Strategy Board™

Anastássios Perdicoúlis
Professor Auxiliar, ECT, UTAD (http://www.tasso.utad.pt)
Senior Researcher, CITTA, FEUP (http://www.fe.up.pt/~tasso)
Visiting Researcher, Oxford Institute for Sustainable Development, OBU, UK

Abstract
The workshop adds concerns and commitments to the mental model of the system of interest (RBP) from distinct points of view (stakeholders), and thus facilitates the conception of strategy and creation of action proposals (DCD) in a negotiated manner.

1 Professional value

Situation Maps™ are the working grounds (‘strategy boards’) for making strategy with solid understanding and extended participation of stakeholders. Situation Maps™ are based on reverse blueprints (RBP) and prepare for the formulation of the plan in descriptive causal diagrams (DCD). Interests and positions can be marked in alternative reference conventions (e.g. SWOT), eventually leading up to the complete problem notation (‘XYZ’) of Systems Planning™.

Graphic SWOT™ is a Systems Planning™ interface to the ubiquitous SWOT analysis. The classic ‘point-thinking’ technique fails to provide insight into the causes as well as the references of its assessments, which makes its statements un-justified, non-verifiable, potentially incongruent, and thus practically useless for strategy-making. Graphic SWOT™ employs causal diagrams (RBP and DCD) together with procedural diagrams (e.g. CPD) to add the missing reasoning to strategy-making through explicit pathways and annotations.

2 Workflow

START → conception → diagramming → diagramming → (END)
 case study → problem v. 1 (‘XYZ’) → strategy board (RBP) → problem v. 2 (DCD)

Revision

Figure 1 The work to be carried out over four (4) hours; a number of ‘loop’ iterations may be necessary to achieve a satisfactory DCD.
3 Programme

Introduction (1h)

- Exploring the situation — RBP[T] (Figure 2)
- Strategy Board™ — RBP[T] (Figure 2) with annotations
- Graphic SWOT™ — annotated RBP[T] and CPD[T] (Figures 3 and 4)
- The planning problem — XPD[M] (Figure 5)

Work Session (4h)

- Work in groups (2–4 people)
- Interactive assistance

Presentation, Discussion, and Conclusion (1h)

- Shared experiences
- Applicability issues

4 Technical notes

Methods a

- Explicative causal thinking — ECT[M] (Figure 2)
- ‘XYZ’ problem definition — XPD[M] (Figure 5)

Techniques b

- Text mark-up — TMU[T]
- Reverse blueprints — RBP[T]
- Descriptive causal diagrams — DCD[T]
- Concise process diagrams — CPD[T]

Audience

- Strategists: city, state, enterprise (e.g. administrators, executives), civil society
- Consultants: strategy-/ policy-making
- Researchers: strategy-making/ -assessment; idem for policy

Competences c

- Conceive, discuss, and verify action, including constraints and opportunities
- Develop sensitivity and appreciation for causal relationships
- Think clearly how intended outcomes should arise from the proposed action
- Register and communicate this efficiently
- Elaborate solid causal arguments and verify them efficiently
- Think of acceptable causal explanations to be found in the strategy document
- Identify information in the strategy document, essential for the causal explanations

a v. Perdicoulis, 2014b
b v. Perdicoulis, 2014a
c Required to some extent; to be reinforced in the workshop
5 Protocols

![Diagram](image)

Figure 2 General information flow of ECT — configuration for new plans

![Diagram](image)

Figure 3 Generic reverse blueprint (RBP) as a Situation Map™ with Graphic SWOT™ mark-up — understanding dynamics

![Diagram](image)

Figure 4 Generic concise process diagram (CPD) with Graphic SWOT™ mark-up — exploring procedural pathways
6 Materials and preparation

Case-study/ Work material Participants should bring their own material (e.g. situations, ‘problems’) in (human) memory or documentation (e.g. digital or printed media).

Software Systems Planning diagramming can be carried out manually, with pencil and paper. Optionally, participants are welcome to use their own diagramming software, such as Graphviz\(^1\), LibreOffice Draw, OmniGraffle\(^2\), or Visio.

References and further reading

\(^1\) v. starter file (Perdicoúlis, 2011b)

\(^2\) v. stencils (Perdicoúlis, 2011c,d,e)

