provide increasing evidence that intermittent ballistic-like adjustments in 

muscle length (Loram & Lakie, 2002b) may be responsible for the apparently random 

sway pattern that is seen in quiet standing. As reported by Nigg, Hintzen et al. 

(2006), visual control of EMG signals (without signal processing and statistical 

analysis) showed more variation in measurements with the unstable shoe. Taking 

this into account, together with the fact that dynamic muscle contractions are 

advantageous to venous circulation, it would be interesting to investigate how the use 

of an unstable shoe affects muscle activity and muscle length time variation. 

It is important to note that, although MG activity with the unstable shoe did not 

differ from barefoot measurements after 8 weeks of training in the experimental 

group, venous return did not decrease when compared to measurements made 

before the training period (Figure 3). Moreover, measurements made with the 

unstable test shoe after training revealed significantly higher venous return than 

barefoot measurements. According to Ivanenko, Levik et al. (1997), during 

overground standing the triceps surae muscles generally work in an eccentric mode 

of contraction, and on the seesaw in a concentric one. Unstable shoe sole 

configuration is similar to the seesaw used in (Ivanenko, Levik et al., 1997), and 

therefore it can be assumed that it also favours concentric activity. These findings 

may explain why, despite MG neuromuscular adaptation, the venous flow remained 

higher while wearing the unstable test shoe, as most of the venous return occurs 

during the concentric phase of contraction (Hogan, Grasse et al., 2003). RMS 

analysis shows that EMG activity may be related to increased venous flow. 

Nevertheless, future studies focusing a temporal analysis, could help understanding 



the influence of wearing unstable shoes in time variation of muscle parameters and 

its impact on venous flow to confirm our results. 

It has been demonstrated that balance training improves postural control 

performance both in healthy subjects (Heitkamp, Horstmann et al., 2001) and in 

injured individuals (Mattacola & Lloyd, 1997). Taking into account that patients with 

venous disease show weak calf muscle strength (Yang, Vandongen et al., 1999), it 

would be important, in future studies, to analyse the influence of using an unstable 

shoe on calf muscle activity and venous flow in patients with venous disease. 

5. CONCLUSIONS 

The findings of this study show that wearing an unstable shoe leads to a short-

term increase in MG activity. However, after 8 weeks of unstable shoe wearing the 

activity of this muscle with unstable shoe was more close to the one obtained in the 

barefoot condition. As to venous return, results show that wearing an unstable shoe 

leads to increased venous return in PV and CFV and that this increase was 

maintained after 8 weeks of using the unstable shoe. 

In summary, using an unstable shoe produced changes in EMG characteristics 

during upright standing which are advantageous for venous circulation even after 

training adaptation by the neuromuscular system. 
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FIGURE CAPTIONS 

 

Figure 1: Unstable shoe model used in this study: The MBT shoe has a rounded 

sole in the antero-posterior direction, thus providing an unstable base. 

 

Figure 2: Representation of values for mean (bars) and standard deviation 

(error bars) of MG, TA, RF and BF muscles activity (% MIC) during standing with and 

without the unstable shoe before and after 8 weeks of unstable shoe wearing (USW) 

by the experimental group (a) and the same period of conventional shoe wearing 

(CSW) by the control group (b). The Wilcoxon test was used to compare EMG activity 

obtained with and without the unstable shoe, the values obtained before and after the 

8-week period, and the values obtained by the experimental group and the control 

group. 

 

Figure 3: Representation of mean and standard deviation values of venous 

velocity at the common femoral (CFV) and popliteal (PV) veins during standing with 

and without the unstable shoe before and after 8 weeks of unstable shoe wearing 

(USW) by the experimental group and 8 weeks of conventional shoe wearing (CSW) 

by the control group. The paired samples T-test was used to compare venous 

circulation obtained with and without the unstable shoe, before and after the 8-week 

period and between the experimental group and the control group. 
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