
Server-Side Web Development

Databases and Web Applications Laboratory (LBAW)

Bachelor in Informatics Engineering and Computation (L.EIC)


Sérgio Nunes

Dept. Informatics Engineering

FEUP · U.Porto



Current Status

➔ Plan: https://web.fe.up.pt/~ssn/wiki/teach/lbaw (reviewed!) 

➔ 7th week of classes; 

➔ Project: ER feedback; EBD delivery; EAP start; 

➔ Lecture: server-side web development; review web architectures; 

➔ Labs: start architecture specification (EAP); develop web resources specification (A7); 

➔ Next week: vertical prototype; 

➔ Monitor sessions: Wednesday, at 15h, online 

➔ Previous sessions (recordings available): Git and GitFlow; PostgreSQL (setup + triggers and indexes); 

➔ This week: PHP for server-side web development.

2

https://web.fe.up.pt/~ssn/wiki/teach/lbaw


Outline for Today

➔ Server-Side Web Development 

➔ Overview and main concepts 

➔ PHP for server-side web development 

➔ AJAX 

➔ Review Web Architectures 

➔ Architecture Specification and Prototype (EAP) component 

➔ A7: Web Resources Specification

3



Rendering on the Web



The World Wide Web 

➔ A distributed information system, with 

➔ Web servers, waiting for client requests to handle 

➔ Web clients (browsers and others), used to navigate in this 'information space' 

➔ Core technologies 

➔ URL, defines how to address information resources published on the web 

➔ HTML, defines how to represent information on the web 

➔ HTTP, defines how web clients can interact with web servers
5



Client-Server Paradigm

Client Server

1. Clients start the interaction 
2. Request resource identified by URL (/about/contacts.html)

4. Send response to client: HTTP code [ + payload ] 
5. Connection ends

6. Process answer 3. Process request

6



Static and Dynamic Web Documents

➔ Web documents (or resources) are HTML, CSS, JS, JSON, images, media, i.e. anything. 

➔ Static web documents have no processing involved 

➔ Web servers simply locate the resource and send it to clients. No rendering or code execution, 
documents were previously produced and are served without changes. 

➔ Use cases: images, CSS, HTML documents without 'live data', rarely updated. 

➔ Dynamic web documents are prepared when requested 

➔ Dynamic web documents don't exist in advance, they are prepared in the moment for the client that 
issued the request. Can make use of data in databases, external sources, APIs, client information, etc. 

➔ Use cases: HTML with information read from a database; personalized web page; web application.

7



3. Process request 
3.1 Parse URL 
3.2 Locate document 
3.3 Send document to client

Static Web Documents

Client Server

1. Client starts the interaction 
2. Request resource identified by URL (/about/contacts.html)

4. Send response to client: HTTP code [ + payload ] 
5. Connection ends

6. Process answer 
7. Present document

Web Server

File System
doc doc doc

static 
document

8



Dynamic Web Documents

➔ Dynamic web documents are prepared on the fly in response to a specific client request and can be 
prepared on the server or on the client. 

➔ Server-side rendering (SSR) 

➔ The document is prepared on the server and the result is sent to the client. 

➔ Code execution is on the server. 

➔ Client-side rendering (CSR) 

➔ The server send to the client the necessary elements to build the document (JS code in particular) 

➔ The client builds the document using JavaScript. 

➔ A mix of these techniques can be implemented, e.g. AJAX.

9



3. Process request 
3.1 Parse URL 
3.2 Execute code 
3.2.1 [ Connect to database ] 
3.2.2 [ Connect to API ] 
3.2.3 [ etc ] 
3.3 Send code output (the 
dynamic document) to the 
client

Server-Side Dynamic Web Documents

Client Server

1. Client starts the interaction 
2. Request resource identified by URL

4. Send response to client: HTTP code [ + payload ] 
5. Connection ends

6. Process answer 
7. Present document

Web Server

code

dynamic 
document

db

api

10



3. Process request 
3.1 Send document

Client-Side Dynamic Web Documents

Client Server

1. Client starts the interaction 
2. Request resource identified by URL

4. Send response to client: HTTP code [ + payload ] 
5. Connection ends

6. Process answer 
6.1 Execute JavaScript code 
6.1.1 [ Request additional resources ] 
6.1.2 [ Connect to local or remote APIs ] 
6.1.3 [ etc ] 
6.2 Present dynamic document

code
dynamic 

document

11



Rendering on the Web

➔ Deciding where to render web resources is an architectural decision involving multiple trade-offs. 

➔ No solution (as always!) is best for all cases. 

➔ Static web documents 

➔ Fast, but rigid, i.e. no updates, no personalization, hard to maintain in scale. 

➔ Dynamic web documents 

➔ Server-side: complex documents with live information, but require full round trips to the server for user interaction. 

➔ Client-side: complex interactive document (feel like a local app), but heavy on the client and not really hypertext. 

➔ In practice, multiple solutions coexist for each particular use case, i.e. multiple architectural options in different parts 
of web systems, but also multiple architectural options on individual web documents.

12



Server-Side Web Development



Server-Side Web Development

➔ In LBAW we adopt a server-side approach. 

➔ With client-side code in specific use cases to improve user experience and support 
immediate changes without the need of a new full-page request (using AJAX). 

➔ In LBAW, to simplify code, improve modularity, and organize development, we define 
two types of web resources (endpoints or simply pages). 

➔ View web resources, only access data for presentation — output is HTML. 

➔ Action web resources, change data and then redirect to a view web resource.

14



Server-Side Web Development

• A web-based software system based on the server 
publishes a set of endpoints.

• /

• /about.html

• /students/view_student.php

• /search?q=flowers


• Each endpoint, also called web resource, accepts 
HTTP requests and outputs HTTP responses.


• HTTP requests includes a method and, 
optionally, parameters and a payload.


• HTTP responses include a code and, optionally, 
a payload.

HTTP Request 
[ Method + Parameter + Payload ]

HTTP Response 
[ Code + Payload ]

15

ty
pi

ca
l e

xe
cu

tio
n 

flo
w

Server-Side Code
validate and process request

obtain data (files, databases, …)

process data

prepare output (HTML, JSON, …)

send response



Example in PHP
<?php 
// hello.php file 

// Check if parameters were sent. 
if (isset($_GET["msg"])) { 
  $msg = $_GET["msg"]; 
} else { 
  $msg = "world"; 
} 

// Capitalize message. 
$msg = ucfirst($msg); 

// Output HTML. 
echo "<!DOCTYPE html>\n"; 

// Example of multiline printing. 
echo <<<HTML_HEAD 
<html> 
<body> 
HTML_HEAD; 

// Print the paragraph with the message. 
echo "\t<p>Hello $msg!</p>\n"; 
?> 

<!-- This is outside the PHP block. Just plain HTML. --> 
</body> 
</html>

/hello.php

/hello.php?msg=alice

16



View and Action Web Resources

➔ View pages read and present data. No changes to data. 

➔ Action pages alter data and and redirect to a view page. No presentation of data.

17

View User

GET /view?id=2

Edit User Form

GET /edit?id=2

Edit User Action

POST /edit-action

Submit

Error
Success



Corresponding Web Resources Specification

18

R01: View User 

URL: /view 

Accept: GET 

Parameters: id 

Output: UIxx

GET /view?id=2

UI01

Redirect 
on error

R02: Edit User Form 

URL: /edit 

Accept: GET 

Parameters: id 

Output: UIxx

R03: Profile 

URL: /edit-action 

Accept: POST 

Redirect : R01 

( Has no UI )

Redirect on success

UI02

GET /edit?id=2 POST /edit-action



Ajax



Ajax

➔ Set of web development techniques to implement asynchronous web interactions. 

➔ In standard synchronous web interaction, the user navigates across independent 
documents. There is a one-to-one mapping between application views and web pages.  

➔ With AJAX, user interactions can be implemented within the same document. A n-to-
one mapping between application views and web pages is possible. 

➔ Basic use case: like action in a post does not result in leaving the current document. 

➔ Using AJAX techniques, web documents can make requests to the server.

20



Synchronous User Interaction

➔ In the classic web interaction model, a click results in the request of a new 
document: round trip to the server, the server prepares a new document, the client 
needs to render the document from zero.

21

Client Server

processing 

html

request

processing 

html

request

user waiting

user waiting

html

html

html

User navigates through 
multiple documents



Asynchronous User Interaction

➔ In asynchronous user interaction, the document makes requests to the server.

22

Client Server

processing 

json data / html

background 
request

processing 

json data / html

background 
request

html

client 
processing 

client 
processing 

User never leaves 
the same document



Server-Side Technologies

➔ In server-side web development there is a large and diverse set of options 

➔ Web servers, e.g. Apache, IIS, nginx, cloud, … 

➔ Web frameworks, e.g. Laravel, Django, Ruby on Rails, Spring, … 

➔ Storage solutions, e.g. relational, document, key-value, … 

➔ Programming languages, e.g. Python, PHP, Go, Ruby, …  

➔ Routing libraries 

➔ Templating libraries 

➔ … 

➔ Next: a lot of common and recurring server-side use cases let to the development of web frameworks. 

23



Summary

➔ In LBAW we adopt a server-side architecture using Laravel, a PHP framework. 

➔ AJAX is used to improve user experience. 

➔ In the Architecture Specification and Vertical Prototype component (EAP) 

➔ Define the architecture of the application by specifying the web resources; 

➔ Implement a vertical prototype to validate technology stack.

24



References

• PHP: The Right Way 
https://phptherightway.com/ 

• MDN Web Docs, Server-side website programming 
https://developer.mozilla.org/docs/Learn/Server-side  

• MDN Web Docs, Ajax 
https://developer.mozilla.org/docs/Web/Guide/AJAX 

• Google Developer, Rendering on the Web (2019) 
https://developers.google.com/web/updates/2019/02/rendering-on-the-web

25

https://phptherightway.com/
https://developer.mozilla.org/docs/Learn/Server-side
https://developer.mozilla.org/docs/Web/Guide/AJAX
https://developers.google.com/web/updates/2019/02/rendering-on-the-web

