
PHPPHP
André RestivoAndré Restivo

1 / 1101 / 110

IntroductionIntroduction VariablesVariables Control StructuresControl Structures StringsStrings ArraysArrays

FunctionsFunctions ClassesClasses ExceptionsExceptions DatabasesDatabases HTTP ParametersHTTP Parameters

SessionsSessions PasswordsPasswords HeadersHeaders IncludesIncludes JSONJSON Best PracticesBest Practices

IndexIndex

2 / 1102 / 110

IntroductionIntroduction

3 / 1103 / 110

PHP
Originally called Personal Home Page, it now stands for PHP: Hypertext Preprocessor, which
is a recursive acronym

Created by Rasmus Lerdorf in 1994.

It is a dynamically typed programming language.

Usually used to create dynamic web pages but can also be used to create standalone
programs.

4 / 110

Hello World
The infamous hello world example in PHP:

<?php echo 'Hello World'; ?>

or even shorter

<?='Hello World;

5 / 110

PHP Delimiters
The PHP interpreter only executes PHP code within its delimiters. Anything outside its
delimiters is not processed by PHP.

PHP code can be delimited using "<?php" and "?>", "<?" and "?>" or "<script
language="php">" and "</script>".

The purpose of all these delimiters is to separate PHP code from non-PHP code, including
HTML.

After processing, the PHP code blocks are replaced by their output.

<div>
 <p><?php echo 'Hello World'?></p>
</div>

becomes

<div>
 <p>Hello World</p>
</div>

6 / 110

Echo
The echo function outputs one or more strings.

It is not actually a function (it is a language construct), so you are not required to use
parentheses with it.

It also has a shortcut syntax, where you can immediately follow the opening tag with an
equals sign.

<?php echo 'Hello World'; ?>

<?='Hello World'?>

7 / 110

Comments
There are two ways of creating single line comments:

echo 'Hello World'; // This line prints Hello World
echo 'Hello World'; # This line prints Hello World

Multiple line comments can also be used:

/**
 * The following line
 * prints Hello World
 */
echo 'Hello World';

8 / 110

ResourcesResources
References:References:

http://php.net/manual/en/http://php.net/manual/en/

Benchmarks:Benchmarks:
http://www.phpbench.com/http://www.phpbench.com/

Books:Books:
http://www.phptherightway.com/http://www.phptherightway.com/

9 / 1109 / 110

VariablesVariables

10 / 11010 / 110

Variables
Variables in PHP are represented by a dollar sign followed by the name of the variable.

The variable name is case-sensitive.

PHP does not require (or support) explicit type de�nition in variable declaration

A variable's type is determined by the context in which the variable is used.

$name = 'John';
$age = 25;

11 / 110

Data Types
PHP supports the following scalar types:

boolean

integer

�oat

string

12 / 110

Assignment
The type of a variable is de�ned when a value is assigned to it.

Variables can change type when values of another type are assigned to them.

Assignment is done by value unless the & sign is used.

$foo = 5;
$foo = 'John';

$bar = &$foo;
$foo = 'Mary';

echo $bar; // Mary

13 / 110

Type Juggling
PHP does automatic type conversion whenever it is needed.

For example, the + (sum) operator expects two numerical values.

echo 5 + '10 potatoes'; // 15

PHP automatically converts the string into an integer.

If the string does not contain any of the characters '.', 'e', or 'E' and the numeric value �ts into integer type limits (as de�ned by
PHP_INT_MAX), the string will be evaluated as an integer. In all other cases it will be evaluated as a �oat.

The value is given by the initial portion of the string. If the string starts with valid numeric data, this will be the value used.
Otherwise, the value will be 0 (zero). Valid numeric data is an optional sign, followed by one or more digits (optionally containing a
decimal point), followed by an optional exponent. The exponent is an 'e' or 'E' followed by one or more digits.

14 / 110

Null Value
The special null value represents a variable with no value.

A variable is considered to be null if:

it has been assigned the constant NULL.

it has not been set to any value yet.

it has been unset().

// $a starts as null
$a = 5; // 5
$a = null; // null
$a = 10; // 10;
unset($a); // null;

The constant null is case-insensitive.

15 / 110

Var Dump
The var_dump function displays structured information about one or more expressions that
includes its type and value. Arrays and objects are explored recursively with values indented to
show structure.

$a = 10.5;
$b = true;
var_dump($a, $b);

float(10.5)
bool(true)

Very useful for simple and dirty debugging.

An alternative is print_r, a simpli�ed form of var_dump.

16 / 110

Control StructuresControl Structures
Not so di�erent from other languagesNot so di�erent from other languages

17 / 11017 / 110

While
Executes the nested statement(s) repeatedly, as long as the while expression evaluates to true.

while($expr)
 do_something();

while($expr) {
 do_something();
 do_something_more();
}

while($expr):
 do_something();
 do_something_more();
endwhile;

18 / 110

Do While
Similar to while loops, except the truth expression is checked at the end of each iteration instead
of in the beginning.

do {
 do_something();
} while($expr);

19 / 110

For
The �rst expression is executed once unconditionally at the beginning of the loop.

In the beginning of each iteration, the second expression is evaluated. If it evaluates to false, the
execution of the loop ends.

At the end of each iteration, the third expression is executed.

for ($i = 0; $i < 10; $i++)
 do_something($i);

for ($i = 0; $i < 10; $i++) {
 do_something($i);
 do_something_more($i);
}

20 / 110

If
If the expression evaluates to true, executes the statement(s), and if it evaluates to false, ignores
it(them).

if ($expr)
 do_something();

if ($expr) {
 do_something();
 do_something_more();
}

21 / 110

Else
The else statement extends an if statement to execute a statement in case the expression in the if
statement evaluates to false.

if ($expr)
 do_something();
else
 do_something_else();

if ($expr)
 do_something();
else {
 do_something_else();
 do_something_more();
}

22 / 110

Break and Continue
Break ends execution of the current for, foreach, while, do-while or switch structure.

Continue skips the rest of the current loop iteration and continue execution at the condition
evaluation.

while ($expr) {
 do_something();
 if ($foo) break;
 if ($bar) continue;
 do_something_more();
}

23 / 110

Switch
The switch statement is similar to a series of if statements on the same expression.

After �nding a true condition, PHP continues to execute the statements until the end of the
switch block, or the �rst time it sees a break statement.

switch($name) {
 case "John":
 do_something():
 do_something_more():
 break;
 case "Mary":
 do_something():
 break;
 default:
 do_something_else();
}

24 / 110

Die and Exit
Both die and exit stop the execution of the current PHP script.

They can receive a status as a string, that will be printed before stopping, or an integer, that will
be as the exit status and not printed.

 if ($something == "wrong") die ("Something is Wrong");

 if ($everything == "ok") exit(0);

25 / 110

Loose and Strict Comparisons
Comparisons can be tricky in PHP. There are two type of equality operators:

Loose comparison

if ($a == $b) { // != gives the opposite result
 do_something();
}

Strict comparison

if ($a === $b) { // !== gives the opposite result
 do_something();
}

26 / 110

Loose and Strict Comparisons
Some Examples:

if (1 == true) // true - true is casted into the integer 1
if (1 === true) // false;

if (1 == "1") // true - "1" is casted into the integer 1
if (1 === "1") // false;

if (null == false) // true
if (null === false) // false;

if ("Car" == true) // true
if ("Car" === true) // false;

Learn more: http://php.net/manual/en/types.comparisons.php

27 / 110

StringsStrings

28 / 11028 / 110

Strings
A string is a series of characters.

The simplest way to specify a string is to enclose it in single quotes.

$name = 'John';

A single quote inside a string de�ned using single quotes must be escaped using a backslash. To
specify a literal backslash, double it.

$title = 'Ender\'s Game';

Single quoted strings don't recognize any other escape sequences.

29 / 110

Double Quote
If the string is enclosed in double quotes, more escape sequences for special characters are
allowed (e.g. \r, \n, \t, \\, \"):

$title = "The quick brown fox\njumps over the lazy dog";
// The quick brown fox
// jumps over the lazy dog

Double quoted strings also expand any variables inside them.

$name = 'John';

echo 'This car belong to $name'; // This car belongs to $name
echo "This car belong to $name"; // This car belongs to John

Some developers consider it a best practice to use single quotes when assigning string literals as
they denote that there are no variables inside them.

30 / 110

Concatenation
As we have seen before, the sum operator expects two numeric values. If used with strings it will
try to cast the string into numbers and them sum them.

A di�erent operator is used to concatenate strings together.

$name = 'John';
echo 'Hello World!' . " This is $name.";

31 / 110

Some String Functions
int strlen (string $string)

Returns the length of the given string.

echo strlen('John') // 4

mixed strpos (string $haystack , mixed $needle [, int $offset = 0])

Find the numeric position of the �rst occurrence of needle in the haystack string starting at
o�set. Returns false if not found.

echo strpos ('abccba', 'bc'); // 1
echo strpos ('abccba', 'a'); // 0
echo strpos ('abccba', 'a', 2); // 5
echo strpos ('abccba', 'bc', 2); // false

32 / 110

Some String Functions
string substr (string $string , int $start [, int $length])

Returns the portion of string speci�ed by the start and length parameters.

echo substr('abcdefgh', 2, 4); // cdef

mixed str_replace (mixed $search , mixed $replace , mixed $subject [, int &$count])

Returns a string or an array with all occurrences of search in subject replaced with the given
replace value.

$text = str_replace("cd", "--", "abcdabcd", $count);
echo $text; // ab--ab--
echo $count; //2

33 / 110

Some String Functions
array explode (string $delimiter , string $string [, int $limit])

Returns an array of strings, each of which is a substring of string formed by splitting it on
boundaries formed by the string delimiter.

string implode (string $glue , array $pieces)

Join array elements with a glue string.

$pieces = explode(' ', 'a b c'); // $pieces = array('a', 'b', 'c')
$text = implode('-', $pieces); //$text = 'a-b-c'

34 / 110

ArraysArrays

35 / 11035 / 110

Arrays
At �rst glance, PHP arrays might seem similar to arrays in other classical languages.

$values[0] = 5; // although they don't need to be defined
$values[1] = 10; // and they don't have a fixed size
$values[2] = 20;

for ($i = 0; $i < count($values); $i++) // count returns the size of the array
 $sum = $sum + $values[$i];

echo $sum / count($values); // calculates average: 11.666666666667

36 / 110

Arrays
An array is a ordered map organized as an ordered collection of key-value pairs.

Keys can be either integers or strings and values can hold any type of data. They can even hold
di�erent kinds of data in the same array.

$values['name'] = 'John';
$values['age'] = 45;
$values[3] = 'Car';

37 / 110

Creating Arrays
Arrays can be created just by using a variable as an array. Or they can be explicitly created using
the array() function.

$values = array(); // this creates an empty array

They can also be initialized with some values.

$values = array(1, 2, 3, 'John'); // 0 => 1, 1 => 2, 2=>3, 3 => 'John'

$values = array('name' => 'John', 'age' => 45, 3 => 'Car');

38 / 110

Using Arrays
When a key is not provided, PHP will use the increment of the largest previously used integer key.

$values = array('name' => 'John', 'age' => 45, 2 => 'Car', 'Bicycle');
$values[] = 'Boat';
// 'name' => John, 'age' => 45, 2 => 'Car', 3 => 'Bicycle', 4 => 'Boat'

Note that the maximum integer key used for this need not currently exist in the array. It need only have existed in the array at some
time since the last time the array was re-indexed.

We can even use arrays as an array value.

$people = array(
 array('name' => 'John', 'age' => 45),
 array('name' => 'Mary', 'age' => 35);
);
echo $people[0]['name']; // John

39 / 110

Cycling Arrays
As arrays might not have sequential keys, like in other languages, in PHP we use the following
construct to cycle through them:

$values = array('name' => 'John', 'age' => 45, 2 => 'Car', 'Bicycle');
foreach ($values as $value)
 echo "$value\n";

A similiar construct can be used to cycle through the keys and values simultaneously:

$values = array('name' => 'John', 'age' => 45, 2 => 'Car', 'Bicycle');
foreach ($values as $key => $value)
 echo "$key = $value\n";

40 / 110

Some Array Functions
Searching for data:

bool in_array (mixed $needle , array $haystack [, bool $strict = FALSE])

Searches haystack for needle using loose comparison unless strict is set. Returns true if found,
false otherwise.

mixed array_search (mixed $needle , array $haystack [, bool $strict = false])

Returns the key for needle if it is found in the array, false otherwise.

bool array_key_exists (mixed $key , array $array)

Returns true if the given key is set in the array, false otherwise.

41 / 110

Some Array Functions
Sorting data:

bool asort (array &$array [, int $sort_flags = SORT_REGULAR])

Sorts an array such that array indexes maintain their correlation with the array elements they are
associated with. arsort does the same but in reverse.

bool ksort (array &$array [, int $sort_flags = SORT_REGULAR])

Sorts an array by key, maintaining key to data correlations. krsort does the same but in reverse.

Sort Flags: SORT_REGULAR, SORT_NUMERIC, SORT_STRING, SORT_LOCALE_STRING,
SORT_NATURAL and SORT_FLAG_CASE.

Learn more: http://php.net/manual/en/array.sorting.php

42 / 110

Some Array Functions
Random arrays:

bool shuffle (array &$array)

This function randomizes the order of the elements in an array. Returns true on success or false
on failure.

mixed array_rand (array $array [, int $num = 1])

Picks one or more random entries out of an array, and returns the key (or keys) of the random
entries. When picking only one entry, returns the key, otherwise returns an array of keys.

43 / 110

Some Array Functions
array list (mixed $var1 [, mixed $...])

Used to assign a list of variables in one operation. This is not really a function, but a language
construct.

$values = array('John', 45, 'Bicycle');
list($name, $age, $vehicle) = $values;
echo $name; // John
echo $age; // 45
echo $vehicle; // Bicycle

$values = array('John', 45, 'Bicycle');
list($name, , $vehicle) = $values; // skipping some values

Many more functions: http://php.net/manual/en/ref.array.php

44 / 110

FunctionsFunctions

45 / 11045 / 110

Functions
Any valid PHP code may appear inside a function, even other functions and class de�nitions.

Functions need not be de�ned before they are referenced, except when a function is conditionally
de�ned.

Function names are case-insensitive.

To create a function, we use the function keyword:

function do_something() {
 echo "done";
}

do_something(); // prints done

46 / 110

Arguments
Information may be passed to functions via the argument list.

Arguments have no type speci�ed.

By default, function arguments are passed by value. To have an argument to a function always
passed by reference, prepend an ampersand (&) to the argument name in the function de�nition.

function sum($a, &$b) {
 echo $a + $b;
 $a++;
 $b++;
}

$a = 1; $b = 2;
sum($a, $b); // prints 3
echo $a; // prints 1
echo $b; // prints 3

47 / 110

Default Values
Arguments can have a default value.

When using default arguments, any defaults should be on the right side of any non-default
arguments

function sum($a, $b = 0, $c = 0) {
 echo $a + $b + $c;
}

sum(1); // prints 1
sum(1,2); // prints 3
sum(1,2,3); // prints 6

48 / 110

Returning Values
PHP functions can return values.

The type of the returned value does not need to be speci�ed. In fact, a function can return
di�erent types of values depending on some condition.

There is no distinction between a procedure (a function that doesn't return a value) and a
function.

function sum($a, $b = 0, $c = 0) {
 return $a + $b + $c;
}

echo sum(1); // prints 1
echo sum(1,2); // prints 3
echo sum(1,2,3); // prints 6

49 / 110

Returning Multiple Values
There is no way for a function to return multiple values.

But we can achieve a similar result using arrays and the list construct.

function sort2($a, $b) {
 if ($a > $b) return array($b, $a);
 else return array($a, $b);
}

list($smaller, $larger) = sort2(10, 5);
echo $smaller; \\ 5
echo $larger; \\ 10

50 / 110

Global
As PHP variables do not need to be de�ned before usage, to use a global variable inside a function
we need to declare it as global.

function foo() {
 echo $var;
}

function bar() {
 global $var;
 echo $var;
}

$var = 10;
foo(); // prints nothing
bar(); // prints 10

51 / 110

ClassesClasses

52 / 11052 / 110

Classes
PHP 5 marks the introduction of a brand new object model for PHP.

Every class starts with the word class followed by its name and the class de�nition (inside curly
brackets):

class Car {

 // class definition goes here

}

53 / 110

Properties
Properties are de�ned by using one of the visibility keywords public, protected, or private,
followed by a normal variable declaration.

This declaration may include an initialization, but this initialization must be a constant value.

class Car {
 private $plate = '12-34-AB';
 private $driver = 'John Doe';
}

54 / 110

Methods
Methods are like functions that have access to the private properties of the class. They also have
the same visibility keywords as properties.

However, due to the dynamic typed nature of PHP, to access these properties the pseudo-variable
$this must be used:

class Car {
 private $plate;
 private $driver = 'John Doe';

 public function getDriver() {
 return $this->driver; // return $driver would have returned null
 }
}

55 / 110

Creating
To create an instance of a class, the new keyword must be used.

An object will always be created unless the object has a constructor de�ned that throws an
exception on error.

 $my_car = new Car();

56 / 110

Constructors
PHP allows developers to declare constructor methods for classes.

Classes which have a constructor method call this method on each newly-created object.

The constructor method is always called __construct and can receive any number of parameters.
The destructor method is, as expected, called __destruct.

class Car {
 private $plate;
 private $driver;

 public function __construct($driver, $plate) {
 $this->driver = $driver;
 $this->plate = $plate;
 }

}

$car = new Car('John Doe', '12-34-AB');

57 / 110

Extends
A class can inherit the methods and properties of another class by using the keyword extends in
the class declaration. It is not possible to extend multiple classes; a class can only inherit from
one base class.

class RaceCar extends Car {

 // Specific race car definitions

}

58 / 110

Static
The static keyword allows us to de�ne static properties and methods that are shared between all
instances of the class.

class Car {
 static public $mile = 1.609344; //km
 // ...
}

echo Car::mile;

Static members can be accessed using the name of the class and the :: operator.

Obviously, $this cannot be used inside a static method.

59 / 110

Scope
There are three special keywords that are used to access properties or methods from inside the
class de�nition

self:: - accesses the current class (di�erent from $this)

parent:: - accesses the parent class

static:: - accesses a static member of property

class Car {
 static private $mile = 1.609344; //km

 public function __construct($driver, $plate) {
 parent::__construct($driver, $plate);
 }

 public static function milesToKm($miles) {
 return $miles * static::mile;
 }
}

echo Car::milesToKm(10);

60 / 110

Self vs Static
<?php

 class Foo
 {
 protected static $bar = 1234;

 public function print() {
 echo "static " . static::$bar . "
";
 echo "self " . self::$bar . "
";
 }
 }

 class Bar extends Foo
 {
 protected static $bar = 4321;
 }

 $foo = new Foo();
 $bar = new Bar();

 $foo->print(); // 1234 and 1234
 $bar->print(); // 4321 and 1234

?>

61 / 110

Abstract
Classes de�ned as abstract may not be instantiated. Classes that contain at least one abstract
method must also be abstract. Methods de�ned as abstract cannot de�ne the implementation.
When inheriting from an abstract class, all methods marked abstract in the parent's class
declaration must:

be de�ned by the child;

be de�ned with the same (or a less restricted) visibility;

abstract class Car {
 private $plate;
 private $driver = 'John Doe';

 public function getDriver() {
 return $this->driver;
 }

 abstract public function getPlate();
}

62 / 110

Interfaces
Interfaces are de�ned using the interface keyword, in the same way as a standard class, but
without any of the methods having their contents de�ned.

The implements speci�es that a speci�c class implements the interface.

interface Car {
 public function getDriver();
 public function getPlate();
}

class RaceCar implements Car {
 private $plate;
 private $driver;

 public function getDriver() {
 return $this->driver;
 }

 public function getPlate() {
 return $this->plate;
 }
}

63 / 110

Final
The �nal keyword, prevents child classes from overriding a method by pre�xing the de�nition
with �nal.

If the class itself is being de�ned �nal then it cannot be extended.

final class RaceCar implements Car {
 private $plate;
 private $driver;

 public function getDriver() {
 return $this->driver;
 }

 final public function getPlate() {
 return $this->plate;
 }
}

64 / 110

ExceptionsExceptions

65 / 11065 / 110

Exceptions
Exceptions are events that occur during the execution of a script that disrupt the normal �ow of
instructions.

Like in other programming languages, exceptions can be thrown, and caught within PHP.

To throw an exception we use the throw keyword:

if ($db == null)
 throw new Exception('Database not initialized');

66 / 110

Exceptions
Exception is a class with the following public methods:

final public string getMessage ();
final public Exception getPrevious ();
final public mixed getCode ();
final public string getFile ();
final public int getLine ();
final public array getTrace ();
final public string getTraceAsString ();

A user de�ned Exception class can be de�ned by extending the built-in Exception class.

67 / 110

Try and Catch
The try-catch statement consists of a try block followed by one or more catch clauses, which
specify handlers for di�erent exceptions.

try {
 $car = getCar($id);
} catch (DatabaseException $e) {
 echo 'Database error: ' . $e->getMessage();
} catch (Exception $e) {
 echo 'Unknown error: ' . $e->getMessage();
}

68 / 110

DatabasesDatabases

69 / 11069 / 110

PDO
The PHP Data Objects (PDO) extension de�nes a lightweight, consistent interface for accessing
databases in PHP.

70 / 110

Connecting
To connect to a database we use a PDO object.

The connection string is database dependent.

$dbh = new PDO('mysql:host=localhost;dbname=test', $user, $pass);

$dbh = new PDO('pgsql:host=localhost;port=5432;dbname=anydb', $user, $pass);

$dbh = new PDO('sqlite:database.db');

71 / 110

Prepared Statements
Prepared statements are the recommended way of executing queries as they prevent SQL
injection attacks.

$stmt = $dbh->prepare('INSERT INTO person (name, address)
 VALUES (:name, :address)');
$stmt->bindParam(':name', $name);
$stmt->bindParam(':address', $address);

$stmt->execute();

72 / 110

Prepared Statements
Another form of prepared statements.

$stmt = $dbh->prepare('INSERT INTO person (name, address) VALUES (?, ?)');
$stmt->execute(array($name, $address));

Values are bound to each question mark in order.

73 / 110

Getting Results
To get the results of a SELECT query the function fetch can be used.

This function fetchs one row at a time and returns false if there are no more rows.

$stmt = $dbh->prepare('SELECT * FROM person WHERE name = ?');
$stmt->execute(array($name));

while ($row = $stmt->fetch()) {
 echo $row['address'];
}

74 / 110

Getting Results
The fetch_all function returns the complete result as an array of rows.

$stmt = $dbh->prepare('SELECT * FROM person WHERE name = ?');
$stmt->execute(array($name));

$result = $stmt->fetchAll()

foreach ($result as $row) {
 echo $row['address'];
}

If the query result is large, using fetch_all might waste a lot of memory.

75 / 110

Fetch Mode
Query results can return results in several di�erent modes. Some of them:

PDO::FETCH_ASSOC: returns an array indexed by column name

PDO::FETCH_NUM: returns an array indexed by column number

PDO::FETCH_BOTH (default): returns an array indexed by both column name and 0-
indexed column number

Changing the default fetch mode (has to be done every time a connection is created):

$dbh->setAttribute(PDO::ATTR_DEFAULT_FETCH_MODE, PDO::FETCH_ASSOC);

76 / 110

Transactions
Unfortunately, not every database supports transactions, so PDO needs to run in what is known
as "auto-commit" mode when you �rst open the connection.

If you need a transaction, you must use the beginTransaction() method to initiate one.

$dbh->beginTransaction();

// queries go here

$dbh->commit; // or $dbh->rollBack();

77 / 110

Error Handling
PDO o�ers you a choice of 3 di�erent error handling strategies:

PDO::ERRMODE_SILENT The default mode. No error is shown. You can use the errorCode()
and errorInfo() on both database and statement objects to inspect the error.

PDO::ERRMODE_WARNING Similar to previous one but a warning is shown.

PDO::ERRMODE_EXCEPTION In addition to setting the error code, PDO will throw a
PDOException and set its properties to re�ect the error code and error information.

78 / 110

Error Handling
Setting the default error handling strategy:

$dbh->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

Using PDO exceptions:

try {
 $stmt = $dbh->prepare("SELECT * FROM person WHERE name = ?");
 $stmt->execute(array($name));

 $result = $stmt->fetchAll()
} catch (PDOException $e) {
 // Do something about it...
 echo $e->getMessage();
}

79 / 110

HTTP ParametersHTTP Parameters

80 / 11080 / 110

$_GET and $_POST
The special $_GET variable is an associative array of variables passed to the current script via the
URL parameters. The special $_POST variable is an associative array of variables passed to the
current script via the HTTP Header.

$name = $_GET['name'];
$email = $_GET['email'];

These are superglobal, or automatic global, variables. There is no need to do global $variable; to
access them within functions or methods.

81 / 110

SessionsSessions

82 / 11082 / 110

Cookies
Cookies are a mechanism for storing data in the remote browser.

83 / 110

Cookies
You can set a cookie using the setcookie function:

bool setcookie (string $name [, string $value [, int $expire = 0
 [, string $path [, string $domain [, bool $secure = false
 [, bool $httponly = false]]]]]])

Like other header functions, cookies must be sent before any output from your script (this is a
protocol restriction). This requires that you place calls to this function prior to any output,
including and tags as well as any whitespace.

You can access the cookies sent by the browser using the special $_COOKIE array.

If you set a cookie, it won't be sent back until the next request and so the data won't be present in
$_COOKIE.

84 / 110

Sessions
As cookies are stored in the browser, they cannot be used as a secure mechanism for storing
sensitive information (e.g. the current user).

Sessions are a mechanism, using cookies, that can be used to persist state information between
page requests in the server:

1. When a session is started, PHP will either:
retrieve an existing session using the ID passed (usually from a session cookie) or

if no session is passed it will create a new session.

2. PHP will populate the $_SESSION superglobal with any session data after the session has
started.

3. When the script ends, it will automatically take the contents of the $_SESSION superglobal,
serialize it, and send it for storage.

85 / 110

Sessions

86 / 110

Session Start
Sessions can be started using the session_start function:

bool session_start (void)

Like other header functions, sessions must be started before any output from your script (this is a
protocol restriction). This requires that you place calls to this function prior to any output,
including and tags as well as any whitespace.

Normally called in every page to ensure session variables are always accessible.

87 / 110

$_SESSION
The special $_SESSION variable is an associative array containing session variables available to
the current script.

session_start();
echo $_SESSION['name'];
$_SESSION['name'] = 'John';

The correct way of verifying if a session variable exists is:

if (isset($_SESSION['name']))

But do not forget that it can exist and still be empty.

88 / 110

Session Destroy
The function session_destroy destroys all of the data associated with the current session.

It does not unset any of the global variables associated with the session, or unset the session
cookie.

In order to kill the session altogether, like to log the user out, the session id must also be unset.

bool session_destroy (void)

89 / 110

Session Parameters
The parameters of the cookie used for the session cookie can be changed using the
session_set_cookie_params function.

void session_set_cookie_params (int $lifetime [, string $path [, string $domain
 [, bool $secure = false
 [, bool $httponly = false]]]])

lifetime of the session cookie, de�ned in seconds. The value 0 means "until the browser is
closed

path on the domain where the cookie will work. Use a single slash ('/') for all paths on the
domain.

Cookie domain, for example 'www.fe.up.pt'. To make cookies visible on all subdomains then
the domain must be pre�xed with a dot like '.fe.up.pt'.

90 / 110

Storing PasswordsStoring Passwords

91 / 11091 / 110

Hash Functions
Password should never be stored in plain text. Instead you should use a one-way hashing
function.

echo md5('apple');
// 1f3870be274f6c49b3e31a0c6728957f
echo sha1('apple');
// d0be2dc421be4fcd0172e5afceea3970e2f3d940
echo hash('sha256', 'apple');
// 3a7bd3e2360a3d29eea436fcfb7e44c735d117c42d1c1835420b6b9942dd4f1b

92 / 110

HTTP HeadersHTTP Headers

93 / 11093 / 110

Header
The header function sends a raw HTTP header to the browser.

This can be used, for example, to redirect the browser to another page:

header('Location: another_page.php');

Like other header functions, headers must be sent before any output from your script (this is a
protocol restriction). This requires that you place calls to this function prior to any output,
including and tags as well as any whitespace.

Do not forget that this does not stop the execution of the script. If you want to stop execution you
must follow this instruction with die() or exit().

94 / 110

IncludesIncludes

95 / 11095 / 110

Includes
The include statement includes and evaluates the speci�ed �le.

The require statement is identical to include except upon failure it will also produce a fatal
E_COMPILE_ERROR level error.

The include_once statement is identical to include except PHP will check if the �le has already
been included.

The require_once statement is identical to require except PHP will check if the �le has already
been included.

96 / 110

Relative Includes
In PHP, includes are relative to the �le requested by the browser, not the �le that contains the
include command. This means that:

 b/Y.php // file requested by the browser
 b/Z.php // file included by Y.php

 //Y.php only needs to do: include('Z.php')

But:

 a/X.php // file requested by the browser
 b/Y.php // file included by X.php
 b/Z.php // file included by Y.php

 //X.php needs to do: include('../b/Y.php')
 //Y.php needs to do: include('../b/Z.php')

97 / 110

Magic Constants (for �les)
To make including �les in PHP easier, we can use the following magic constants:

__FILE__ // The full path and filename of the current file.
__DIR__ // The folder of the current file.

And the following function that returns the folder of a �le:

string dirname (string $path [, int $levels = 1])

For example:

dirname(__FILE__) // same as __DIR__
dirname(__DIR__) // returns the parent folder of the current file

98 / 110

JSONJSON

99 / 11099 / 110

JSON
JSON (JavaScript Object Notation) is a lightweight data-interchange format.

It is easy for humans to read and write.

It is easy for machines to parse and generate.

[
 {
 "id":"1",
 "title":"Mauris...",
 "introduction":"Sed eu...",
 "fulltext":"Donec feugiat..."
 }, {
 "id":"2",
 "title":"Etiam efficitur...",
 "introduction":"Cum sociis ...",
 "fulltext":"Donec feugiat..."
 }
]

100 / 110

JSON
The PHP json_encode and json_decode functions can be used to encode from and to JSON easily.

 $encoded = json_encode($posts);
 $decoded = json_decode($encoded); //$decoded === $posts

101 / 110

Best PracticesBest Practices

102 / 110102 / 110

Validate your input
Never trust the user:

 if (!isset($_GET['username'] ||
 $_GET['username'] === '' ||
 length($_GET['username'] > 20))
 // Do something about it

103 / 110

Separate your PHP and HTML code
Always start by calculating/querying all your data and only then start outputting HTML.

<?php
 $stmt = $dbh->prepare('SELECT * FROM car WHERE make = ?');
 $stmt->execute(array($make));

 $cars = $stmt->fetchAll();
?>
<body>
<? foreach ($cars as $car) { ?>

 Model: <?=$car['model']?>
 Price: <?=$car['price']?>

<? } ?>
</body>

You can use the short version of echo to make your code look nicer.

PHP delimiters can break in the middle of a block and pickup later.

104 / 110

DRY

Don't Repeat Yourself
Use include and/or functions to avoid code repetions:

function getAllCars($dbh) { // inside database/cars.php
 $stmt = $dbh->prepare('SELECT * FROM car WHERE make = ?');
 $stmt->execute(array($make));

 $cars = $stmt->fetchAll();
}

include ('database/init.php');
include ('database/cars.php');
$cars = getCars($dbh);

105 / 110

DRY

Don't Repeat Yourself
Use include and/or functions to avoid code repetions:

<html> <!-- inside templates/header.html -->
 <head>
 <title>My Site</title>
 <meta charset="utf-8">
 </head>
 <body>

 </body> <!-- inside templates/footer.html -->
</html>

106 / 110

DRY

Don't Repeat Yourself
Use include and/or functions to avoid code repetions:

<?php
include ('database/init.php');
include ('database/cars.php');
$cars = getCars($dbh);

include ('templates/header.html');

foreach ($cars as $car) { ?>

 Model: <?=$car['model']?>
 Price: <?=$car['price']?>

<? }
include ('templates/header.html');
?>

107 / 110

Separate Actions from Views
Never mix scripts that show data with scripts that change data:

list_news.php
Shows all news.

Has links to each one of the news items view_item.php.

view_item.php
Shows one news item and its comments.

Receives the id of the item.

Link to edit_item.php.

edit_item.php
Shows a form that allows the user to edit a news item.

Submits to save_item.php.

save_item.php
Receives the new data for the news item.

Saves it in the database and redirects to view_item.php.

108 / 110

Separate Actions from Views
{id}list_news.php

{id}

view_item.php

{item data}

edit_item.php
«form»

error
{item data}

success
{id}

save_item.php
«action»

109 / 110

Extra Stu�
Functions: Dates, Image Processing

Charts: jpGraph, pChart

Extensions: SPL

Libraries: Pear

Template Engines: Smarty

Frameworks: CodeIgniter, CakePHP, Symfony, Zend, Laravel, ...

110 / 110

