Graphical Narrative™

Anastássios Perdicoúlis
Professor Auxiliar, ECT, UTAD (http://www.tasso.utad.pt)
Senior Researcher, CITTA, FEUP (http://www.fe.up.pt/~tasso)
Visiting Researcher, Oxford Institute for Sustainable Development, OBU, UK

Abstract
Graphical Narrative™ turns stories or accounts into appropriate diagrams — e.g. situations (RBP); courses of action (CPD); plots (DCD) — and thus facilitates the understanding of dynamic structure, function, causality; *inter alia*, which provides a richer experience with the narrative.

1 Professional value

Stories — from mythology to literature, to news features — narrate action: they contain actors and passive elements, and often communicate ‘states’ of interest, such as to ‘what happened in the end’. Writing or telling a story is an *art* but, curiously, involves much ‘hidden’ structure about systems, processes, and intents — often expressed in the form of plans. For an effective communication, at least in a technical context, all this must be made visible and shared widely.

Overt Storytelling™ — the art of expository modelling — seeks understanding of structure and function in narratives (e.g. regarding relations and causality), and the resulting Storytelling Maps™ (e.g. RBP, CPD, DCD) turn stories or accounts — commonly of descriptive nature — into appropriate and complementary structured diagrams: *situations* (‘element–relationship’), *processes* (‘action–state’), and *plans* (‘concern–intent–action–outcome’).

2 Workflow

![Workflow diagram](image)

Figure 1 The work to be carried out over four (4) hours; a number of ‘loop’ iterations may be necessary to achieve a satisfactory model (RBP, CPD, DCD)
3 Programme

INTRODUCTION (1H)
- The objects of interest: situations, processes, plans (Figure 2)
- Exploring the narrative; initial model (RBP, CPD, DCD)
- Study, simulation/check, iterations

WORK SESSION (4H)
- Work in groups (2–4 people)
- Interactive assistance

PRESENTATION, DISCUSSION, AND CONCLUSION (1H)
- Shared experiences
- Applicability issues

4 Technical notes

METHODS
- Qualitative simulation — QSM$_M$ (Figure 5)

TECHNIQUES
- Text mark-up — TMU$_T$ (Figure 2)
- Reverse blueprints — RBP$_T$ (Figure 2)
- Concise process diagrams — CPD$_T$ (Figure 3)
- Descriptive causal diagrams — DCD$_T$ (Figure 4)

AUDIENCE
- Journalists
- Novelists
- Essayists
- Teachers

COMPETENCES
- Identify and get to know elements of interest (e.g. ‘indicators’)
- Identify and get to know causal relationships between elements
- Distinguish between causal and computational relationships (e.g. in ‘indices’)
- Think clearly and explain how some elements may affect others
- Register and communicate this efficiently
- Identify information in existing documents regarding causal explanations
- Identify where action takes place in the system
- Think of the limits or boundaries of the system (e.g. ‘closed’ or ‘open’ type)
- Start thinking of ‘special’ elements (e.g. as points of concern or intervention)
- Think how to structure a problem (e.g. ‘XYZ’ format)
- Identify the tasks and stages of a process (e.g. along a timeline)

a v. Perdicoúlis, 2014b
b v. Perdicoúlis, 2014a
c Required to some extent; to be reinforced in the workshop
5 Protocols

Figure 2 Generic Reverse Blueprint (RBP) representing a *balancing* feedback loop

Figure 3 Generic Concise Process Diagram (CPD)

Figure 4 Generic Descriptive Causal Diagram (DCD); feedback and assessment in gold

Figure 5 Qualitative simulation on an RBP: starting at element C will only stop at element E, but also involves a reinforcing feedback loop (marked in Gold)
6 Materials and preparation

Case-study/Work material Participants should bring their own material (e.g. stories, accounts) in (human) memory or documentation (e.g. digital or printed media).

Software Systems PlanningTM diagramming can be carried out manually, with pencil and paper. Optionally, participants are welcome to use their own diagramming software, such as Graphviz1, LibreOffice Draw, OmniGraffle2, or Visio.

References and further reading

\begin{footnotesize}
1 v. starter file (Perdicoulis, 2011b)
2 v. stencils (Perdicoulis, 2011c,d,e)
\end{footnotesize}