Database Indexes, Triggers and Transactions

Databases and Web Applications Laboratory (LBAW)
Bachelor in Informatics Engineering and Computation (L.EIC)

Sérgio Nunes
Dept. Informatics Engineering
FEUP - U.Porto



Outline

-> Database Specification (EBD) development (A6)
- [ndexes
- [riggers
- [ransactions

- Database Population

-> PostgreSQL setup



L BAW Plan

-> Plan: https://web.fe.up.pt/~ssn/wiki/teach/lbaw

> 5th week of classes:;
- Continue development on the second component (EBD):

= Lab classes:

> continue work on component (EBD);

> work on the relational schema (A5).

-> Monitor sessions: \Wednesday, at 15h, online

- PostgreSQL setup and use.


https://web.fe.up.pt/~ssn/wiki/teach/lbaw

Datalbase Specification (EBD) Development



Database Specification (EBD) Component

> The E

3

D component groups the artefacts to be made by the development team Iin order to

support the storage and retrieval requirements identified in the requirements specification.

=> |t consists of three artefacts:

= A4: Conceptual Data Model

> Ab;

Relational Schema, Validation and Schema Refinement

> AOG: Indexes, Iriggers, Transactions and Database Population

=> https://web.fe.up.pt/~ssn/wiki/teach/lbaw/202122/artefacts



https://web.fe.up.pt/~ssn/wiki/teach/lbaw/202122/artefacts/index#ii_database_specification_ebd_25

/'@Wew
A5. Relational Schema, Validation and Schema Refinement

-> The Ab artifact contains the Relational Schema obtained by mapping from the Conceptual Data
Model.

-> The Relational Schema includes each relation schema, attributes, domains, primary keys, foreign keys
and other integrity rules: UNIQUE, DEFAULT, NOT NULL, CHECK.

—> Relation schemas are specified in the compact notation.

-> |n addition to this representation, the relational schema is also presented in SQL as an annex.

-> o validate the Relational Schema obtained from the Conceptual Model, all functional dependencies
are identified and the normalization of all relation schemas is accomplished.

-> Should it be necessary, in case the scheme is not in the Boyce—Codd Normal Form (BCNF), the
relational schema is refined using normalization.




A5. Relational Schema Compact Notation

-> Relation schemas are specitfied in the compact notation:

- {a d, attribute NN)

(
(id, attribute — Table1 NN)

e3(id1, id2 = Table?, attribute UK NN)
e4((id1, id2) — Table3, id3, attribute)

A Y 7

a
a
a

O O O O

-> Primary keys are underlined. UK means UNIQUE and NN means NOT NULL.

—-> [he specification of additional domains can also be made in a compact form, using the notation:

- [oday DATE D
Priority ENUM

“AULT CURRENT _DATE
'High', 'Medium', 'Low’)

N

- In PostgreSQL use lower case and the "snake_case" convention.



Ab. Relational Schema Mapping

Summary of Mapping Rules from
Logical UML Models to Relational Schemas

Translated from:

UML - Metodologias e Ferramentas CASE, Vol. 1, 22 Edi¢cao, pp. 314-315
Alberto Silva e Carlos Videira, Centro Atlantico (2005)

Rule 1

Rule 2

Rule 3

Rule 4

Rule 5

Rule 6:

Rule 7:

Classes are mapped into relation schemas
Class attributes are mapped to attributes of relations.

Operations of classes are generally not mapped. They can nevertheless be mapped to stored procedures, stored
and executed in the global context of the database involved.

Objects are mapped into tuples of one or more relations.

Each object is uniquely identified.

If the identification of an object is defined explicitly by the OID (object identifier) stereotype, associated with one
or more attributes, this attribute is mapped to primary key in the relation schema.

Otherwise, we assume implicitly that the corresponding primary key is derived from a new attribute with the
name of the relation and common suffix (e.g. "PK", "ID").

The mapping of many-to-many associations involves the creation of a new relation schema, with attributes acting
together as primary key, and individually as foreign key for each of the schemas derived from the classes
involved.

The mapping of one-to-many associations involves the introduction, in the relation schema corresponding to the
class that has the constraint "many", of a foreign key attribute for the other schema.

Alberto Manuel Rodrigues da Silva e Carlos Alberto Escaleira Videira, UML, metodologias
e ferramentas CASE, 22 Edicao, Volume 1, Centro Atlantico Editora, Maio 2005.



Ab. Relational Schema Mapping

Rule 8:

Rule 9:

Rule 10:

Rule 11:

The mapping of one-to-one associations has in general two solutions. The first corresponds to the fusion of the
attributes of the classes involved in one common schema. The second solution is to map each of the classes in the
corresponding schema and choose one of the schemas as the most suitable for the introduction of a foreign key
attribute for the other schema. This attribute should also be defined as unique within that schema.

Association navigability in general has no impact on the mapping process. The exception lies in one-to-one
associations, when they are complemented with navigation cues it helps in the selection of the schema that
should include the foreign key attribute.

Aggregation and composition associations have a minimal impact on the mapping process, which may correspond
to the definition of constraints cascade ("CASCADE") in changing operations and/or removal of tuples.

The mapping of generalization associations in general presents three solutions.

The first solution consists in crushing the hierarchy of classes in a single schema corresponding to the original
superclass. This solution is appropriate when there is a significant distinction in the structure of sub-classes
and/or when the semantics of their identification is not strong.

The second solution is to consider only schemas corresponding to the sub-classes and duplicate the attributes of
the super-class in these schemas; in particular it works if the super-class is defined as abstract.

The third solution is to consider all the schemas corresponding to all classes of the hierarchy, resulting in a mesh
of connected schemas and maintained at the expense of referential integrity rules. This solution has the
advantage of avoiding duplication of information among different schemas, but suggests a dispersion of
information by various schemas, and might involve a performance penalty in query operations or updating of
data by requiring the execution of various join operations (i.e. "JOIN") and/or validation of referential integrity.

Alberto Manuel Rodrigues da Silva e Carlos Alberto Escaleira Videira, UML, metodologias
e ferramentas CASE, 22 Edicao, Volume 1, Centro Atlantico Editora, Maio 2005.



Mapping Generalizations

media

ZAN

{complete, disjoint]}

book

ca

dvd

# Superclass approach

media(id, type CHK {book, cd, dvd} ...)

# ER approach

media(id, ...)
book(id->media, ...)
cd(id->media, ...)
dvd(id->media, ...)

# Object Oriented

book(id, [media attributes], ...)
cd(id, [media attributes], ...)
dvd(id, [media attributes], ...)

10



AO. Indexes, Triggers, Transactions and Database Population

-> This artefact contains the physical schema of the database,
- the identification and characterization of the indexes,
- the support of data integrity rules with triggers,
- the definition of the datalbase user-defined functions,

= and the identification and characterization of the database transactions.

-> This artefact also includes the complete database creation script, including all SQL code
necessary to define all integrity constraints, indexes, triggers and transactions.

—> Also, the database creation script and the database population script should be included as
separate elements.

11



AD. Indexes

-> [he workload is a study of the predicted system load, including an estimate on the number and growth
of tuples In each relation.

-> Performance indexes are applied to improve the performance of select queries.

> At most, three performance indexes can be proposed, identifying the ones that have the biggest
impact on the performance of the application.

-> For each proposed index, it is necessary to indicate and justify the type chosen (B-tree, Hash, GiST,
GIN), and also if clustering is recommended. As a last resource, controlled redundancy may be
iIntroduced (de-normalisation).

-> The system being developed must provide full-text search features supported by PostgreSQL. Thus, it Is
necessary to specify the fields where full-text search will be available and the associated setup,
namely all necessary configurations, indexes definitions and other relevant details.

12



Indexes in PostgreSQL (1)

-> |[ndexes are secondary data structures used to improve data access (useful metaphor - the alphabetical
back-of-the-book index).

=> Finding and retrieving specific rows Is much faster with indexes, but they add an overhead to the execution.

> Without indexes, tables are usually sequentially scanned to find the matching entry.

> With indexes, the number of steps to find the matching records can be drastically reduced.

=> [wo main types:

- B-tree indexes: use a tree-like data structure that maintains data sorted and allow for search, order,
range search in log time.

>

aS

O

e

A

fa'

INndexes: use a has

or IS used (no sort

n-function to map keys to values; are only considered when an equality
INg Or ranges).

13



Indexes in PostgreSQL (2)

-> |[ndexes can be created for more than one attribute (multicolumn).

- CREATE INDEX name ON table (a, b);

> Work when searching for both attributes simultaneously or just a. Not just b.

—> |ndexes can also be created for expressions.

> SELECT * FROM test1 WHERE lower(col1) = 'value';

> CREATE INDEX test1_lower_col1_idx ON test1 (lower(col1));

- [ndex usage can be analyzed with the EXPLAIN command.

14



Unique Indexes

- |[ndexes can also be used to enforce uniqueness of a column's value, or the
unigueness of the combined values of more than one column.

-> CREATE UNIQUE INDEX name ON table (column [, ...]);

-> \Wher

Nnot al

an index
owed. Nu

IS declared unique, multiple table rows with equal indexed values are

| values are not considered equal.

-> PostgreSQL automatically creates a unique index when

- a unigque constraint or

- primary Key Is defined for a table.

15



Clustering

-> Clustering a table results in the physical re-ordering of data in disk based on the
iIndex iInformation. To cluster a table, an index must already be defined.

-> Clustering is a one-time operation: when the table is subsequently updated, the
changes are not clustered.

-> |f needeq, clustering can be set to run periodically using cron.

-> Clustering will help when multiple records are read together and an index can group
them. It will be Irrelevant when single rows are randomly accessed In a table.

16



Cardinality

- [he unigueness of data values contained in a particular column.

- [he lower the cardinality, the more duplicate values in the column.

- Examples:

- high cardinality - primary key

> medium cardinality - last name in a customer table

- |ow cardinality - boolean column

-> Cardinality is used by the

PostgreSQL p

of rows returned by a W
used.

q

— clause. T

anner, amongst other statistics, to estimate the num

NIS IS then used to decide If, and what, indexes shou

Oer

d be

17



Full Text Search

-> How can you search for a work in text fields”? And multiple words”?

-> Using the LIKE operator is not feasible
- There is no linguistic support (e.g. singular / plural).
- No ranking Is provided, only a set of results.
-> Multiple words search is not supported.

- [here Is No Index support.
-> [t Is necessary to index each work individually.
-> This is called full text search, or simply text search, on PostgreSQL.

-> Key first step — define what is a document in our search system and what information is relevant.

18



tsvector lype

> [ext are broken into lexemes, a normalized representation of words, e.g.
normalization includes converting to lowercase, identifying the stem, etc.

- [he tsvector data type Is used to store distinct lexemes.

> SELECT to_tsvector(‘english’, "'The quick brown fox jumps over the lazy dog’)
= 'brown":3 'dog":9 'fox":4 jump":5 'lazi':8 'quick’:?2

- [he function to_tsvectors returns a tsvector with duplicates removed, stop words
removed, and the number of position of each lexeme recorded.

19



tsqueries lype

-> Queries, I.e. searches, are represented as tsqueries.

- [he to_tsquery and plainto_tsquery functions convert a text query to a tsquery, a
structure optimized for searching tsvectors.

- SELECT plainto_tsquery('english','sail boats');

- 'sall' & 'boat’

- SELECT plainto_tsquery('portuguese’,'o velho barco’);

- 'velh' & 'barc

20



Matching tsqueries to tsvectors

-> [he

> S
P

@@ operator is used to assert if a tsvector matches a tsquery:

—| ECT to_tsvector('portuguese’,'o velho barco') @@

ainto_tsquery('portuguese’, 'barca’);

> 1

>S5

—| ECT to_tsvector('portuguese’, o velho barco') @@

ainto_tsquery('portuguese’,'carro’);

> f

=CT title FROM posts

WH

RE to_tsvector(‘english’, title || ' ' || body) @@ plainto_tsquery('english’, 'jumping dog");

21



FTS Weights

-> Sometimes we want to give more importance to some specific fields.
-> We can use the setweight to attach a weight to a certain tsvector.

-> Weights go from ‘A" (more important) to 'D’ (less important).

> SELECT
setweight(to_tsvector(‘english', "The quick brown fox jumps over the lazy dog'), '‘A") ||

setweight(to_tsvector('english’, 'An English language pangram. A sentence that contains
all of the letters of the alphabet."), 'B')

-> ‘alphabet’:24B 'brown":3A ‘contain’:17B 'dog":9A 'english":11B 'fox":4A 'jump":5A
languag':12B 'lazi":8A 'letter:21B 'pangram’:13B" quick':2A 'sentenc':158




Ranking FTS Results

-> PostgreSQL provides two predefined ranking functions, which take into account
lexical, proximity, and structural information:

- how often the query terms appear in the document;
> how close together the terms are In the document;

- how important is the part of the document where they occur.

> Different applications might require additional information for ranking, e.g., document
modification time. The built-in ranking functions are only examples.



Ranking FTS Results

=> The ts_rank and ts_rank_cd functions, return a score for each returned row for a certain match
between a tsquery and tsvector.

-> SELECT ts_rank(
setweight(to_tsvector('english', "The quick brown fox jumps over the lazy dog'), 'A') |
setweight(to_tsvector('english’, 'An English language pangram. A sentence that contains all of the
letters of the alphabet.’), 'B'),
plainto_tsquery('english’, 'jumping dog')
)

=> 0.95624299

-> You can also change the weights of the tsvector classes (A to D) and set how normalization, due to
different document lengths, should be performed.



Pre-calculate FTS

-> For performance reasons, we should consider adding a column to tables where FTS
IS to be performed containing the tsvector values of each row.

> [his column should be updated whenever a row changes or is inserted. This can be
done easlily using a trigger.

CREATE FUNCTION post_search _update() RETURNS TRIGGER AS $%
BEGIN
IF TG_OP = "INSERT' THEN
NEW.search = to_tsvector('english', NEW.title);
END IF;
IF TG_OP = "UPDATE"' THEN
ITF NEW.title <> OLD.title THEN
NEW.search = to_tsvector('english', NEW.title);
END IF;
END IF;
RETURN NEW;
END
$$ LANGUAGE 'plpgsqgl’;

25



INndexing FTS

-> o select all posts containing jumping and dog we can use the following query

> SELECT titleFROM posts
WHERE search @@ plainto_tsquery(‘english’, 'jumping dog’)
ORDER BY ts_rank(search, plainto_tsquery(‘english’, 'jumping dog')) DESC

—> Note that search is a pre-calculated column containing the tsvector of the columns we want to search.

-> To improve the performance of our full text searches, we can use GIN or GIST indexes:

> CREATE INDEX search_idx ON posts USING GIN (search);

> CREATE INDEX search_idx ON posts USING GIST (search);

-> Rule of thumb, use GIN if updates to searchable terms are rare and you want to make searches fast.



A6. MedialLibrary Indexes (Performance)

1. Database workload

Understanding the nature of the workload for the application and the performance
goals, is essential to develop a good database design. The workload includes an
estimate of the number of tuples for each relation and also the estimated growth.

Relation Relation name Order of magnitude Estimated growth

RO1 user 10 k (tens of 10 (tens) / day
thousands)

R0O2 author 1 k (thousands) 1 (units) / day

RO3 collection 100 (hundreds) 1/ day

RO4 work 1k 1/ day

ROS author_work 1k 1/ day

RO6 nonbook 100 1/ day

RO7 publisher 100 1/ day

RO8 book 1k 1/ day

RO9 location 100 1/ day

R10 item 10k 10 / day

R11 loan 100 k 100 (hundreds) / day

R12 review 10k 10 / day

R13 wish_list 10k 10 / day

2. Proposed Indexes

Indexes are used to enhance database performance by allowing the database server
to find and retrieve specific rows much faster. An index defined on a column that is
part of a join condition can also significantly speed up queries with joins. Moreover,
indexes can also benefit UPDATE and DELETE commands with search conditions.

After an index is created, the system has to keep it synchronised with the table, which
adds overhead to data manipulation operations. As indexes add overhead to the
database system as a whole, they are used sensibly.

2.1. Performance indices

Performance indexes are applied to improve the performance of select queries. At
most, three performance indexes can be proposed, identifying the ones that have the
biggest impact on the performance of the application.

Indexes should be proposed considering queries that are frequently used and involve
large relations. Additionally, this section includes an analysis of the execution plan
for two central, non-trivial, and frequently used SQL queries significantly impacted by
the proposed performance indexes.

Index IDX01

Index relation work

Index attribute id_users

Index type B-tree

Cardinality Medium

Clustering Yes

Justification Table ‘work’ is very large. Several queries need to frequently

filter access to the works by its owner (user). Filtering is
done by exact match, thus an hash type index would be best
suited. However, since we also want to apply clustering
based on this index, and clustering is not possible on hash
type indexes, we opted for a b-tree index. Update frequency
is low and cardinality is medium so it's a good candidate for
clustering.

SQL Code

CREATE INDEX user_work ON work USING btree (id users);

CLUSTER work USING user_work;

27



AG6. MedialLibrary Indexes (Full Text Search)

2.2. Full-text Search indexes

Full-text search indexes are applied to provide keyword based search over records of
the database. Results using FTS are ranked by relevance and can use signals from
multiple tables and with different weights. The first step in the process of defining
FTS indices is to define what is a document’ for the search features to support.

SQL Code

Index IDX11

Index relation work

Index attributes title, obs

Index type GIN

Clustering No

Justification To provide full-text search features to look for works based
on matching titles or observations. The index type is GIN
because the indexed fields are not expected to change
often.

SQL Code

-=- Add caliimn tn wnrk tn <tare romnuited t< vertnrc.

-- Add column to work to store computed ts vectors.
ALTER TABLE work
ADD COLUMN tsvectors TSVECTOR;

-- Create a function to automatically update ts_vectors.
CREATE FUNCTION work search update() RETURNS TRIGGER AS $%
BEGIN
IF TG_OP = "INSERT' THEN
NEW.tsvectors = (
setweight(to_tsvector('english', NEW.title), 'A') ||
setweight(to_tsvector('english', NEW.obs), 'B')
);
END IF;
IF TG_OP = 'UPDATE' THEN
IF (NEW.title <> OLD.title OR NEW.obs <> OLD.obs) THEN
NEW.tsvectors = (
setweight(to_tsvector('english', NEW.title), 'A') ||
setweight(to_tsvector('english', NEW.obs), 'B")
);
END IF;
END IF;
RETURN NEW;
END $%
LANGUAGE plpgsql;

-- Create a trigger before insert or update on work.
CREATE TRIGGER work search update

BEFORE INSERT OR UPDATE ON work

FOR EACH ROW

EXECUTE PROCEDURE work_search_update();

-- Finally, create a GIN index for ts_vectors.
CREATE INDEX search_idx ON work USING GIN (tsvectors);

28



AB. Indexes Checklist

A6. Indexes, Integrity and Populated Database

Artefact 1.1 |The artefact reference and name are clear
1.2 |The goal of the artefact is briefly presented (1, 2 sentences)
2.1 | The workload section is included
Workload 2.2 |The relations' magnitude and growth estimation section is included
2.3 |For each relation, magnitude and growth is estimated
3.1 |Performance indexes are proposed
3.2 |For each index, a relation and attribute(s) is defined
3.3 |For each index, the type is defined
3.4 |For each index, the cardinality is defined
3.5 |For each index, clustering is defined
Indexes ES
3.7 |Full-text search (FTS) indexes over multiple fields are proposed
3.8 |For FTS indexes, field weighting is used
3.9 |For each index, a justification is provided
3.10 | For each index, the SQL code is included
3.11 | Indexes are not proposed for PK
3.12 | Indexed are not proposed for UK

29



AO. Triggers and User Defined Functions

—> [0 enforce integrity rules that cannot be achieved in a simpler way, the necessary triggers are identified and

described by presenting the event, the condition, and the activation code.

- User-defined functions, and trigger procedures, that add control structures to the SQL language, or perform
complex computations, are identified and described to be trusted by the datalbase server.

- Every kind of function (SQL functions, Stored procedures, Trigger procedures) can take base types, composite

type or a composite type. Functions can also be defined to return sets of base or co

-> Common examples:
- User cannot post in groups when he is not a member;
- \When a vote is cast, the rating (karma) of the author is updated;

> \When an event happens, relevant notifications are sent.

types, or combinations of these as arguments (parameters). In addition, every kind of function can return a base

mposite values.

30



User-Detfined Functions

—> A user-defined function provides a mechanism for extending the functionality of the datalbase server by adding a function.

-> Advantages of using stored procequres:
> Reduce the number of round trips between application and database server

- |ncrease the application performance, because user-defined functions are pre-compiled and stored in the datalbase server
uses its full-power

-> Be able to be reused in many applications

> Disadvantages of stored proceaures:
> Slow software development because it requires specialized skills that many developers do not possess (PL/SQL)
> Make it difficult to manage versions and hard to debug

- | ess portable code to other database management systems (MySQL, SQL Server, PostgreSQL, Oracle, DB2)

31



UDF Example

CREATE [OR REPLACE] FUNCTION function_name (arguments)
RETURNS return_datatype AS $name$

DECLARE
declaration;
[...]
BEGIN
< function_body >
[...]
RETURN { variable_name | VALUE } CREATE OR REPLACE FUNCTION totalRecords ()
END; - RETURNS INTEGER AS $totals
name$ LANGUAGE plpgsql; DECLARE
i ’ PRI total INTEGER;
BEGIN

SELECT COUNT (%) INTO total FROM company;
RETURN total;

END;

$total$ LANGUAGE plpgsql,;

SELECT totalRecords():

32



Triggers

=> Triggers are event-condition-action rules:
> Event, a change to the database that activates the trigger
= Condition, a query or test that is run when the trigger is activated

> Action, a procedure that is executed when the trigger is activated and its condition is true

=> The action can be executed before, after or instead of the trigger event

=> The action may refer the new values and old values of records inserted, updated or deleted in the trigger event

=2 The programmer specifies that the action is performed:
- once for each modified record (FOR EACH ROW)

> once for all records that are changed on a database operation

33



Iriggers Example

CREATE FUNCTION loan_item() RETURNS TRIGGER AS

$BODY$
BEGIN
IF EXISTS (SELECT % FROM loan WHERE NEW.id item = id_item AND end_t > NEW.start_t) THEN
RAISE EXCEPTION "An item can only be loaned to one user in every moment.';
END IF;
RETURN NEW;
END
$BODY $

LANGUAGE plpgsql;

CREATE TRIGGER loan_item
BEFORE INSERT OR UPDATE ON loan
FOR EACH ROW
EXECUTE PROCEDURE loan_item();

34



AG6. Medialibrary Triggers

3. Triggers

Triggers and user defined functions are used to automate tasks depending on
changes to the database. Business rules are usually enforced using a combination of
triggers and user defined functions.

Trigger TRIGGERO1

Description An item can only be loaned to one user at a time.
SQL Code

CREATE FUNCTION loan_item() RETURNS TRIGGER AS

$BODY$

BEGIN

IF EXISTS (SELECT * FROM loan WHERE NEW.id users =

id users AND end t > NEW.start t) THEN
RAISE EXCEPTION 'An item can only be loaned to one user

in every moment.';

END IF;

RETURN NEW;
END
$BODY$
LANGUAGE plpgsql;

CREATE TRIGGER loan_item
BEFORE INSERT OR UPDATE ON loan
FOR EACH ROW
EXECUTE PROCEDURE loan_item();




AOB. Triggers Checklist

Triggers and
User Defined
Functions

4 |For each trigger, the SQL code is included

4.1 |Triggers and functions are proposed

4.2 |Restrictions not yet covered in the schema are defined for high priority US
4.3 |For each trigger, a justification is included

4.4

36



AO. Transactions

- [ransactions bundle multiple steps into a single, all-or-noting operation, ensuring data integrity with concurrent accesses.

-> For each necessary transaction, include:
- Justification
- |solation level

- SQL code to create it

-> Common examples:
- insert data (e.g. generalizations, latest generated PK)
- delete data (e.g. user deletes account)

- checkout purchase (move products from cart to purchase)

> many more

37



Transaction Isolation

-> RDBMS offer different isolation levels, which are achieved mostly by locking access to tables.
=> Stricter or looser isolation levels will allow less or more concurrent accesses.

- \We should aim to the less restrictive isolation level that still guarantees that data is consistent

- Advice: declare transactions as READ ONLY when possible.

-> [solation levels are defined in terms of the problems (phenomena) that can occur when concurrent transactions execute:
- Dirty read — a transaction reads data written by a concurrent uncommitted transaction:;
> Non-repeatable read — a transaction re-reads data and finds that data has been modified by another transaction;
- Phantom read — a transaction re-executes a query and finds that the results have changed by another transaction;

- Serialization anomaly — the result of committing a group of transactions is inconsistent is inconsistent with all
possible orderings of running those transactions on at a time.

38



Transaction Isolation in PostgreSQL

-> PostgreSQL https://www.postgresal.org/docs/current/transaction-iso.htmi

- serializable — transactions see only data committed before the transaction began and never sees uncommitted data or changes
- repeatable read — transactions can only read committed records and between two reads the transactions cannot modify the record

- read committed — transactions can only read committed records (between two reads the record may have been modified)

= read uncommitted — records still unhcommitted can be read

Table 13.1. Transaction Isolation Levels

Isolation Level Dirty Read Nonrepeatable Read | Phantom Read Serialization Anomaly
Read uncommitted | Allowed, but not in PG | Possible Possible Possible

Read committed |Not possible Possible Possible Possible

Repeatable read |Not possible Not possible Allowed, but not in PG | Possible

Serializable Not possible Not possible Not possible Not possible

39


https://www.postgresql.org/docs/current/transaction-iso.html

AG6. MedialLlibrary Iransactions

4. Transactions
Transactions are used to assure the integrity of the data when multiple operations

are necessary.

Transaction TRANO1

Description Get current loans as well as information about the items

Justification In the middle of the transaction, the insertion of new rows in
the loan table can occur, which implies that the information
retrieved in both selects is different, consequently resulting in
a Phantom Read. It's READ ONLY because it only uses
Selects.

Isolation level SERIALIZABLE READ ONLY

SQL Code

BEGIN TRANSACTION;
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE READ ONLY;

-- Get number of current loans
SELECT COUNT(*)

FROM loan

WHERE now() < end t;

-- Get ending loans (limit 10)

SELECT loan.end_t, loan.start_t, item.*, work.*, users.id,
users.name

FROM loan

INNER JOIN item ON item.id = loan.id item

INNER JOIN work ON work.id = item.id work

INNER JOIN users ON users.id = loan.id users

WHERE now () < loan.end_t

ORDER BY loan.end_t ASC

LIMIT 10;

END TRANSACTION;

40



A6. Transactions Checklist

Database
transactions

5.1 |(Database transactions section is included

5.2 |Each transaction has an isolation type defined and justified
5.3 |Each transaction has a justification

5.4 |Transactions' SQL syntax is correct

5.5 [No unnecessary transactions are included

5.6 |All transactions for high priority users stories are included

41



AO. Database Population

-> The EBD Component includes two SQL scripts

- Database creation script, including SQL creation statements for all tables, key
constraints, performance indexes, full text search indexes, triggers, user defined
functions;

- Database population script, including SQL insert statements to populate a
database with test data with an amount of tuples suitable for testing and with
plausible values for each field type.

-> These scripts must run, as-is, in the production PostgreSQL environment.

42



AG6. MedialLibrary Datalbase Population

A.1 Database schema

TABLE IF EXISTS wish_list CASCADE;
TABLE IF EXISTS review CASCADE;
TABLE IF EXISTS loan CASCADE;

TABLE IF EXISTS item CASCADE;

TABLE IF EXISTS nonbook CASCADE;
TABLE IF EXISTS book CASCADE;

TABLE IF EXISTS author_work CASCADE;
TABLE IF EXISTS work CASCADE;

TABLE IF EXISTS collection CASCADE;
TABLE IF EXISTS author CASCADE;
TABLE IF EXISTS location CASCADE;
TABLE IF EXISTS publisher CASCADE;
TABLE IF EXISTS users CASCADE;

TYPE IF EXISTS media;

CREATE TYPE media AS ENUM ('CD', 'DVD', 'VHS', 'Slides', 'Photos’,
'MP3');

A.2 Database population

INSERT INTO users (id,email,name,obs,password,img,is_admin)
VALUES (1, 'sodales.at@Curae.co.uk', 'Zeph Griffin', 'rhoncus. Donec
est. Nunc ullamcorper,', 'GUL9S5ZXROEX', 'Praesent',TRUE);

INSERT INTO users (id,email,name,obs,password,img,is_admin)
VALUES (2, 'aliquam.iaculis.lacus@amet.co.uk', 'Noah Gibson', 'nunc ac
mattis ornare, lectus','TYT71DOD7YN', 'sollicitudin',TRUE);

INSERT INTO users (id,email,name,obs,password,img,is_admin)
VALUES (3, 'amet.ante@faucibusleo.net', 'Aladdin Davidson', 'nisl
elementum purus, accumsan interdum', 'OFK@@XCC70D', 'vel',TRUE);
INSERT INTO users (id,email,name,obs,password,img,is_admin)
VALUES (4, 'facilisis.magna.tellus@sociis.net’, 'Thor

Villarreal', 'Nunc quis arcu vel quam','PZJ77DKO2VZ','Cdm',FALSE);

43



AL. Database Creation and Population Checklist

SQL

6.1

The SQL schema script is included

6.2

The SQL script resets the database state (includes DROPs + CREATES)

6.3

The SQL schema script executes without errors

6.4

The SQL popu

ation script is included

6.5

The SQL popu

ation script is included in the group's repository

6.6

The SQL popu

ation script executes without errors

6.7

The SQL schema script is included in the group's repository

6.8

The production database (at db.fe.up.pt) has been updated with the SQL scripts

44



PostgreSQL



Docker

-> Docker is a key technology in LBAW (PostgreSQL, pgAdmin, Laravel)
- [t Is mandatory for deploying your prototypes and final products

-> Docker Is a lightweight virtualization environment, widely used to package
applications and its dependencies In isolated containers.

- With Docker you can manage your product infrastructure as applications.

-> Avallable for Windows, Mac and Linux - https://docs.docker.com/get-docker/

- Important: don't postpone using Docker.

46


https://docs.docker.com/get-docker/

PostgreSQL Docker Container

-> Official PostgresSQL are available at: https://hub.docker.com/ /postgres

-> Start a local PostgreSQL server with:

= docker run --name some-postgres -e POSTGRES_PASSWORD=mysecretpassword -d postgres

-> Run a local pgAdmin installation (available at localhost:80) with:

- docker run -p 80:80 \

-e 'PGADMIN_DEFAULT_EMAIL=user@domain.com’ \
-e 'PGADMIN_DEFAULT_PASSWORD=SuperSecret’' \
-d dpage/pgadmin4

47


https://hub.docker.com/_/postgres

Docker Compose

-> Docker Compose is used to setup multi-container Docker applications.
-> A YAML file is used to configure the containers to start and run.

- The LBAW 'template-postgresql' repository, setups up two containers - https://qit.fe.up.pt/lbaw/template-postgresdal

version: '3’
services:

postgres:

image: postgres:11.13

restart: always

environment:
POSTGRES USER: postgres
POSTGRES PASSWORD: pg!password

ports:
— "5432:5432"

pgadmin:
image: dpage/pgadmind:6
environment:
PGADMIN DEFAULT EMAIL: postgres@lbaw.com
PGADMIN DEFAULT PASSWORD: pg!password
ports:
- "4321:80"
depends on:
- postgres



https://git.fe.up.pt/lbaw/template-postgresql

/‘el//ew
About the PostgreSQL Production Environment (important!)

-> A PostgreSQL database contains one or more schemas, which in turn contains one or more tables.
-> All databases contain a public schema, which is used as default.

- |In PostgreSQL's command line interface, you can view the current active schema with: show search_path;

—> [o change the schema for the current session use: SET search_path TO <schema>;

- In the PostgreSQL setup at FEUP (db.fe.up.pt), the public schema is shared between all accounts,

- Tables created in the public schema are visible to all users (although not accessible).
If you look at the tables in the publish schema, you will find a long list of tables.

= |t is important to not use the public schema and instead create a schema with the name of your group (lbaw21gg).

-> [0 create this schema, use the following command: CREATE SCHEMA <lbaw21gg>;

-> To always use this schema as the default in your project, add the following line to the beginning of your SQL scripts.

> SET search_path TO <lbaw21gg>;

49



References



Bibliography and Further Reading

-> PostgreSQL Manual, Chapter 11. Indexes, https://www.postgresqgl.org/docs/14/indexes.html

-> PostgreSQL Manual, Chapter 12. Full Text Search, https://www.postgresal.org/docs/14/textsearch.html

-> Scott Ambler, The Object Primer, Cambridge University Press, 3rd Edition, 2004,

-> Alberto Rodrigues da Silva, Carlos Videira, UML — Metodologias e Ferramentas CASE, 22 Edicao,
Centro Atlantico Editora, Maio 2005.

-> Raghu Ramakrishnan, Johannes Gehrke. Database Management Systems. McGRAW-HIll International
—ditions, 3rd Edition, 20083.



https://www.postgresql.org/docs/14/indexes.html
https://www.postgresql.org/docs/14/textsearch.html

Lab Class #4

=> Discuss the conceptual data model (A4)

-> Develop and discuss the relational schema (AS)
> Map the classes and relationships of the conceptual schema into relation schemas
- For each relation, identify the functional dependencies (FD) that apply
- Check if each relation is in BONF
- |f the relation is not in BCNF and there are no other impediments, ook for several possible decompositions (lossless)

= [f there is no satisfactory decomposition to BCNF and if the relation is no longer in 3NF, consider the decomposition lossless for
3NF, preserving the functional dependencies

- Develop and test a first version of the database creation script in SQL

-> Test the local development environment for PostgreSQL.

-> Test the connection to the production PostgreSQL server at db.fe.up.pt

52


http://db.fe.up.pt

