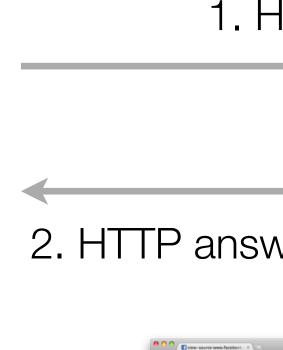
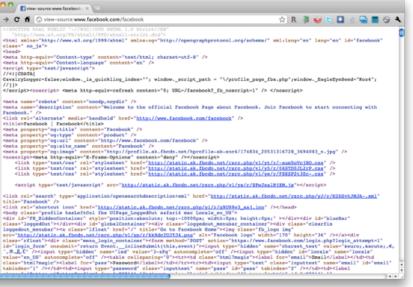
Client-Side Web Technologies


LBAW . Databases and Web Applications MIEIC, 2021/22 Edition

Sérgio Nunes DEI, FEUP, U.Porto

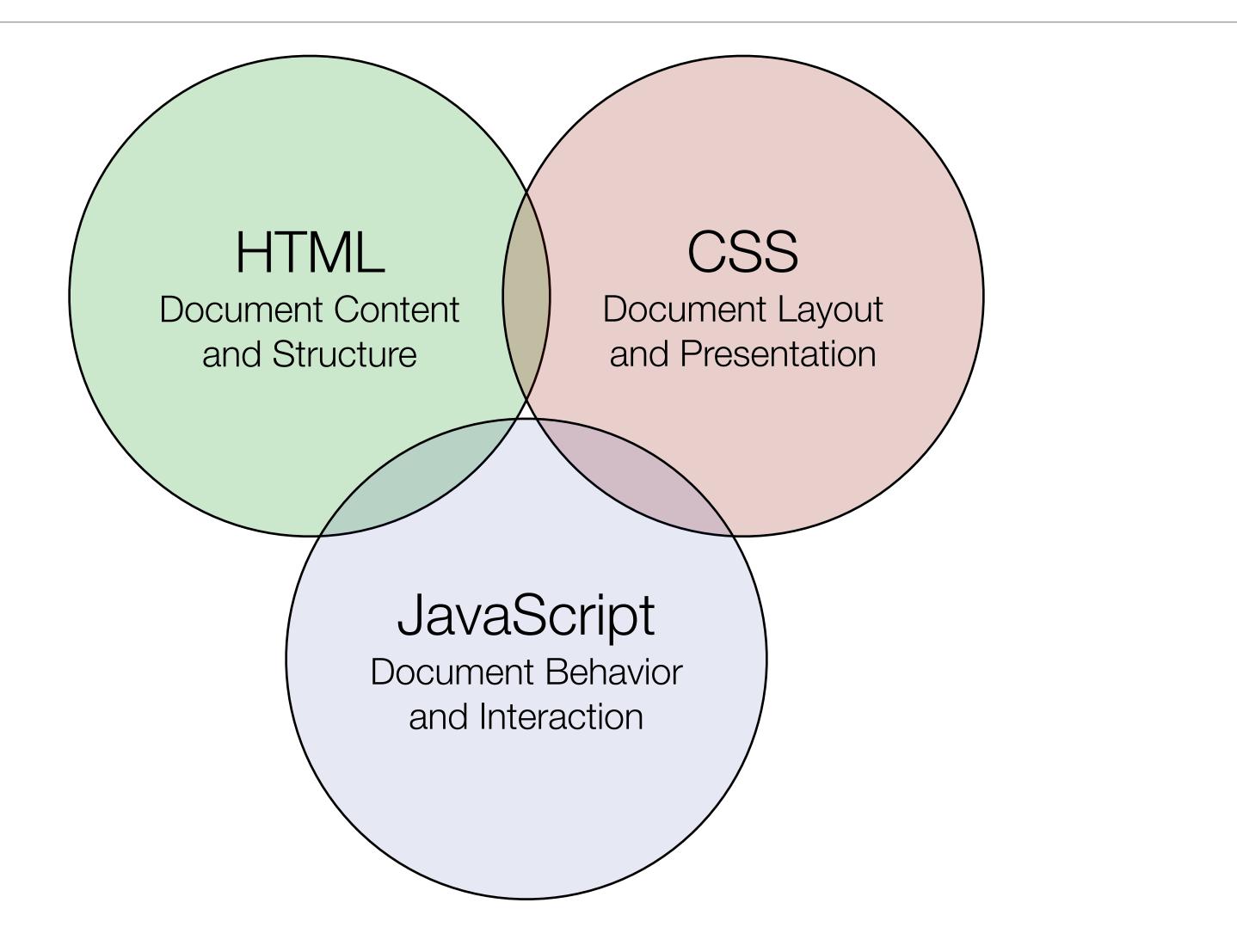
The Big Picture

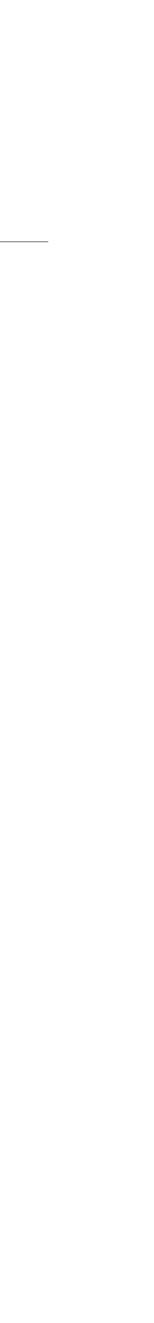
→ Web browsers issue requests to web servers, which produce and return HTML documents for browsers to parse and display.



Client

1. HTTP request


2. HTTP answer + HTML document



Server

Client-side Web Technologies

HTML: HyperText Markup Language

HyperText Markup Language

- → HTML is an acronym for HyperText Markup Language and is a format for providing linked structured information.
- \rightarrow An HTML document is an hypertext node within an hypertext network.

 \rightarrow HTML documents are simply text files containing marked-up text using tags.

Hypertext

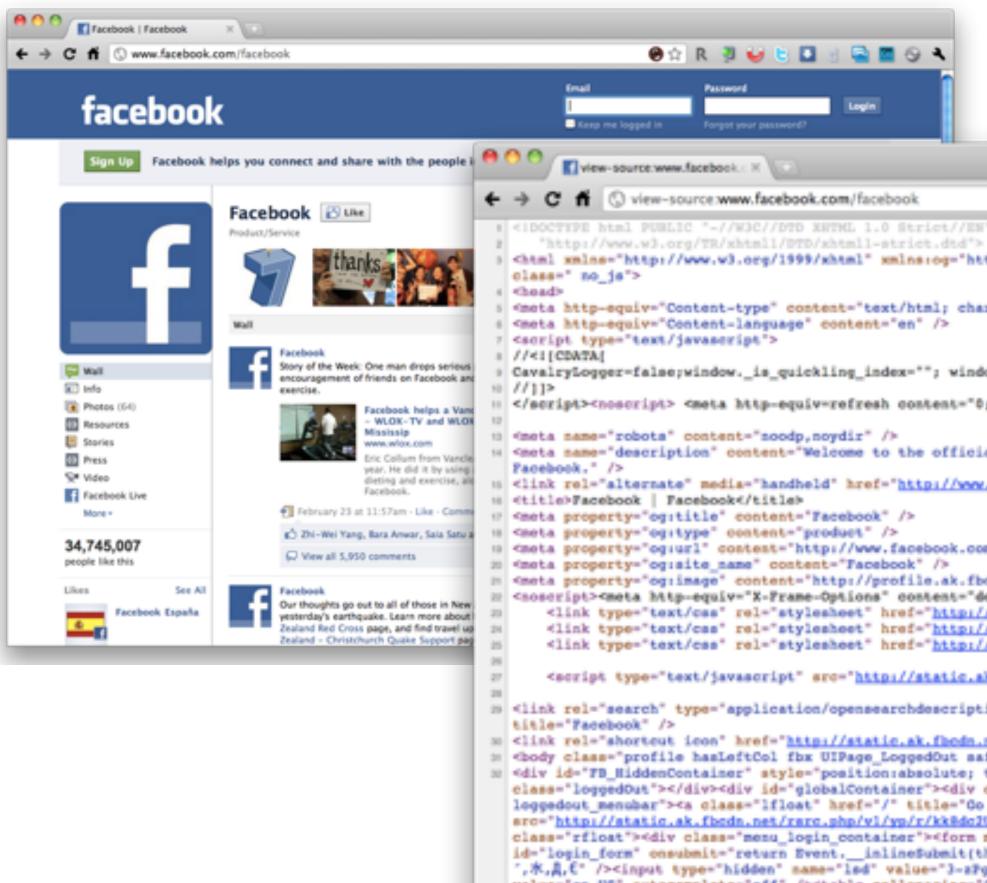
- \rightarrow Concept defined by Ted Nelson in the 1950s.
- \rightarrow A way to organize text (and information) in a non-linear fashion.
- "Hypertext: Human-readable information linked together in an unconstrained way."
- → From the original WorldWideWeb: Proposal for a HyperText Project (1990)
 - "HyperText is a way to link and access information of various kinds as a web of nodes in which the user can browse at will.

data-bases, computer documentation and on-line help)."

It provides a single user-interface to large classes of information (reports, notes,

Basic HTML Document

```
0 0
                   simple.html
<!DOCTYPE html>
<html>
 <head>
   <title>A simple HTML5 document</title>
 </head>
 <body>
   <h1>Simple HTML5 document</h1>
   This is a simple HTML5 document.
 </body>
</html>
```


	A simple HTML5 document	× 🕀		
← → C	⋒ () file:///	x 🧿 😝 皆	🛃 🛃 🔁	ss 🔅 🔍

Simple HTML5 document

This is a simple HTML5 document.

View Source


```
\varTheta 🕆 R 🕲 🥪 😂 🛄 🗄 🚘 🚱 🔧
                                                                                            🟫 R 🕘 🤪 🔄 🛄 🚽 🚘 🖼 😔 🐴
 i <html xmlns="http://www.w3.org/1999/xhtml" xmlns:og="http://opengraphprotocol.org/schema/" xml:lang="en" lang="en" id="facebook"</pre>
  <meta http-equiv="Content-type" content="text/html; charact=utf=0" />
> CavalryLogger=false;window._is_guickling_index=""; window._script_path = "\/profile_page_fbx.php";window._EagleEyeSeed="Koz4";
iii </script><noscript> <meta http-equiv=refresh content="0; URL=/facebook7_fb_noscript=1" /> </noscript>
14 <meta name-"description" content-"Welcome to the official Facebook Page about Facebook. Join Facebook to start connecting with
iii <link rel="alternate" media="handheld" href="http://www.facebook.com/facebook" />
iii <meta property="og:url" content="http://www.facebook.com/facebook" />
m <meta property="og:image" content="http://profile.ak.fbcdn.net/hprofile-ak-snc4/174834_20531316728_3694083_n.jpg" />
22 <noscript><meta http:-equiv="X-Prame-Options" content="deny" /></noscript>
      k type="text/css" rel="stylesheet" href="http://static.sk.fbcds.net/rsrc.php/v1/yt/r/-sum5oWcjB0.css" />
      k type="text/css" rel="stylesheet" href="http://static.sk.fbods.net/rsrc.php/v1/y5/r/0697D0JL2rP.css" />
      k type="text/css" rel="stylesheet" href="http://static.ak.fbcdn.net/rsrc.php/v1/ye/r/FSKSP2t3Ec-.css" />
      <script type="text/javascript" src="http://static.sk.fbcdn.net/rsrc.php/v1/ys/r/8PwJealNiIM.js"></script>
ink rel="search" type="application/opensearchdescription+xml" href="http://static.ak.fbcdn.net/rsrc.php/yJ/r/E255vhJNJA-.xml"
m <link rel="shortcut icon" href="http://static.sk.fbcdn.net/rsrc.php/yi/r/g9099y3_ssi.ico" /></head>
set <body class="profile hasLeftCol fbx UIPage_LoggedOut safari4 mac Locale_en_US">
32 <div id="FB_HiddenContainer" style="position:absolute; top:=10000px; width:0px; height:0px;" ></div><div id="blueBar"</pre>
  class="loggedOut"></div><div id="globalContainer"><div class="loggedout_menubar_container"><div class="clearfix
  loggedout_menubar"><a class="lfloat" href="/" title="Go to Facebook Home"><ing class="fb_logo img"
  src="http://static.sk.fbcdn.net/rsrc.php/v1/yp/r/kk8dc2UJYJ4.png" alt="Facebook logo" width="170" height="36" /></s><div</pre>
  class="rfloat"><div class="menu_login_container"><form method="POST" action="https://www.facebook.com/login.php?login_attempt=1"
  id="login_form" onsubmit="return Event.__inlineSubmit(this,event)"><input type="hidden" name="charset_test" value="&euro;,&acute;,€,
   ,水,点,C" /><input type="hidden" name="lsd" value="3-zPg" autocomplete="off" /><input type="hidden" id="locale" name="locale"
  value="en_US" autocomplete="off" /><label for="email">Email</label>
  class="html?magic"><label for="pass">Password</label>tr><input type="text" class="inputtext" name="email" id="email"</td>
  tabindex="1" /><input type="password" class="inputtext" name="pass" id="pass" tabindex="2" /><label
                  albeitesteellen! des lokkill likdenst enlassikeels iskieden 14. imerischelit 14. lokkill 11.
                                                                                                                               ....
```


A Brief History of HTML

Origins of HTML

- Created by Tim Berners-Lee and Robert Cailliau at CERN in the late 1980s.
- \rightarrow Main goal was to facilitate document sharing between researchers.
- \rightarrow CERN released it as royalty free in 1993.
- \rightarrow First official version published by IETF in 1993.
- World Wide Web Consortium (W3C) was created to define common standards for browsers and developers to adhere to.

HTML Proposal

- → Information Management: A Proposal https://www.w3.org/History/1989/proposal.html
 - → "This proposal concerns the management of general information about experiments at CERN."
 - → "It discusses the problems of loss of information about complex evolving systems and derives a solution based on a distributed hypertext system."
 - → Some practical requirements: remote access, heterogeneity, non-centralization, text-based, "live links".
- → Problems being addressed:
 - → Information loss "Often, the information has been recorded, it just cannot be found."
 - Constantly changing information. Keeping a "book-like" organization of all information at CERN is impractical. Changes are distributed.
 - → Tree-like organizations and keyword-based organization are also not feasible. Too strict and inflexible.

HTML Timeline

- CERN and then IETF.
- \rightarrow Development was moved to the W3C after its creation in 1994.
- \rightarrow HTML development stopped in 1998 with the publication of HTML 4.
- \rightarrow W3C decided to migrate to an XML-based equivalent, named XHTML.
- \rightarrow XHTML was not widely adopted by web authors.
- basis for HTML5.
 - WHATWG Web Hypertext Application Technology Working Group

→ During its first years (1990-1995), HTML revisions and extensions where first hosted at

→ HTML development continued outside W3C, with the WHATWG, whose work is now the

The Early Days (1989 - 1993)

- \rightarrow From proposal (1989) to Mosaic release (1993).
- \rightarrow Web users were mostly from academia and research institutions.
- \rightarrow Few browsers, most of them text-based.
- \rightarrow HTML documents were simple and usually written by hand.

Growth Years (1994 - 2002)

- → Wide adoption of the web to the dot.com bubble (1995-2000).
- → Companies dispute the web browser market (aka "browser wars").
- → Browser development focused on new features, less on standards support.
- → Wide differences between rendering engines. Many web pages "designed for browser version x.x".
- Extensive use of tables and sliced graphics to achieve "pixel perfect" layouts -"print-like design". Resulted in ugly and complex HTML code.

Modern Era (2003 -)

- \rightarrow Wide adoption of modern web browsers.
- \rightarrow Separation of content and structure from layout and presentation.
- \rightarrow HTML controls content and structure.
- \rightarrow CSS controls layout and presentation.
- \rightarrow Clean and simple code (again!).
- → CSS (2003), AJAX (2005), mobile (2007).
- \rightarrow A platform for (web) applications.

HTML

XHTML

- XML-based equivalent, named XHTML.
- \rightarrow XHTML 1.0 was completed in 2000.
- backward compatibility.
- \rightarrow Real world adoption of XHTML was small.
- to outside development of HTML.

→ In 1998, the W3C decided to abandon HTML development and focus on a

 \rightarrow W3C then moved to XHTML 2.0, introducing several new features and less

 \rightarrow In 2004, a proposal to refocus on HTML was discarded by the W3C, leading

WHATWG

- Members of the W3C formed a new group: the Web Hypertext Application Technology Working Group (WHATWG).
- much faster.
- HTML was resumed.
- → Instead of starting from scratch, the W3C decided to use the work from WHATWG.
- \rightarrow Work on XHTML 2.0 ended in 2009.

→ WHATWG didn't follow a consensus-based approach, so it was able to move

In 2006, the W3C acknowledged that XHTML wasn't being adopted and work on

W3C and WHATWG

- https://html.spec.whatwg.org/
- \rightarrow Latest published W3C version of HTML is 5.2. https://www.w3.org/TR/html52/
- WHATWG and W3C, e.g. stop publishing two separate specifications.
- → More details: <u>https://wiki.whatwg.org/wiki/W3C</u>

→ WHATWG continues working on HTML as a "living standard" (no versions).

Ongoing discussions on how to manage the work and collaboration between

HTML5 Technologies

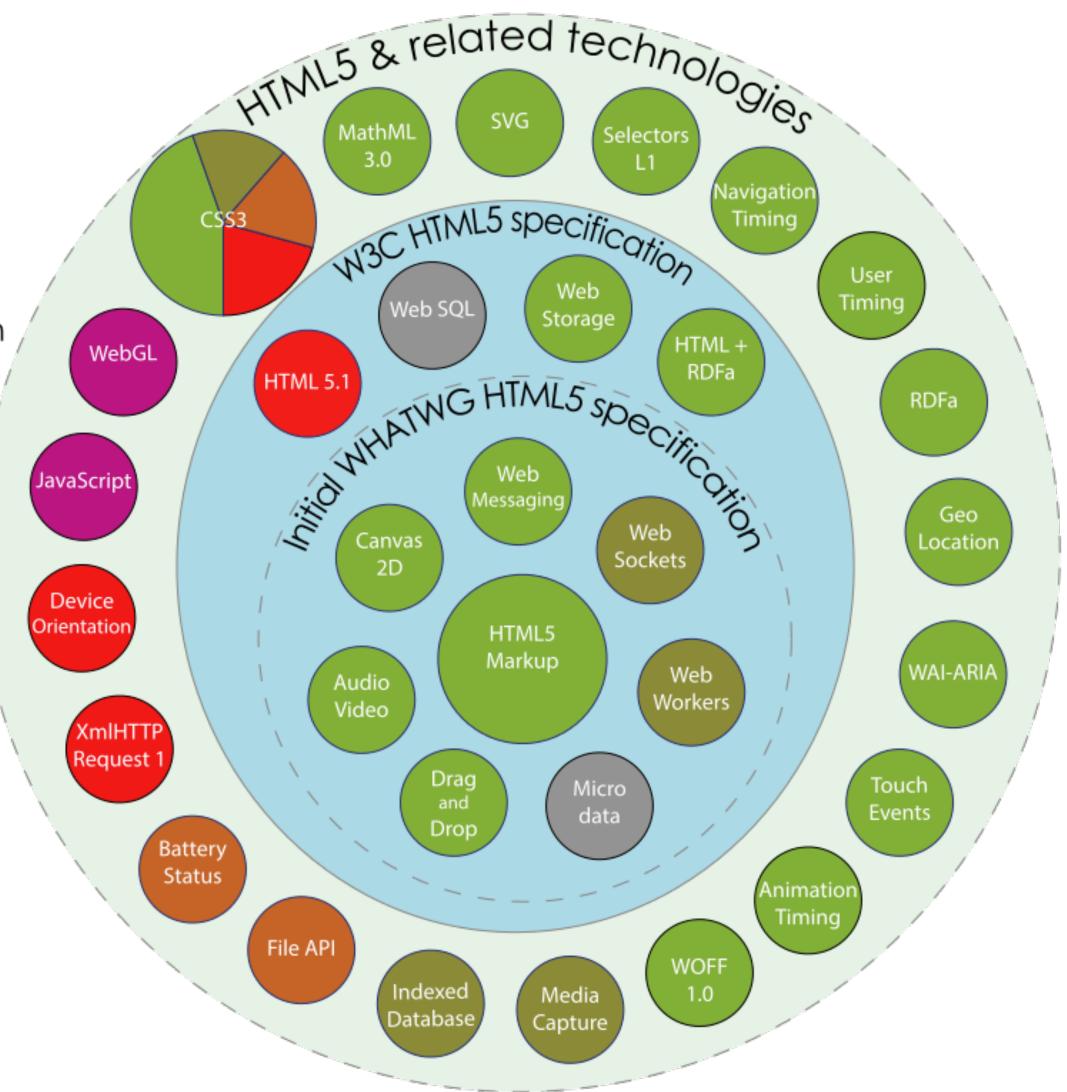
- \rightarrow HTML5 is a collection of features and technologies.
 - → Language / Markup features
 - → Document Model Definition (DOM)
 - APIs for supporting JavaScript interaction with the DOM

HTML5

Taxonomy & Status (October 2014)

Recommendation/Proposed

Candidate Recommendation


Last Call

Working Draft

Non-W3C Specifications

Deprecated or inactive

From: <u>http://en.wikipedia.org/wiki/HTML5</u>

Browser Support

- end technologies. <u>https://caniuse.com</u>

	Car	า	se 🔄	webrtc			?	? 🌣 Settings				
2 results found												
WebRTC Peer-to-peer connections -wD Usage % of all users Global 86.28% + 2.1% = 88.38% Method of allowing two users to communicate directly, unprefixed: 81.09% + 2.1% = 83.19% browser to browser using the RTCPeerConnection API.												
	Drowser to browser using the KrCPeer Connection API. Portugal 91.1% + 2.22% = unprefixed: 88.25% + 2.22% =											
Current aligned Usage relative Date relative Apply filters Show all ? IE Edge * Firefox Chrome Safari Opera iOS Safari					Opera Mini *	Android *	Blackberry	Opera Mobile	Chrome for			
	2490	2-21	4-22		10-17			Browser	Browser		Android	
	12-14	22-43	23-55	3.1 - 10.1	18-42	3.2-10.3						
6-10	³ 15-17	44-65	56-72	11-12	43-57	11-12.1		2.1-4.4.4	7	12-12.1		
11	³ 18	66	73	12.1	58	12.2	all	67	¹ 10	46	73	
		67-68	74-76	TP								

Support for these technologies has different levels of support in browsers.

"Can I Use" provides up-to-date information about browser support of front-

HTML Microdata

HTML Microdata

- \rightarrow Extension to define new attributes and embed simple machine-readable data in HTML documents. \rightarrow Goal: annotate content with machine-readable labels.
- -> Common use case: search engines can better 'understand' and index information that has been annotated using schema.org vocabulary.
- \rightarrow Microdata provides a mechanism to identify items and define their properties.
 - \rightarrow The itemscope attribute creates an item.
 - \rightarrow The itemprop attribute descends of itemscope and defines an item property.
 - \rightarrow With itemtype is possible to associate a vocabulary to an item.
 - \rightarrow An itemid can be used to define a global unique identifier for the item.

Microdata Example

→ Defines an item with two properties.

```
<div itemscope>
Flavors in my fa

itemprop="flav"

</div>
```

Flavors in my favorite ice cream:

itemprop="flavor">Lemon sorbetitemprop="flavor">Apricot sorbet

Schema.org

- terms).
- concepts and relationships.
- Microsoft, Yahoo, and Yandex.
- Schema.org defines more than 600 types and >900 properties. Such as

Vocabularies define concepts and relationships used to describe and represent areas of concern. Can be very simple (one or two concepts) or very complex (thousands of

A shared vocabulary makes it possible to have a common understanding of defined

Schema.org is a collaborative, community driven initiative to create, maintain, and promote the use of schemas for structured data on the web. Founded by Google,

CreativeWork, Book, Movie, Event, Organization, Person, Place, Restaurant, etc.

Microdata Example using Vocabulary

- \rightarrow Example using Schema.org vocabulary.
- PostalAddress, containing four properties.

<div itemscope itemtype="http://schema.org/LocalBusiness"> <h1 itemprop="name">Beachwalk Beachwear & Giftware</h1> A superb collection [...]. 3102 Highway 98 Mexico Beach, FL </div> Phone: 850-648-4200 </div>

Defines an item of the type LocalBusiness, as defined by the Schema.org vocabulary, containing three properties, one of which is a item of the type

```
<div itemprop="address" itemscope itemtype="http://schema.org/PostalAddress">
```


HTML Microdata References

- → W3C Editor's Draft Microdata (April 2021) https://w3c.github.io/microdata/
- → HTML Standard Microdata Specification https://html.spec.whatwg.org/#microdata
- → Schema.org https://schema.org/
- Semantic Web (aka Web of Data) https://www.w3.org/standards/semanticweb/

Web APIs

Web APIs

- → In addition to the language specification, HTML5 introduced several Web APIs that can be used with JavaScript. There is a large number of APIs in different stages of development.
 - \rightarrow Documents manipulation APIs (e.g. DOM, Drag and Drop)
 - → Fetch remote data APIs (e.g. Fetch, Web Sockets)
 - Drawing and graphics manipulation APIs (e.g. Canvas, WebGL)
 - → Audio and Video APIs (e.g. Web Audio, WebRTC)
 - → Device APIs (e.g. Notification, Vibration, Fullscreen)
 - → Client-side storage APIs (e.g. Web Storage, IndexedDB)

Geolocation API

Geolocation API

- with the device.
- and GSM/CDMA cell IDs, as well as user input.
- \rightarrow Available both as single-shot request or continuous tracking.
 - → navigator.geolocation.getCurrentPosition(callback)
 - → navigator.geolocation.watchPosition(callback)
- → Geolocation API Specification https://www.w3.org/TR/geolocation-API/

The Geolocation API provides scripted access to geographical location information associated

-> Common sources of location information include Global Positioning System (GPS) and location inferred from network signals such as IP address, RFID, WiFi and Bluetooth MAC addresses,

Web Storage API

Web Storage API

- \rightarrow Local storage is an important feature for web applications.
- every HTTP request, slowing down the communication and exposing data.
- accessed by the client.
- the browser is closed, using localStorage.
- → Web Storage API Specification https://www.w3.org/TR/webstorage/

Cookies can be used for persistent local storage but are limited in size and are included in

The Web Storage API specifies a mechanism to persistently store data in web clients, as key-value pairs. Unlike cookies, this data is never shared with the server and can only be

Data can be kept during page sessions, using sessionStorage, or persisted even when

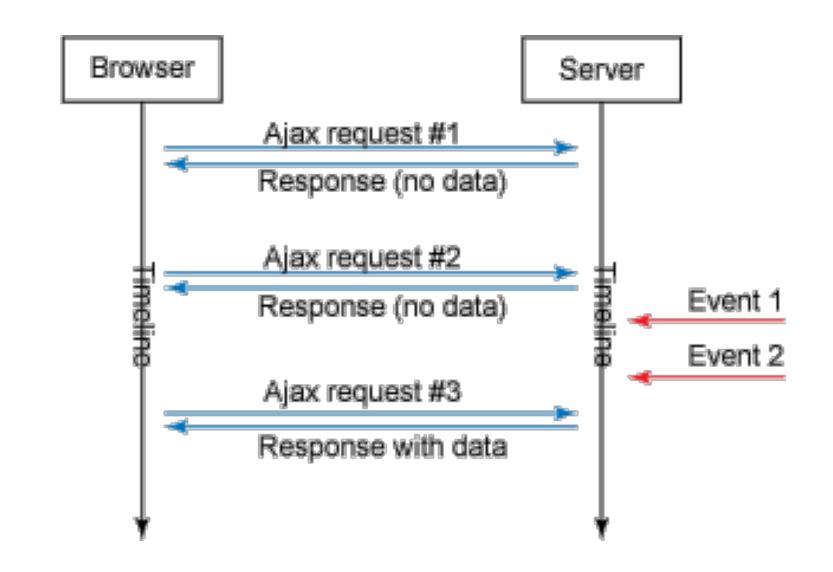
Web Storage API

- \rightarrow Data can be stored and retrieved using keys.
 - → localStorage.setItem("key", data)
 - \rightarrow localStorage.getItem("key")
- \rightarrow It is possible to keep track of changes trapping the storage event.

- storing and indexing large volumes of data in the client.
- → Indexed Database API 3.0, W3C Working Draft (March 2021) https://www.w3.org/TR/IndexedDB/

→ For structured data, the IndexedDB API can be used. This API specified a low-level API for

Web Sockets API


Web Sockets API

- → Web applications are not restricted to request-response interaction.
- → A particularly important use case is the need for server initiated communication (aka "server push").
- Common scenarios include notifications on long running tasks, chat systems, multi-user collaboration systems (e.g. live collaborative text editors).
- → How to push information from the server to the client?

Polling

→ Make periodic requests to the server to check for new data.

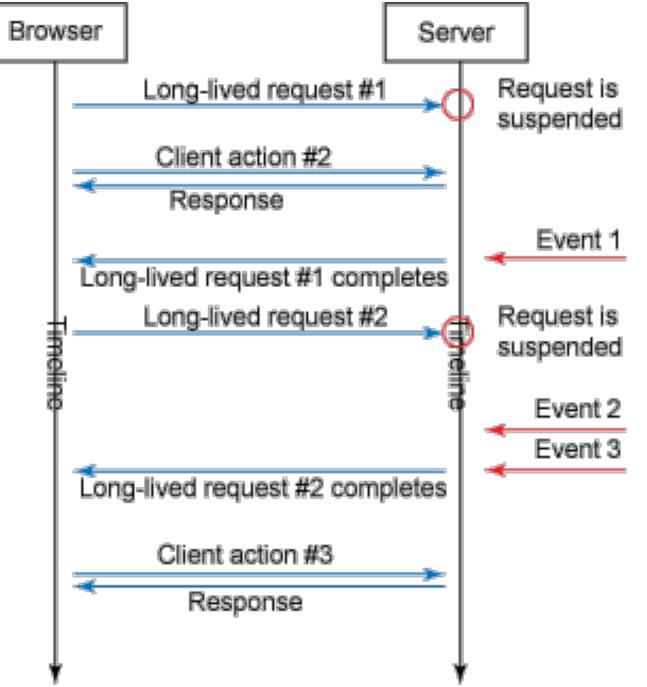

- \rightarrow The smaller the interval between request the more up to date the data is.
- Drawbacks: resource and bandwidth consumption even when no new data is available. Does not scale well and doesn't guarantees low-latency.

Image source: <u>http://www.ibm.com/developerworks/web/library/wa-reverseajax1/</u>

Comet

Requests are initiated by clients and kept alive for long periods, until a timeout occurs or a response is sent.

\rightarrow On the server, the request is suspended or paused until a response is ready.

Image source: <u>http://www.ibm.com/developerworks/web/library/wa-reverseajax1/</u>

Web Sockets

Web Sockets enables bidirectional communications between the web browser and the web server. No polling is needed to get messages from the server.

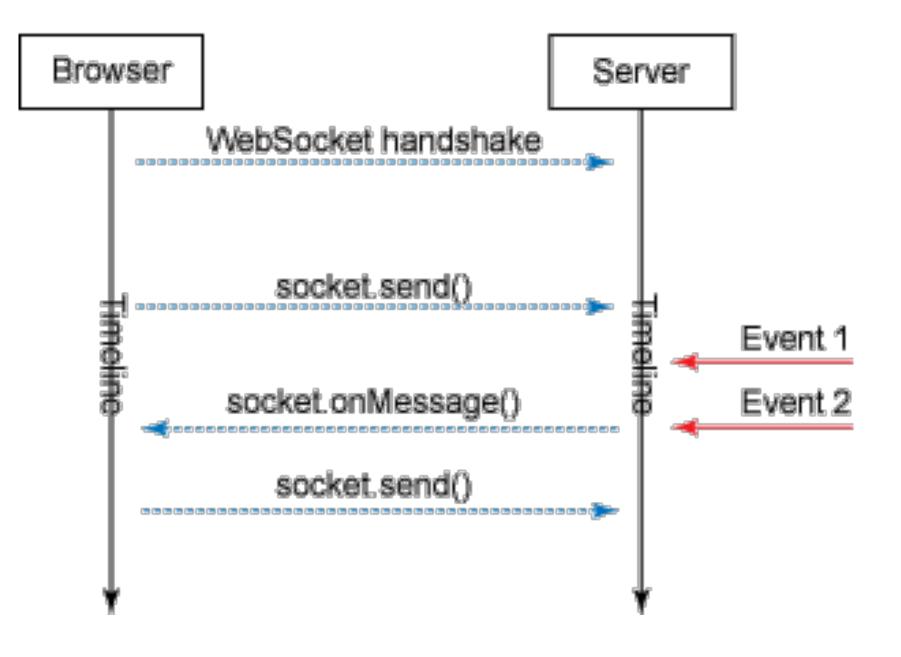


Image source: <u>http://www.ibm.com/developerworks/web/library/wa-reverseajax1/</u>

Web Socket Example

Adapted from: <u>https://developer.mozilla.org/en-US/docs/Web/API/WebSocket</u>

```
const socket = new WebSocket('ws://localhost:8080');
    console.log('Message from server ', event.data);
```


41

Web Sockets References

- The CometD Reference Book https://docs.cometd.org/current/reference/
- The WebSocket API | MDN web docs https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
- → The WebSocket API | W3C https://www.w3.org/TR/websockets/

WebRTC API

WebRTC API

- → WebRTC (Web Real-Time Communications) is a technology which enables communication between browsers without requiring an intermediary.
- video components used in voice and video chat.
- → Example file sharing P2P web application: <u>https://www.sharedrop.io/</u>
- → More: <u>https://webrtc.github.io/samples/</u>

- → WebRTC Home https://webrtc.org/
- → WebRTC API Specification https://www.w3.org/TR/webrtc/

 \rightarrow It includes the building blocks for high-quality communications on the web, such as network, audio and

Web Workers API

Web Workers API

- \rightarrow Web Workers provide support for background execution of scripts.
- any user interface scripts.
- \rightarrow Example use cases:
 - Perform background computationally expensive task.
 - \rightarrow Periodically prefetch data.
 - \rightarrow Share state between multiple clients using a shared worker.
 - Split computationally expensive tasks between clients.

-> JavaScript execution is single-threaded. Web Workers are designed to bring concurrency to web applications through the execution of scripts in background threads, independently of

Web Workers API

- -> Generally, workers are expected to be long-lived, have a high start-up performance cost, and a high per-instance memory cost.
- \rightarrow There are two kinds of workers: dedicated workers, which are used by a
- \rightarrow Data is shared between the main thread and workers using messages.

→ HTML Standard — Web workers (April 2021) https://html.spec.whatwg.org/multipage/workers.html

single script, and shared workers, that can be used by multiple scripts.

Web Workers Example

```
The highest prime number discovered so far is: <output id="out"></output>
<script>
 var worker = new Worker('worker.js');
 worker.onmessage = function (event) {
   document.getElementById('out').textContent = event.data;
 };
```

```
</script>
```

```
var n = 1;
search: while (true) {
  n += 1;
  for (var i = 2; i <= Math.sqrt(n); i += 1)</pre>
    if (n % i == ∅)
     continue search;
  // found a prime!
  postMessage(n);
}
```

worker.js

Progressive Web Applications

- independent, progressive, responsive, safe.
- storage to provide an answer or make server requests.
- → Progressive Web Apps https://developers.google.com/web/progressive-web-apps/

Progressive Web Applications (or PWAs) represent a new type of web applications, that combine multiple technologies and design patterns to improve user experience.

-> Characteristics of progressive web apps: discoverable, installable, linkable, network

Key technology: web workers, which intercept page requests and can use the local

 \rightarrow Other relevant technologies: web app manifest, web storage, notifications, etc.

Progressive Web Apps

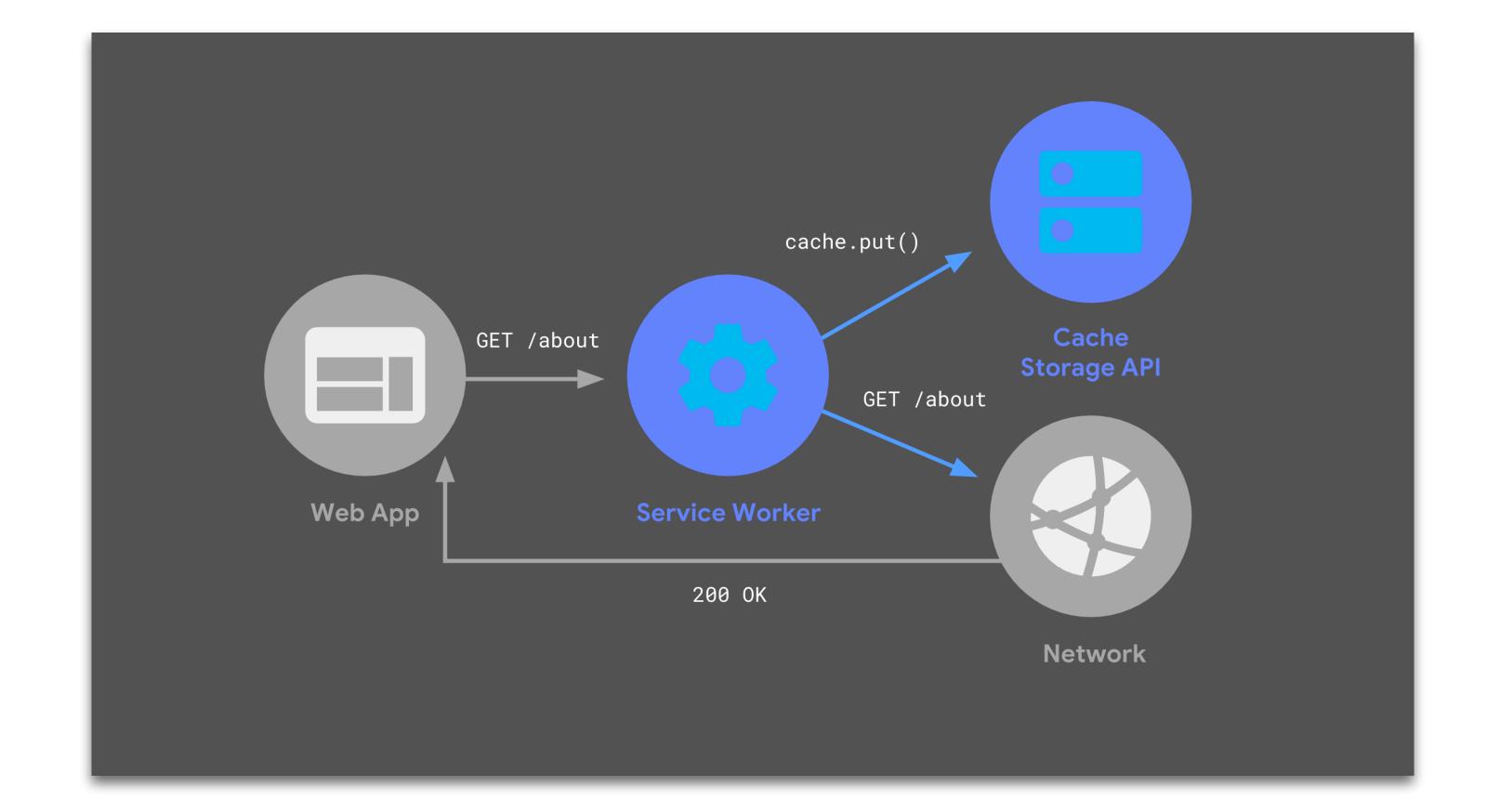



Image from Beyond SPAs: alternative architectures for your PWA (2018) <u>https://developers.google.com/web/updates/2018/05/beyond-spa</u>

HTML References

- → HTML: HyperText Markup Language | MDN https://developer.mozilla.org/en-US/docs/Web/HTML
- → Latest version of HTML https://www.w3.org/TR/html/
- → WHATWG HTML Specification https://html.spec.whatwg.org/multipage/
- \rightarrow Dive Into HTML5 https://diveintohtml5.info/
- → HTML Dog: HTML, CSS and JavaScript tutorials https://htmldog.com/
- → Chapter 2 A history of HTML https://www.w3.org/People/Raggett/book4/ch02.html

