
Web Applications

Databases and Web Applications Laboratory (LBAW)

Bachelor in Informatics Engineering and Computation (L.EIC)

Sérgio Nunes

Dept. Informatics Engineering

FEUP · U.Porto

Current Status

➔ Plan: https://web.fe.up.pt/~ssn/wiki/teach/lbaw

➔ 6th week of classes;

➔ Lecture: start architecture specification plus prototype development (EAP);

➔ Labs: finish database specification (EBD = A4 + A5 + A6).

➔ Next week: EBD delivery.

➔ Monitor sessions: Wednesday, at 15h, online

➔ Previous sessions (recordings available): Git and GitFlow; PostgreSQL setup and use;

➔ This week: triggers, indexes, database population (A6).

2

https://web.fe.up.pt/~ssn/wiki/teach/lbaw

Outline for Today

➔ LBAW Survey Results

➔ Web Applications

➔ History

➔ Technologies

➔ Architectures

➔ Architecture Specification and Prototype (EAP) component

➔ A7: Web Resources Specification
3

1. Requirements & UI

A1: Project Presentation
A2: Actors and User Stories
A3: Information Architecture

2. Database Specification

A4: Conceptual Data Model
A5: Relational Schema
A6: Indexes and Triggers

3. Web Architecture & Prototype

A7: Web Resources Specification
A8: Vertical Prototype

4. Product and Presentation

A9: Product
A10: Presentation and Discussion

LBAW Artifacts

4

Introduction

Who is who?

24

Who is who?

25

Web Applications

• What are Web Applications?

• A Web Application, or web app, is a software system, based on web standards and
technologies, that is accessible through a web browser.

• Web applications changed significantly over time due to technological advancements,
namely asynchronous interactions (AJAX), JavaScript developments, the new HTML5
standards, and the broad adoption of mobile devices.

• Examples: GMail, Google Search, Facebook, SIGARRA.

• Why web applications? Advantages and disadvantages?

26

Pros of Web Apps

• Platform independence.

• Easier updates & bug fixes.

• Only one version of the application.

• Access from anywhere.

• Reduced "piracy".

• No installation hurdles.

• Developers can measure user interaction in real-time.

27

Cons of Web Apps

• Depends on network connectivity.

• Less sophisticated UIs.

• Limited hardware access.

• Reduced OS integration (e.g. drag&drop).

• Need to address browser versions.

• Harder to debug.

• Higher security risks.

• Infrastructure costs.

28

The Internet

Internet Origins

• Started as a project of the USA Department of Defense (DoD) Advanced Research
Projects Agency (ARPA) in 1958.

• Developed the idea of “networked computers” which led to the creation of the
ARPANET in 1967. The core challenge was how to connect separate physical
networks without requiring permanent links between them.

• Other networks appeared worldwide during the same period.
E.g. JANET, X.25, USENET, CompuServe.

31

32

Packet-Switching

• In the late 1960s, computers were expensive and rare. Communication networks were used to
make these resources available to wider audiences.

• One of the first challenges faced was how to connect separate physical networks without
dedicated links.

• Implementing point-to-point connections does not scale. The only option was to share the
available links to optimize resource usage.

• Packet switching is a method where data is divided in small chunks and sent out separately.

• With packet switching it is possible to have multiple connections over the same link, i.e. share
the communication medium.

33

Continuous transmission

x

x

Packet-based transmission
34

Internetworking

• The proliferation of different networking technologies and protocols became a problem
when trying to connect different networks.

• No network technology is ideal for all scenarios (e.g. Ethernet, Wireless, DSL), thus
different technologies will always co-exist. Each network technology was becoming an
island, isolated from all others.

• To overcome this problem, and achieve a homogeneous service across heterogeneous
networks, both hardware and software were combined.

• Hardware: routers.

• Software: protocols, specifically TCP/IP.

35

Hardware — Routers

• The router is the core hardware equipment used to connect networks using different
physical technologies. There is a vast number of router types.

• An internet (note the lowercase) is a set of networks connected by routers.

36

Software — Protocols

• To connect different networks we need communication protocols.

• These protocols establish message formats and message exchanging rules.

• The most important protocols for connecting different networks are called the Internet
Protocols or TCP/IP Protocols.

• These protocols were developed in the 1970s and approved as standards in the
1980s.

37

net 2

net 4

net 5

net 3

net 1

net 2

net 4

net 5

net 3

net 1

router

physical net

user’s
computers

(a)

(b)

An internet is a virtual network
because in reality it is built by

combining many physical
networks.

An internet is a network of
networks, not a network of

computers.

38

39

Internet Protocols

IP

RSVPOSPFIGMPICMP

TELNETSMTPHTTPFTPBGP SNMP

TCP UDP

BGP = Border Gateway Protocol

FTP = File Transfer Protocol

HTTP = HyperText Transfer Protocol

ICMP = Internet Control Message Protocol

IGMP = Internet Group Management Protocol

IP = Internet Protocol

OSPF = Open Shortest Path First

RSVP = Resource ReSerVation Protocol

SMTP = Simple Mail Transfer Protocol

SNMP = Simple Network Management Protocol

TCP = Transmission Control Protocol

UDP = User Datagram Protocol

40

Internet Protocol (IP)

• The main function of the Internet Protocol is to offer a virtual network, hiding the
underlying physical networks.

• It offers two fundamental services:

• Addressing system (IP addresses).

• Datagram structure (packets).

41

Transmission Control Protocol (TCP)

• The Transmission Control Protocol offers a reliable and ordered delivery of packets
between applications in different computers.

• Handles problems not addressed in the lower layers: packet duplication and loss,
packer ordering, communication delays, among others.

• Supports important applications such as the WWW, e-mail, FTP, etc.

42

Internet Services

• DNS — Maps IP addresses to symbolic names.

• SMTP — Handles electronic messages (e-mail).

• SFTP — Offers a mechanism for secure file transfers between computers.

• WWW (HTTP) — A hypertext-based distributed information system.

• …

43

Domain Name System (DNS)

• The Domain Name System is an application layer service of the Internet.

• Translates human-readable symbolic names to numeric addresses (IP).

• Symbolic names are organized hierarchically.
The right-most element is the top-level domain (TLD).

• There are different groups of TLDs, namely country TLDs and generic TLDs.

• Country TLDs (ccTLD): .pt, .es, .uk, .usa, .fr, .it, .ao, .fi, .io, .tv ...

• Generic TLDs (gTLD): .com, .net, .org, .name, .biz ...

44

Generic TLDs

• Generic top-level domains (TLDs) are maintained by the Internet Assigned Numbers Authority
(IANA), a department of the Internet Corporation for Assigned Names and Numbers (ICANN), a
nonprofit private USA organization.

• Initial list of general purpose domains (1984): com, edu, gov, mil, org and net.

• Recent gTLDs: .biz, .info, .jobs, .mobi, .name, .guru, .today, .xyz …
https://www.gandi.net/en/tlds

• In 2012, ICANN decided to open the creation of new gTLDs through a process where organizations
can propose new strings.
There is some debate around this expansion.

• There are currently more than 1,500 TLDs.

45

https://www.gandi.net/en/tlds

.pt Domain

• .pt is the country code top-level domain (ccTLD) for Portugal.

• The .pt ccTLD is currently managed by Associação DNS.PT, which replaced the
Fundação para a Computação Científica Nacional (FCCN) as the domain name
registry in Portugal.

• FCCN kept very strict rules during the first years. Multiple adjustments have been
made during the years. FCCN also tried to promote the .com.pt subdomain as a
more flexible solution.

• In March 2019 there were approximately 350,000 active .pt domain names. More
than a one million registered. https://www.dns.pt/estatisticas

46

https://www.dns.pt/estatisticas

WHOIS Protocol

• WHOIS is a query/response protocol used to query databases that contain
information about internet resources, such as domain names or IP addresses.

• The protocol presents the information in a human-readable format.

• It is the de facto standard for querying domain name information.

47

https://www.dns.pt/pt/ferramentas/whois/detalhes/?site=up&tld=.pt
48

https://www.dns.pt/pt/ferramentas/whois/detalhes/?site=up&tld=.pt

https://reports.internic.net/cgi/whois?whois_nic=facebook.com&type=domain
49

https://reports.internic.net/cgi/whois?whois_nic=facebook.com&type=domain

The RIPE database contains registration details of IP addresses. 50

Domain Name Registrars

• Domains are reserved and managed by accredited organizations according to the
rules of each specific TLD.

• Domain names are rented for a limited period (e.g. 1 year).
At the end of the registration period, the owner can decide to renew it or not.

• Different TLDs have different registration prices, some examples:
.com, .net, .org (~8€/year), .pt (~15€/year), .io (~90€/year), .biz (~15€/year).

51

52

53

The World Wide Web

WWW Origins

• The World Wide Web was invented in 1989 at the European Council for Nuclear Research (CERN),
Europe.

• It was a joint work by Tim Berners-Lee and Robert Cailliau to share and link information of various
kinds, where the user could browse at will.

• Basically, a distributed information system over the Internet, designed to facilitate content sharing
across different computer systems and technologies.

• Initial proposal “WorldWideWeb”, or simply WWW or W3.

• “Information Management: A Proposal”, May 1989 http://www.w3.org/History/1989/proposal.html

• 30 years in 2019. See: https://web30.web.cern.ch

55

http://www.w3.org/History/1989/proposal.html
https://web30.web.cern.ch

The original proposal: “Vague but exciting…”
56

Initial Success

• The WorldWideWeb source code was released into the public domain in 1993. The software
that was open-sourced included a simple client, a server, and a common library. The
protocols were also released royalty-free.

• The royalty-free license was a key factor in the initial success of the WWW when compared
to similar alternatives, e.g. WAIS, Gopher, ARCHIE.

• The NCSA released Mosaic, a software program that was a combined WWW browser and
Gopher client.

• Mosaic’s popularity was determinant to the growth of the World Wide Web. Mosaic
introduced significant innovations at the graphical interface level, namely the integration of
text and images in a single page.

57

April 1993, CERN puts the WWW in the public domain
58

WWW Architecture

• The Web’s architecture follows a standard client-server model, where servers provide a function and
clients initiate requests for those services.

• Servers are machines that are running server applications waiting for requests from clients. Each server
can simultaneously serve multiple clients.

• Clients are typically web browsers that initiate the communication session with servers. Interactions are
simple, one request results in one response.

Internet

59

Client Server Interaction

User
1 User enters URL

9 Browser processes the resource
and (1) requests more resources or
(2) presents the complete page to
the user.

Browser
2 Browser starts

process
DNS
3 DNS server

resolves URL

4 Browser connects to server
Web Server
5 Web server

starts connection
6 Send request for resource

7 Prepare and
send resource

8 Closes connection

60

Requesting a Web Page

• Web pages combine text, images, and other resources.

• Web browsers issue multiple requests when preparing a
single web page, one request for each individual
resource (e.g. HTML document, CSS files, images,
JavaScript files, etc).

Base documents requested. Images requested. CSS files requested.
61

Web Clients

• World Wide Web client applications, commonly known as web browsers, are software
applications capable of retrieving, presenting and transversing information resources
available on the World Wide Web.

• Web browsers communicate with web servers using the HTTP protocol.

• Web browsers are increasingly sophisticated.

• The first web browser was called WorldWideWeb and was bundled with the releases of
the WorldWideWeb system.

• Mosaic, developed at NCSA, was the first popular browser. It was the first to integrate text
and images in a single page.

62

WorldWideWeb (later Nexus) Browser

WorldWideWeb (1990), developed by Tim Berners-Lee, was the first web browser.
63

Mosaic

Mosaic was the first mainstream web browser (1993).
64

Mosaic

• Marc Andreessen and Jim Clark left NCSA to start Netscape Communications in
1994. Later that year, Netscape version 1 was released.

• NCSA licensed Mosaic technology to Microsoft to form the basis of Internet Explorer.
Version 1 was released in 1995.

• The “Browser Wars” started for the dominance of the web browser market.

• Internet Explorer had a major advantage — it was bundled with every copy of
Windows. This latter led to the USA vs. Microsoft case on monopoly abuse.

65

Source: Wikipedia - “Browser Wars”
66

Source: Wikipedia - “Usage share of web browsers”
67

Browser's High Level Structure

How Browsers Work: Behind the scenes of modern web browsers (2011)

http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/

•User Interface - browser controls

•Browser engine - mapping

•Rendering engine - HTML & CSS

•Networking - network calls

•JS Interpreter - execute javascript

•UI Backend - drawing widgets

•Data Persistence - saves data

68

http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/

Notable Layout Engines
• Trident — Developed by Microsoft for use in Internet Explorer.

• Gecko — Developed by the Mozilla Foundation, used in Firefox, Camino.

• WebKit — A fork of KHTML developed by Apple, used in Safari.

• Blink — A fork of WebKit developed by Google, used in Chrome, Opera and Edge.

• Presto — Developed by Opera Software, used in Opera (until 2013).

• EdgeHTML — New Microsoft rendering engine launched in 2015. RIP December, 2018.

“Comparison of Layout Engines”, Wikipedia
https://en.wikipedia.org/wiki/Comparison_of_layout_engines

“Timeline of web browsers”, Wikipedia
https://en.wikipedia.org/wiki/Timeline_of_web_browsers

69

https://en.wikipedia.org/wiki/Comparison_of_layout_engines
https://en.wikipedia.org/wiki/Timeline_of_web_browsers

• A web server is a program whose primary function is to deliver resources on clients’ requests.
Only acts when requests arrive.

• Web servers handle multiple web clients simultaneously.
Servers and clients communicate using the HTTP protocol.

• The most common web servers are the Apache HTTP Server and Microsoft’s Internet
Information Server (IIS). Lightweight alternatives: nginx, lighttpd.

• Typically, different web servers coexist in a production environment.

Web Servers

Client Server
1. HTTP request: “Give me resource X”

2. HTTP response: “Here is resource X …"

70

Source: Netcraft

71

Source: Netcraft

72

WWW's Core Technologies

• The Web is supported by three core technologies:

• URL: Uniform Resource Locator 
Used to identify the resources available on the web.

• HTTP: HyperText Transfer Protocol 
Used to specify how clients communicate with servers.

• HTML: HyperText Markup Language 
Used to represent and interlink documents on the web.

73

URL: Uniform Resource Locator

• A URL establishes a unique address for a World Wide Web resource, e.g. pages, images,
etc. URLs are used to locate web resources.

• Syntax (simplified): protocol://machine:port/directory/file.type

• Protocol, e.g. http://, ftp://, file://

• Machine, e.g. www.up.pt or 193.137.55.13

• Port, e.g. 80 (the default), 1000, 20

• Resource path, the directory path to the file

• Example: http://www.up.pt:80/sobre/index.html
74

http://www.up.pt/sobre/index.html

HTTP: HyperText Transfer Protocol

• The HTTP protocol defines how web client communicate with web servers to access
web resources.

• HTTP was developed as a joint work of IETF and W3C.

• It is a request-response protocol, i.e. client issues a request and waits for the server
to respond. Timeouts can occur if servers take too long.

• HTTP is a stateless protocol, i.e. each request is treated as an independent
transaction. This results in a simpler design, but requires additional information to be
send in each request.

75

HTTP: Request Methods

• HTTP supports several request commands, called HTTP methods. A total of nine
methods are defined in the HTTP standard. GET and POST are the most commonly
used by web browsers.

• GET — Requests the resource from the server. Idempotent operation.

• HEAD — Requests only the headers (without the content).

• POST — Submits data to be processed to the identified resource.

• PUT — Uploads data into the specified resource.

• DELETE — Deletes the specified resource.

76

HTTP: Status Codes

• All HTTP responses include a numeric status code, indicating if the request succeeded
or if other actions are required. Codes are organized in five classes of responses.

• 1xx — Informational

• 2xx — Success (e.g. 200 OK, 201 Created)

• 3xx — Redirection (e.g. 301 Moved Permanently)

• 4xx — Client Error (e.g. 404 Not Found, 403 Forbidden)

• 5xx — Server Error (e.g. 500 Internal Server Error)

77

HTTP is Stateless

• Web servers do not keep any information about clients.
Each request is isolated from all others.

• State must be maintained by web applications.

• How can we implement a stateful user experience over a stateless protocol (e.g. shopping
cart, authenticated access)? Two options:

• Cookies — client-side pieces of data generated by the server and attached to each
HTTP request.

• Sessions — server-side files with unique identifiers (session IDs), these
can be passed in URLs or Cookies.

78

HyperText Markup Language — HTML

• The HyperText Markup Language (HTML) is used to define the content and structure
of hypertext documents.

• First standard was published in 1995 — HTML 2.0.

• HTML 4.01 was published in 1999.

• XHTML was a reformulation of HTML as XML. W3C tried to “force” authors to write
well-formed code. Later abandoned due to low adoption by web developers.

• HTML5 is the latest major revision to HTML.

79

W3C

• The World Wide Web Consortium was founded in 1994 by Tim Berners-Lee to
standardize the protocols and technologies used to build the web.

• The W3C is an international standards organization, composed by member organizations
and full time staff, that develops technical specifications and guidelines for the web.

• Mission: “Led the Web to its full potential”.

• W3C Process: (1) members propose new technologies or ideas; (2) working groups are
formed; (3) recommendations are developed and approved by consensus.

• The W3C does not enforce their recommendations.

80

W3C Standards

W3C standards are many and in different areas, from technical specifications to guidelines.

W3C technology stack (circa 2004).

http://www.w3.org/Consortium/techstack-desc.html 81

http://www.w3.org/Consortium/techstack-desc.html

W3C Process

• People generate interest in a particular topic (e.g., web services). For instance, Members
express interest in the form of Member Submissions, and the Team monitors work inside and
outside of W3C for signs of interest.

• When there is enough interest in a topic, the Director announces the development of a proposal
for a new Activity or Working Group charter, depending on the breadth of the topic of interest.

• There are three types of Working Group participants: Member representatives, Invited Experts,
and Team representatives. Team representatives both contribute to the technical work and help
ensure the group's proper integration with the rest of W3C.

• Working Groups generally create specifications and guidelines that undergo cycles of revision
and review as they advance to W3C Recommendation status.

Introduction to the W3C Process (2005)

https://www.w3.org/2005/10/Process-20051014/intro 82

https://www.w3.org/2005/10/Process-20051014/intro

Web Applications

Static Web Pages (early 1990s)

• In the early days of the web, most pages were static files served directly from the
filesystem. Pages are constructed at design time.

• Developing web pages involved few technologies, mostly just HTML. Learning by
example, using the “view source” option, was an important method for knowledge
dissemination.

Client
Server

HTML files stored on
the server's filesystem.

Request URL

Send file

84

Dynamic Web Pages (mid 1990s)

• Dynamic web pages emerged in the mid 1990s. Instead of serving static files from
the filesystem, software applications produce web pages when requested.
Pages are constructed at run time, when “called” by the browser.

• The Common Gateway Interface (CGI) is a specification that defines how web
requests and responses interact with an application program.

• There are several alternatives: Apache modules, IIS plug-ins, FastCGI, WSGI.

ClientServer
Program

Server executes
program and delivers
output to client.

Request URL

Program
output in HTML

85

Dynamic Web Sites (1990s …)

• Sites emerged as a collection of multiple and coherent web pages. Instead of treating
each page independently, multiple web pages were handled by shared functions and
libraries.

• Provide a stateful experience to the user (e.g. shopping cart).

• Typically a common data layer was implemented across pages.

• Libraries and frameworks to address repetitive and common tasks.

• Richer user interfaces (e.g. JavaScript).

86

Web Applications (mid 2000s …)

• Strong developments in client-side technologies and methodologies led to richer and
interactive user interfaces.

• AJAX enabled the creation of asynchronous web applications. No need to reload full
pages on each user interaction.

• Web documents became applications itself, i.e. code runs on the document.

• Rise of new web frameworks — Ruby on Rails, Django, etc.

• Wide adoption of HTML5.

• A new interaction paradigm with mobile devices.

87

AJAX

88

Client Server
AJAX API

Requests are made to the server, from
the document using JavaScript,
without loading a new document.

The HMTL document is dynamically
altered depending on the answer and
using JavaScript.

AJAX Request to URL

Response in HTML,
JSON, etc.

Code Execution

ClientServer

Code Execution

Static web pages

Dynamic web pages

No code execution

Web page applications Code ExecutionCode Execution +

89

The Three-Tier Architecture

• Web applications are typically structured in three tiers, corresponding to three core
aspects of a web system: presentation, business logic and data access.

• Main advantages of this approach: separation of concerns, maintainability.

Presentation

Business Logic

Data Management

90

• Over time, the architecture of web applications has changed significantly. In the
beginning, web clients were only used to present the user interface. Recently,
application logic has moved partially to the clients.

Architecture of Web Applications

Thin Clients

Web Servers

Web Clients

Presentation

Business Logic

Data Management

Fat Clients

Web Servers

Web Clients

Presentation

Business Logic

Data Management

Business Logic

91

Different Architectural Options

Web Servers

Web Clients

Presentation

Presentation Logic

Business Logic

Data Management

HTML

Web Clients

Web Servers

Business Logic

Data Management

Presentation

JS + JSON

Web Servers

Business Logic

Data Management

Web Clients

Presentation

Business Logic

HTML + JS + JSON

Presentation Logic

92

Multi-Page Web Applications
• The web application is implemented as a collection of multiple web pages. The user interacts with the application

navigating through these pages. Each page is prepared on the server and only presentation details are sent to the
browser.

• Advantages: REST style, client independent, consistency across browsers, broad technological ecosystem,
application logic is kept on the server.

• Disadvantages: slow performance and responsiveness, fragmented code, no way to deliver updates to an open
web page.

url 1

url 2

url 3

url 4

web application

SERVER

get

Each page corresponds to a HTTP GET
request. Application logic is all maintained
on the server.

E.g. Amazon, SIGARRA

93

url 1

url 2

url 3

url 4

web application

SERVER

get

Each page corresponds to a HTTP
GET request. Application logic is

maintained on the server.

94

Single-Page Web Applications

• The web application is implemented as a single web page. All necessary resources are loaded or dynamically
added to the page (e.g. using Ajax). Application logic is pushed to the client — fat client architecture.

• Advantages: improved user experience, reduced bandwidth consumption, decoupled client and server,
reusable server interfaces, reusable client code.

• Disadvantages: JavaScript required, breaks browser history, increased browser dependency (versions,
features, performance), no REST, difficult to crawl and index.

url 1

SERVER

get

web application

An initial page is loaded using
HTTP GET. All other resources are
loaded dynamically following user
interactions.

E.g. Slack

95

url 1

SERVER

get

web application

An initial page is loaded using HTTP GET, including
the initial HTML document plus JavaScript code.

All other resources are loaded dynamically following
user interactions.

96

Mixed Approach

• The two architectural styles can be mixed to combine the benefits of both.

• Use different web pages to setup the core structure of the application.

• Define data APIs to provide updates to the web pages and support different devices.

• Use asynchronous requests to improve performance and user experience.

url 1

url 2

url 3

url 4

web application

SERVER

get

LBAW

97

url 1

url 2

url 3

url 4

web application

SERVER

get

Main application resources have a URL.
User interaction is improved by using

asynchronous calls to data APIs.
98

Web Architecture Summary
• Criteria to consider in choosing an architecture:

• Usability 
User friendly? Instant updates possible? Browser history?

• Search / Share 
Search engine friendly?

• Linking
Mapping between URLs and views? 1-to-1?

• Performance
Consistent across platforms? Optimized content loading? Client effort?

• Productivity 
Developers background? Modularity?

• Testing
Modularity? What to test? Client dependency?

• Choosing an Architecture == Choosing the Challenges

99

Rendering on the Web
• Exclusive server-side rendering

• Static – HTML corresponds to pre-built files on the server

• Dynamic – HTML results from applications executed (on request) on the server

• Server and client-side

• Server-side rendering with hydration
HTML is dynamically built on the server with updates on the client (logic mostly on the server)

• Client-side rendering with server pre-rendering
HTML initial version is prepared on the server but the client then takes over (logic mostly on the client)

• Exclusive client-side rendering

• Full client-side rendering
Only a minimal skeleton is served from the server, all the application logic and rendering is done on the client

100

Discussion on Architectural Options

• Personal web site

• Personal web site with comments

• Amazon

• SIGARRA

• Slack

101

Web Site Development Process

Goals, strategies, business case

Requirements

Budget, schedule, team logistics

Content inventories

Content analysis and development

Editorial management for content

Content placement into site

Task analysis for interactivity

Site map, wireframes

Interface, page graphic design

Engineering use cases

Programming and site engineering

Page production, content assembly

QA testing of programming

QA review of links and functionality

Staging server; final server prep

Launch logistics

Technical and
editorial disciplines

Management, stakeholders
project management

Figure copyright 2009 Patrick J. Lynch and Sarah Horton. All rights reserved. From the book Web Style Guide: Basic Design Principles for Creating Web Sites, 3rd ed. Yale University Press. www.webstyleguide.com

10 20 30 40 50 60 70 80 90 100%

Activity

Editor, content experts Editorial staff, page build-out

Management, strategy, stakeholders

Project management

Info architect, user experience Page engineer Graphic designer Engineering, programming

Create or obtain new text and graphic content

Interface design, accessibility

Why, how, where interactive elements will be used, explore use cases, accessibility

User interviews, focus groups, personas Explore use cases

Project kick-off Budget, schedule

Set standards, review existing content

Catalog existing content resources

Assign new content, supervise creation Review content in context, editorial quality control, search optimization Final editorial reviews

Status reviews, adjustments, final planning

Final reviews

Final reviews

Final reviews

Page template graphics and visual design

Wireframes to templates All code and core graphic identity

Content graphics and design

Freeze new development and features well before QA testing phase

Page build-out, text and graphics onto web pages, page linking, content accessibility

Page code validity, new XHTML, CSS, and JavaScript coding, web search

Site is built on a staging server, hidden from general Internet search Site to delivery server for testing and launch

Final tests and launch

Map and final wireframe

103

104

105

106

Web Technologies

The Web Stack of Technologies (1)

• Networking – DNS, TCP/IP.

• Web Protocols – HTTP, REST.

• Data Formats – HTML, JSON, XML.

• Web Servers – Apache, IIS, nginx, lighttpd, node.js.

• Data Storage – SQL, NOSQL, cache system, file system.

• Server-side Programming – Languages, libraries, frameworks.

• Content Management Systems – Reusable building blocks (e.g. Wordpress).

• Library and framework management

• Building and packaging – How to distribute web products: hosting, CDNs.

108Based on: http://radar.oreilly.com/2015/03/full-stack-tensions-on-the-web.html

http://radar.oreilly.com/2015/03/full-stack-tensions-on-the-web.html

The Web Stack of Technologies (2)

• Device Capabilities – Which features are supported.

• Template Design – Reusable, modular solutions.

• Content Presentation – HTML, CSS.

• Interface Programming – Also HTML and CSS but a lot of JavaScript.

• Performance – How to improve response speed.

• Resilience – How to make reliable systems.

• Security – Critical and complex in web systems.

• Navigation Design – How to organize content and navigation.

• Graphics – Images, SVG, Canvas.

109Based on: http://radar.oreilly.com/2015/03/full-stack-tensions-on-the-web.html

http://radar.oreilly.com/2015/03/full-stack-tensions-on-the-web.html

Web Technologies

• The modern web technology stack is huge.

• There are many different options (at different tiers) for the same task.

• No one is a “web expert”.

• But knowing about the full web stack is important for collaboration.

• Web development is organized in two major areas:
client-side and server-side development.

110

Stack Overflow Developer Survey 2021

• https://insights.stackoverflow.com/survey/2021

https://insights.stackoverflow.com/survey/2021

Developer Roles

112

Popular Technologies

113

Database Technologies

114

Web Frameworks

115

Other Tools

116

Server-Side Technologies

• There are many options in server-side technologies. In theory as many as
programming languages. Most popular options: PHP, Java, Python, Ruby, Perl, C#,
Go. Also JavaScript with node.js.

• Server-side technologies also includes data management solutions, e.g. filesystem,
database management systems. Most popular options: MySQL, PostgreSQL, Oracle,
SQL Server, SQLite.

• In LBAW we will use PHP, Laravel framework, and PostgreSQL.

117

Client-Side Technologies

• Client-side technologies run on the web client.

• Three main technologies: HTML, CSS and JavaScript. HTML and CSS are declarative
languages, while JavaScript is a full-fledged programming language.

• There is an increasing number of libraries and boilerplates to support
client-side web development.

• In LBAW we will use HTML, CSS, JavaScript and AJAX.

• Also notes on web performance, security, accessibility and usability.

118

Further Reading

• "As We May Think"
Vannevar Bush. Atlantic Monthly, 1945

• Computer Networks and Internets
Douglas Comer. Prentice Hall, 2004

• HTTP: The Definitive Guide
David Gourley, Brian Totty. O’Reilly, 2002

• Opera Web Standards Curriculum
http://dev.opera.com/articles/wsc/

• The Modern Web: Multi-Device Web Development with HTML5, CSS2 and JavaScript
Peter Gasston. No Starch Press, 2013
http://modernwebbook.com/

119

http://dev.opera.com/articles/wsc/
http://modernwebbook.com/

