
Web Performance

LBAW · Databases and Web Applications 
MIEIC, FEUP 2021/22

Sérgio Nunes

DEI, FEUP, U.Porto

Web Performance

➔ Web optimization techniques are designed to improve the overall response time of a web
application to the end-user.

➔ Usability studies show that page speed has a direct impact on conversion rates. Ideally a
web page should load in less than 0.1 seconds, giving the user the feeling of an
instantaneous response.

➔ A response time of less than 1 second keeps the user's flow seamless. Up to 10 seconds
the user attention is kept. Over 10 seconds, the user is more likely to leave the page.

➔ Optimization opportunities both at the back-end or the front-end level.

➔ Front-end: reduce images, reduce HTTP calls, etc.

➔ Back-end: improve hardware, tune database, etc.
2

The Golden Rule

➔ In most web pages, less than 10-20% of the end user response time is spent getting the HTML
document. To achieve significant improvements in response times, it is important to focus on front-
end optimizations.

➔ 80% of the end-user response time is spent on the front-end.

➔ Where the time is spent:

➔ Parsing HTML, Scripts, CSS, and images.

➔ Retrieving other page components (scripts, CSS, and images).

➔ Start with front-end optimizations:

➔ Greater potential for improvements.

➔ Simpler and proven to work.

3

Rules for High Performance Web Sites
From: High Performance Web Sites by Steve Souders (2007) &
Best Practices for Speeding Up Your Web Site (Yahoo)

4

Make Fewer HTTP Requests

➔ Given that 80-90% of the time is spent making HTTP requests for all the
components (images, scripts, stylesheets, etc), a simple way to reduce
response time is to reduce the number of HTTP requests.

➔ These techniques can reduce response times by as much as 50%.

➔ Main techniques:

➔ Image Maps

➔ CSS Sprites

➔ Combine Scripts and Stylesheets

5

Image Maps

➔ An image map combines multiple images into a single image.

➔ The overall size is about the same, but reducing the number of HTTP requests
speeds up the page. Image maps only work if the images are contiguous in
the page, such as a navigation bar.

➔ Drawbacks:

➔ Defining the coordinates of image maps is tedious and error prone.

➔ Has accessibility limitations, thus should be avoided for important tasks.

6

CSS Sprites

➔ Using CSS sprites, multiple images are combined into a single file and
displayed using CSS rules. This is the preferred method for reducing the
number of image requests.

➔ Drawbacks: sprites are hard to maintain.

7

CSS Sprites Basic Example

a {
 background: url("sprite.png")
 0px 0px no-repeat;
}

a:hover {
 background-position: 0px -100px;
}

sprite.png

Combine Scripts and Stylesheets

➔ One way to reduce the number of HTTP requests, is by combining all scripts
into a single script, and similarly combining all CSS into a single stylesheet.

➔ Might be challenging when scripts and stylesheets vary from page to page.

9

11 CSS resources

34 image resources 10

Optimize Images

➔ Use the right formats: JPEG for photos (lossy), PNG for graphics (lossless).

➔ Don't resize using with HTML/CSS.

➔ Optimize for the web: optimize for the web features.

➔ Yahoo! Smush.it — Image optimization service (lossless tool).
ysmush.it (discontinued, March 2015)

➔ Alternative: http://resmush.it/

11

http://resmush.it/

Bad use of JPEG

12

Use a Content Delivery Network

➔ The user's proximity to the web server has impact on a page's response time.

➔ A content delivery network (CDN) is a collection of web servers distributed
across multiple locations to deliver content to users more efficiently.

➔ CDNs are used to deliver static content, such as images, scripts, stylesheets,
binaries, and Flash. Serving dynamic HTML pages involves specialized hosting
requirements.

➔ Top CDN providers: Akamai, CloudFlare, Mirror Image, Limelight, SAVVIS.

13

Add an Expires Header

➔ A first-time visitor to a web page needs to make several requests to obtain all
elements. By using a future Expires header, these components can be made
cacheable, and thus re-used in following requests.

➔ Most commonly used with images, but should be used on all components,
including scripts, stylesheets, etc.

➔ The Expires header is sent in the HTTP response.

➔ If a far future date is used (e.g. years), the filename must be changed
if the component changes.

14

Gzip Components

➔ Response times can be reduced either by reducing the number of requests, or
by reducing the size of the response in each request.

➔ Gzip encoding can be used to compress HTTP response, and thus reduce
network response times.

➔ Using gzip generally reduces the response size by about 70%. Approximately
90% of today's Internet traffic travels through browsers that claim to support
gzip.

➔ Configured at the web server.

15

Make JavaScript and CSS External

➔ Using inline CSS or JavaScript makes HTML documents bigger.

➔ Using external files results in more HTTP requests, but cacheable.

➔ The key factor in deciding which option is better is the frequency with which
external JavaScript and CSS components are cached relative to the number
of HTML documents requested.

16

Reduce DNS Lookups

➔ The Domain Name System (DNS) maps hostnames to IP addresses.

➔ A DNS lookup for a given hostname typically costs 20-120 milliseconds.

➔ DNS lookups can be reduced by using fewer hostnames (ideal: 2-4).

17

Minify JavaScript and CSS

➔ Minification is the practice of removing unnecessary characters from code to reduce
its size thereby improving load times.

➔ When code is minified all comments are removed, as well as unneeded white space
characters (space, newline, and tab). In the case of JavaScript and CSS, this improves
response time performance because the size of the downloaded file is reduced.

➔ Popular tools:

➔ JSMin — www.crockford.com/jsmin.html

➔ YUI Compressor — yui.github.io/yuicompressor/

➔ The YUI compressor can also minify CSS.

18

https://www.crockford.com/jsmin.html
https://yui.github.io/yuicompressor/

Avoid Redirects

➔ Redirects are achieved using 3xx status codes, mostly 301 and 302.

➔ Redirects slow down the user experience since nothing in the page can be
rendered and no components can start being downloaded.

➔ One of the most wasteful redirects happens when a trailing slash (/) is missing
from a URL that should otherwise have one. For example, going to
http://example.com/tag results in a 301 response containing a redirect to
http://example.com/tag/.

➔ Although redirects degrades the user experience, it can reduce the complexity
for developers in several situations.

19

Remove Duplicate Scripts

➔ It hurts performance to include the same JavaScript file twice in one page.

➔ Two main factors increase the odds of a script being duplicated in a single
web page: team size and number of scripts.

➔ Hurts performance because the scripts are downloaded (in some browsers)
and executed multiple times.

20

Configure ETags

➔ Entity tags (ETags) are a mechanism that web servers and browsers use to
determine whether the component in the browser's cache matches the one
on the origin server.

➔ The problem with ETags is that for a single entity there are always differences
across servers (eg. file timestamps). Using multiple servers is a common
situation in large web sites.

➔ ETags should not be used if the number of servers is larger than 1.

21

Make AJAX Cacheable

➔ Some of the previous rules also apply to AJAX components
(e.g. JSON, scripts), namely:

➔ Gzip Components

➔ Reduce DNS lookups

➔ Minify JavaScript

➔ Avoid Redirects

➔ Configure ETags

➔ A personalized response should still be cacheable by that person.

22

Performance Evaluation Tools

23

Google Performance Evaluation Tools

➔ developers.google.com/speed/

➔ PageSpeed Insights
developers.google.com/speed/pagespeed/insights/

➔ PageSpped Insights for www.fe.up.pt

➔ Google Lighthouse - Open-source tool (Chrome, command line, online)
developers.google.com/web/tools/lighthouse/

➔ WebP - Image format
developers.google.com/speed/webp

24

https://developers.google.com/speed/
https://developers.google.com/speed/pagespeed/insights/
https://developers.google.com/speed/pagespeed/insights/?url=www.fe.up.pt
https://developers.google.com/web/tools/lighthouse/
https://developers.google.com/speed/webp

YSlow

➔ YSlow analyzes web pages and why they're slow based on Yahoo!'s rules for
high performance web sites. — http://yslow.org

25

http://yslow.org

References

➔ Yahoo's Exceptional Performance Team 
developer.yahoo.com/performance/ [archived]

➔ Best Practices for Speeding Up Your Web Site 
developer.yahoo.com/performance/rules.html

➔ Make the Web Faster | Google Developers 
developers.google.com/speed/

➔ High Performance Web Sites 
by Steve Souders. O'Reilly 2007.

➔ Even Faster Web Sites 
by Steve Souders. O'Reilly 2009.

26

https://web.archive.org/web/20181022083632/https://developer.yahoo.com/performance/
https://web.archive.org/web/20200413111103/https://developer.yahoo.com/performance/rules.html
https://developers.google.com/speed/

