
Client-Side Web Technologies

LBAW . Databases and Web Applications

MIEIC, 2021/22 Edition

Sérgio Nunes

DEI, FEUP, U.Porto

The Big Picture

➔ Web browsers issue requests to web servers, which produce and return
HTML documents for browsers to parse and display.

2. HTTP answer + HTML document

1. HTTP request

Client Server

2

Client-side Web Technologies

HTML
Document Content

and Structure

CSS
Document Layout
and Presentation

JavaScript
Document Behavior

and Interaction

3

HTML: HyperText Markup Language

HyperText Markup Language

➔ HTML is an acronym for HyperText Markup Language and is a format for
providing linked structured information.

➔ HTML documents are simply text files containing marked-up text using tags.

➔ An HTML document is an hypertext node within an hypertext network.

5

Hypertext

➔ Concept defined by Ted Nelson in the 1950s.

➔ A way to organize text (and information) in a non-linear fashion.

➔ “Hypertext: Human-readable information linked together in an unconstrained way.”

➔ From the original WorldWideWeb: Proposal for a HyperText Project (1990)

➔ “HyperText is a way to link and access information of various kinds as a web of
nodes in which the user can browse at will.

It provides a single user-interface to large classes of information (reports, notes,
data-bases, computer documentation and on-line help).”

6

Basic HTML Document

7

View Source

8

A Brief History of HTML

Origins of HTML

➔ Created by Tim Berners-Lee and Robert Cailliau at CERN in the late 1980s.

➔ Main goal was to facilitate document sharing between researchers.

➔ CERN released it as royalty free in 1993.

➔ First official version published by IETF in 1993.

➔ World Wide Web Consortium (W3C) was created to define common standards
for browsers and developers to adhere to.

10

HTML Proposal

➔ Information Management: A Proposal
https://www.w3.org/History/1989/proposal.html

➔ “This proposal concerns the management of general information about experiments at CERN.”

➔ “It discusses the problems of loss of information about complex evolving systems and derives a solution
based on a distributed hypertext system.”

➔ Some practical requirements: remote access, heterogeneity, non-centralization, text-based, “live links”.

➔ Problems being addressed:

➔ Information loss - “Often, the information has been recorded, it just cannot be found.”

➔ Constantly changing information. Keeping a “book-like” organization of all information at CERN is impractical.
Changes are distributed.

➔ Tree-like organizations and keyword-based organization are also not feasible. Too strict and inflexible.

11

https://www.w3.org/History/1989/proposal.html

HTML Timeline

➔ During its first years (1990-1995), HTML revisions and extensions where first hosted at
CERN and then IETF.

➔ Development was moved to the W3C after its creation in 1994.

➔ HTML development stopped in 1998 with the publication of HTML 4.

➔ W3C decided to migrate to an XML-based equivalent, named XHTML.

➔ XHTML was not widely adopted by web authors.

➔ HTML development continued outside W3C, with the WHATWG, whose work is now the
basis for HTML5.

➔ WHATWG - Web Hypertext Application Technology Working Group
12

The Early Days (1989 - 1993)

➔ From proposal (1989) to Mosaic release (1993).

➔ Web users were mostly from academia and research institutions.

➔ Few browsers, most of them text-based.

➔ HTML documents were simple and usually written by hand.

13

Growth Years (1994 - 2002)

➔ Wide adoption of the web to the dot.com bubble (1995-2000).

➔ Companies dispute the web browser market (aka “browser wars”).

➔ Browser development focused on new features, less on standards support.

➔ Wide differences between rendering engines.
Many web pages “designed for browser version x.x”.

➔ Extensive use of tables and sliced graphics to achieve “pixel perfect” layouts -
“print-like design”. Resulted in ugly and complex HTML code.

14

Modern Era (2003 -)

➔ Wide adoption of modern web browsers.

➔ Separation of content and structure from layout and presentation.

➔ HTML controls content and structure.

➔ CSS controls layout and presentation.

➔ Clean and simple code (again!).

➔ CSS (2003), AJAX (2005), mobile (2007).

➔ A platform for (web) applications.
15

HTML

XHTML

➔ In 1998, the W3C decided to abandon HTML development and focus on a
XML-based equivalent, named XHTML.

➔ XHTML 1.0 was completed in 2000.

➔ W3C then moved to XHTML 2.0, introducing several new features and less
backward compatibility.

➔ Real world adoption of XHTML was small.

➔ In 2004, a proposal to refocus on HTML was discarded by the W3C, leading
to outside development of HTML.

17

WHATWG

➔ Members of the W3C formed a new group: the Web Hypertext Application
Technology Working Group (WHATWG).

➔ WHATWG didn't follow a consensus-based approach, so it was able to move
much faster.

➔ In 2006, the W3C acknowledged that XHTML wasn't being adopted and work on
HTML was resumed.

➔ Instead of starting from scratch, the W3C decided to use the work from
WHATWG.

➔ Work on XHTML 2.0 ended in 2009.
18

W3C and WHATWG

➔ WHATWG continues working on HTML as a "living standard" (no versions).
https://html.spec.whatwg.org/

➔ Latest published W3C version of HTML is 5.2.
https://www.w3.org/TR/html52/

➔ Ongoing discussions on how to manage the work and collaboration between
WHATWG and W3C, e.g. stop publishing two separate specifications.

➔ More details: https://wiki.whatwg.org/wiki/W3C

19

https://html.spec.whatwg.org/
https://www.w3.org/TR/html52/
https://wiki.whatwg.org/wiki/W3C

HTML5 Technologies

➔ HTML5 is a collection of features and technologies.

➔ Language / Markup features

➔ Document Model Definition (DOM)

➔ APIs for supporting JavaScript interaction with the DOM

20

From: http://en.wikipedia.org/wiki/HTML5

http://en.wikipedia.org/wiki/HTML5

Browser Support

➔ Support for these technologies has different levels of support in browsers.

➔ "Can I Use" provides up-to-date information about browser support of front-
end technologies. https://caniuse.com

22

https://caniuse.com/

HTML Microdata

HTML Microdata

➔ Extension to define new attributes and embed simple machine-readable data in HTML documents.

➔ Goal: annotate content with machine-readable labels.

➔ Common use case: search engines can better 'understand' and index information that has been
annotated using schema.org vocabulary.

➔ Microdata provides a mechanism to identify items and define their properties.

➔ The itemscope attribute creates an item.

➔ The itemprop attribute descends of itemscope and defines an item property.

➔ With itemtype is possible to associate a vocabulary to an item.

➔ An itemid can be used to define a global unique identifier for the item.

24

Microdata Example

➔ Defines an item with two properties.

25

<div itemscope>
 <p>Flavors in my favorite ice cream:</p>

 <li itemprop="flavor">Lemon sorbet
 <li itemprop="flavor">Apricot sorbet

</div>

Schema.org

➔ Vocabularies define concepts and relationships used to describe and represent areas
of concern. Can be very simple (one or two concepts) or very complex (thousands of
terms).

➔ A shared vocabulary makes it possible to have a common understanding of defined
concepts and relationships.

➔ Schema.org is a collaborative, community driven initiative to create, maintain, and
promote the use of schemas for structured data on the web. Founded by Google,
Microsoft, Yahoo, and Yandex.

➔ Schema.org defines more than 600 types and >900 properties. Such as
CreativeWork, Book, Movie, Event, Organization, Person, Place, Restaurant, etc.

26

Microdata Example using Vocabulary

➔ Example using Schema.org vocabulary.

➔ Defines an item of the type LocalBusiness, as defined by the Schema.org
vocabulary, containing three properties, one of which is a item of the type
PostalAddress, containing four properties.

27

<div itemscope itemtype="http://schema.org/LocalBusiness">
 <h1 itemprop="name">Beachwalk Beachwear & Giftware</h1>
 A superb collection [...].
 <div itemprop="address" itemscope itemtype="http://schema.org/PostalAddress">
 3102 Highway 98
 Mexico Beach,
 FL
 </div>
 Phone: 850-648-4200
</div>

HTML Microdata References

➔ W3C Editor’s Draft - Microdata (April 2021)
https://w3c.github.io/microdata/

➔ HTML Standard Microdata Specification
https://html.spec.whatwg.org/#microdata

➔ Schema.org
https://schema.org/

➔ Semantic Web (aka Web of Data)
https://www.w3.org/standards/semanticweb/

28

https://w3c.github.io/microdata/
https://html.spec.whatwg.org/#microdata
https://schema.org/
https://www.w3.org/standards/semanticweb/

Web APIs

Web APIs

➔ In addition to the language specification, HTML5 introduced several Web APIs that can be
used with JavaScript. There is a large number of APIs in different stages of development.

➔ Documents manipulation APIs (e.g. DOM, Drag and Drop)

➔ Fetch remote data APIs (e.g. Fetch, Web Sockets)

➔ Drawing and graphics manipulation APIs (e.g. Canvas, WebGL)

➔ Audio and Video APIs (e.g. Web Audio, WebRTC)

➔ Device APIs (e.g. Notification, Vibration, Fullscreen)

➔ Client-side storage APIs (e.g. Web Storage, IndexedDB)

30

Geolocation API

Geolocation API

➔ The Geolocation API provides scripted access to geographical location information associated
with the device.

➔ Common sources of location information include Global Positioning System (GPS) and location
inferred from network signals such as IP address, RFID, WiFi and Bluetooth MAC addresses,
and GSM/CDMA cell IDs, as well as user input.

➔ Available both as single-shot request or continuous tracking.

➔ navigator.geolocation.getCurrentPosition(callback)

➔ navigator.geolocation.watchPosition(callback)

➔ Geolocation API Specification
https://www.w3.org/TR/geolocation-API/

32

https://www.w3.org/TR/geolocation-API/

Web Storage API

Web Storage API

➔ Local storage is an important feature for web applications.

➔ Cookies can be used for persistent local storage but are limited in size and are included in
every HTTP request, slowing down the communication and exposing data.

➔ The Web Storage API specifies a mechanism to persistently store data in web clients, as
key-value pairs. Unlike cookies, this data is never shared with the server and can only be
accessed by the client.

➔ Data can be kept during page sessions, using sessionStorage, or persisted even when
the browser is closed, using localStorage.

➔ Web Storage API Specification
https://www.w3.org/TR/webstorage/

34

https://www.w3.org/TR/webstorage/

Web Storage API

➔ Data can be stored and retrieved using keys.

➔ localStorage.setItem("key", data)

➔ localStorage.getItem("key")

➔ It is possible to keep track of changes trapping the storage event.

➔ For structured data, the IndexedDB API can be used. This API specified a low-level API for
storing and indexing large volumes of data in the client.

➔ Indexed Database API 3.0, W3C Working Draft (March 2021)
https://www.w3.org/TR/IndexedDB/

35

https://www.w3.org/TR/IndexedDB/

Web Sockets API

Web Sockets API

➔ Web applications are not restricted to request-response interaction.

➔ A particularly important use case is the need for server initiated
communication (aka "server push").

➔ Common scenarios include notifications on long running tasks, chat systems,
multi-user collaboration systems (e.g. live collaborative text editors).

➔ How to push information from the server to the client?

37

Polling

➔ Make periodic requests to the server to check for new data.

➔ The smaller the interval between request the more up to date the data is.

➔ Drawbacks: resource and bandwidth consumption even when no new
data is available. Does not scale well and doesn't guarantees low-latency.

38Image source: http://www.ibm.com/developerworks/web/library/wa-reverseajax1/

http://www.ibm.com/developerworks/web/library/wa-reverseajax1/

Comet

➔ Requests are initiated by clients and kept alive for long periods, until a timeout occurs
or a response is sent.

➔ On the server, the request is suspended or paused until a response is ready.
39Image source: http://www.ibm.com/developerworks/web/library/wa-reverseajax1/

http://www.ibm.com/developerworks/web/library/wa-reverseajax1/

Web Sockets

➔ Web Sockets enables bidirectional communications between the web browser
and the web server. No polling is needed to get messages from the server.

40Image source: http://www.ibm.com/developerworks/web/library/wa-reverseajax1/

http://www.ibm.com/developerworks/web/library/wa-reverseajax1/

Web Socket Example

41

// Create WebSocket connection.
const socket = new WebSocket('ws://localhost:8080');

// Connection opened
socket.onopen = function (event) {
 socket.send('Hello Server!');
});

// Listen for messages
socket.onmessage = function (event) {
 console.log('Message from server ', event.data);
};

Adapted from: https://developer.mozilla.org/en-US/docs/Web/API/WebSocket

https://developer.mozilla.org/en-US/docs/Web/API/WebSocket

Web Sockets References

➔ The CometD Reference Book
https://docs.cometd.org/current/reference/

➔ The WebSocket API | MDN web docs
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

➔ The WebSocket API | W3C
https://www.w3.org/TR/websockets/

42

https://docs.cometd.org/current/reference/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://www.w3.org/TR/websockets/

WebRTC API

WebRTC API

➔ WebRTC (Web Real-Time Communications) is a technology which enables communication between
browsers without requiring an intermediary.

➔ It includes the building blocks for high-quality communications on the web, such as network, audio and
video components used in voice and video chat.

➔ Example file sharing P2P web application: https://www.sharedrop.io/

➔ More: https://webrtc.github.io/samples/

➔ WebRTC Home
https://webrtc.org/

➔ WebRTC API Specification
https://www.w3.org/TR/webrtc/

44

https://www.sharedrop.io/
https://webrtc.github.io/samples/
https://webrtc.org/
https://www.w3.org/TR/webrtc/

Web Workers API

Web Workers API

➔ Web Workers provide support for background execution of scripts.

➔ JavaScript execution is single-threaded. Web Workers are designed to bring concurrency to
web applications through the execution of scripts in background threads, independently of
any user interface scripts.

➔ Example use cases:

➔ Perform background computationally expensive task.

➔ Periodically prefetch data.

➔ Share state between multiple clients using a shared worker.

➔ Split computationally expensive tasks between clients.
46

Web Workers API

➔ Generally, workers are expected to be long-lived, have a high start-up
performance cost, and a high per-instance memory cost.

➔ There are two kinds of workers: dedicated workers, which are used by a
single script, and shared workers, that can be used by multiple scripts.

➔ Data is shared between the main thread and workers using messages.

➔ HTML Standard — Web workers (April 2021)
https://html.spec.whatwg.org/multipage/workers.html

47

https://html.spec.whatwg.org/multipage/workers.html

Web Workers Example

<p>The highest prime number discovered so far is: <output id="out"></output></p>
<script>
 var worker = new Worker('worker.js');
 worker.onmessage = function (event) {
 document.getElementById('out').textContent = event.data;
 };
</script>

var n = 1;
search: while (true) {
 n += 1;
 for (var i = 2; i <= Math.sqrt(n); i += 1)
 if (n % i == 0)
 continue search;
 // found a prime!
 postMessage(n);
}

worker.js

Progressive Web Applications

➔ Progressive Web Applications (or PWAs) represent a new type of web applications,
that combine multiple technologies and design patterns to improve user experience.

➔ Characteristics of progressive web apps: discoverable, installable, linkable, network
independent, progressive, responsive, safe.

➔ Key technology: web workers, which intercept page requests and can use the local
storage to provide an answer or make server requests.

➔ Other relevant technologies: web app manifest, web storage, notifications, etc.

➔ Progressive Web Apps
https://developers.google.com/web/progressive-web-apps/

49

https://developers.google.com/web/progressive-web-apps/

Progressive Web Apps

50

Image from Beyond SPAs: alternative architectures for your PWA (2018)
https://developers.google.com/web/updates/2018/05/beyond-spa

https://developers.google.com/web/updates/2018/05/beyond-spa

HTML References

➔ HTML: HyperText Markup Language | MDN
https://developer.mozilla.org/en-US/docs/Web/HTML

➔ Latest version of HTML
https://www.w3.org/TR/html/

➔ WHATWG HTML Specification
https://html.spec.whatwg.org/multipage/

➔ Dive Into HTML5
https://diveintohtml5.info/

➔ HTML Dog: HTML, CSS and JavaScript tutorials
https://htmldog.com/

➔ Chapter 2 - A history of HTML
https://www.w3.org/People/Raggett/book4/ch02.html

51

https://developer.mozilla.org/en-US/docs/Web/HTML
https://www.w3.org/TR/html/
https://html.spec.whatwg.org/multipage/
https://diveintohtml5.info/
https://htmldog.com/
https://www.w3.org/People/Raggett/book4/ch02.html

