
Database Indexes, Triggers and Transactions

Databases and Web Applications Laboratory (LBAW)

Bachelor in Informatics Engineering and Computation (L.EIC)


Sérgio Nunes

Dept. Informatics Engineering

FEUP · U.Porto



Outline

➔ Database Specification (EBD) development (A6)


➔ Indexes


➔ Triggers


➔ Transactions


➔ Database Population


➔ PostgreSQL setup

2



LBAW Plan

➔ Plan: https://web.fe.up.pt/~ssn/wiki/teach/lbaw


➔ 5th week of classes;


➔ Continue development on the second component (EBD);


➔ Lab classes:


➔ continue work on component (EBD);


➔ work on the relational schema (A5).


➔ Monitor sessions: Wednesday, at 15h, online


➔ PostgreSQL setup and use.

3

https://web.fe.up.pt/~ssn/wiki/teach/lbaw


Database Specification (EBD) Development



Database Specification (EBD) Component

➔ The EBD component groups the artefacts to be made by the development team in order to 
support the storage and retrieval requirements identified in the requirements specification.


➔ It consists of three artefacts:


➔ A4: Conceptual Data Model


➔ A5: Relational Schema, Validation and Schema Refinement


➔ A6: Indexes, Triggers, Transactions and Database Population


➔ https://web.fe.up.pt/~ssn/wiki/teach/lbaw/202122/artefacts 

5

review

https://web.fe.up.pt/~ssn/wiki/teach/lbaw/202122/artefacts/index#ii_database_specification_ebd_25


A5. Relational Schema, Validation and Schema Refinement

➔ The A5 artifact contains the Relational Schema obtained by mapping from the Conceptual Data 
Model.


➔ The Relational Schema includes each relation schema, attributes, domains, primary keys, foreign keys 
and other integrity rules: UNIQUE, DEFAULT, NOT NULL, CHECK.


➔ Relation schemas are specified in the compact notation.


➔ In addition to this representation, the relational schema is also presented in SQL as an annex. 


➔ To validate the Relational Schema obtained from the Conceptual Model, all functional dependencies 
are identified and the normalization of all relation schemas is accomplished.


➔ Should it be necessary, in case the scheme is not in the Boyce–Codd Normal Form (BCNF), the 
relational schema is refined using normalization.

6

review



A5. Relational Schema Compact Notation

➔ Relation schemas are specified in the compact notation: 


➔ table1(id, attribute NN) 
table2(id, attribute → Table1 NN) 
table3(id1, id2 → Table2, attribute UK NN) 
table4((id1, id2) → Table3, id3, attribute)  


➔ Primary keys are underlined. UK means UNIQUE and NN means NOT NULL. 


➔ The specification of additional domains can also be made in a compact form, using the notation: 


➔ Today DATE DEFAULT CURRENT_DATE 
Priority ENUM ('High', 'Medium', 'Low') 


➔ In PostgreSQL use lower case and the "snake_case" convention.

7

review



A5. Relational Schema Mapping

8
Alberto Manuel Rodrigues da Silva e Carlos Alberto Escaleira Videira, UML, metodologias 
e ferramentas CASE, 2ª Edição, Volume 1, Centro Atlântico Editora, Maio 2005.

review



A5. Relational Schema Mapping

9
Alberto Manuel Rodrigues da Silva e Carlos Alberto Escaleira Videira, UML, metodologias 
e ferramentas CASE, 2ª Edição, Volume 1, Centro Atlântico Editora, Maio 2005.

review



Mapping Generalizations

10

media

book cd dvd

{complete, disjoint}

# Superclass approach


media(id, type CHK {book, cd, dvd} ...)

# ER approach


media(id, ...)

book(id->media, ...)

cd(id->media, ...)

dvd(id->media, ...)

# Object Oriented


book(id, [media attributes], ...)

cd(id, [media attributes], ...)

dvd(id, [media attributes], ...)



A6. Indexes, Triggers, Transactions and Database Population

➔ This artefact contains the physical schema of the database,


➔ the identification and characterization of the indexes,


➔ the support of data integrity rules with triggers,


➔ the definition of the database user-defined functions,


➔ and the identification and characterization of the database transactions.


➔ This artefact also includes the complete database creation script, including all SQL code 
necessary to define all integrity constraints, indexes, triggers and transactions.


➔ Also, the database creation script and the database population script should be included as 
separate elements.

11



A6. Indexes

➔ The workload is a study of the predicted system load, including an estimate on the number and growth 
of tuples in each relation.


➔ Performance indexes are applied to improve the performance of select queries.


➔ At most, three performance indexes can be proposed, identifying the ones that have the biggest 
impact on the performance of the application.


➔ For each proposed index, it is necessary to indicate and justify the type chosen (B-tree, Hash, GiST, 
GIN), and also if clustering is recommended. As a last resource, controlled redundancy may be 
introduced (de-normalisation).


➔ The system being developed must provide full-text search features supported by PostgreSQL. Thus, it is 
necessary to specify the fields where full-text search will be available and the associated setup, 
namely all necessary configurations, indexes definitions and other relevant details.

12



Indexes in PostgreSQL (1)

➔ Indexes are secondary data structures used to improve data access (useful metaphor - the alphabetical 
back-of-the-book index).


➔ Finding and retrieving specific rows is much faster with indexes, but they add an overhead to the execution.


➔ Without indexes, tables are usually sequentially scanned to find the matching entry.


➔ With indexes, the number of steps to find the matching records can be drastically reduced.


➔ Two main types:


➔ B-tree indexes: use a tree-like data structure that maintains data sorted and allow for search, order, 
range search in log time.


➔ Hash indexes: use a hash-function to map keys to values; are only considered when an equality 
operator is used (no sorting or ranges).

13



Indexes in PostgreSQL (2)

➔ Indexes can be created for more than one attribute (multicolumn).


➔ CREATE INDEX name ON table (a, b);


➔ Work when searching for both attributes simultaneously or just a. Not just b.


➔ Indexes can also be created for expressions.


➔ SELECT * FROM test1 WHERE lower(col1) = 'value';


➔ CREATE INDEX test1_lower_col1_idx ON test1 (lower(col1));


➔ Index usage can be analyzed with the EXPLAIN command.

14



Unique Indexes

➔ Indexes can also be used to enforce uniqueness of a column's value, or the 
uniqueness of the combined values of more than one column.


➔ CREATE UNIQUE INDEX name ON table (column [, ...]);


➔ When an index is declared unique, multiple table rows with equal indexed values are 
not allowed. Null values are not considered equal.


➔ PostgreSQL automatically creates a unique index when


➔ a unique constraint or


➔ primary key is defined for a table.

15



Clustering

➔ Clustering a table results in the physical re-ordering of data in disk based on the 
index information. To cluster a table, an index must already be defined.


➔ Clustering is a one-time operation: when the table is subsequently updated, the 
changes are not clustered.


➔ If needed, clustering can be set to run periodically using cron.


➔ Clustering will help when multiple records are read together and an index can group 
them. It will be irrelevant when single rows are randomly accessed in a table. 

16



Cardinality

➔ The uniqueness of data values contained in a particular column.


➔ The lower the cardinality, the more duplicate values in the column.


➔ Examples:


➔ high cardinality - primary key


➔ medium cardinality - last name in a customer table


➔ low cardinality - boolean column


➔ Cardinality is used by the PostgreSQL planner, amongst other statistics, to estimate the number 
of rows returned by a WHERE clause. This is then used to decide if, and what, indexes should be 
used.

17



Full Text Search

➔ How can you search for a work in text fields? And multiple words?


➔ Using the LIKE operator is not feasible


➔ There is no linguistic support (e.g. singular / plural).


➔ No ranking is provided, only a set of results.


➔ Multiple words search is not supported.


➔ There is no index support.


➔ It is necessary to index each work individually.


➔ This is called full text search, or simply text search, on PostgreSQL.


➔ Key first step — define what is a document in our search system and what information is relevant. 

18



tsvector Type

➔ Text are broken into lexemes, a normalized representation of words, e.g. 
normalization includes converting to lowercase, identifying the stem, etc.


➔ The tsvector data type is used to store distinct lexemes.


➔ SELECT to_tsvector('english', 'The quick brown fox jumps over the lazy dog')


➔ 'brown':3 'dog':9 'fox':4 'jump':5 'lazi':8 'quick':2


➔ The function to_tsvectors returns a tsvector with duplicates removed, stop words 
removed, and the number of position of each lexeme recorded.

19



tsqueries Type

➔ Queries, i.e. searches, are represented as tsqueries. 


➔ The to_tsquery and plainto_tsquery functions convert a text query to a tsquery, a 
structure optimized for searching tsvectors.


➔ SELECT plainto_tsquery('english','sail boats');


➔ 'sail' & 'boat'


➔ SELECT plainto_tsquery('portuguese','o velho barco');


➔ 'velh' & 'barc'

20



Matching tsqueries to tsvectors 

➔ The @@ operator is used to assert if a tsvector matches a tsquery:


➔ SELECT to_tsvector('portuguese','o velho barco') @@ 
plainto_tsquery('portuguese','barca');


➔ t


➔ SELECT to_tsvector('portuguese','o velho barco') @@ 
plainto_tsquery('portuguese','carro');


➔ f


➔ SELECT title FROM posts 
WHERE to_tsvector('english', title || ' ' || body) @@ plainto_tsquery('english', 'jumping dog');

21



FTS Weights

➔ Sometimes we want to give more importance to some specific fields.


➔ We can use the setweight to attach a weight to a certain tsvector.


➔ Weights go from 'A' (more important) to 'D' (less important).


➔ SELECT 
setweight(to_tsvector('english', 'The quick brown fox jumps over the lazy dog'), 'A') || 
setweight(to_tsvector('english', 'An English language pangram. A sentence that contains 
all of the letters of the alphabet.'), 'B')


➔ 'alphabet':24B 'brown':3A 'contain':17B 'dog':9A 'english':11B 'fox':4A 'jump':5A 
'languag':12B 'lazi':8A 'letter':21B 'pangram':13B' quick':2A 'sentenc':15B

22



Ranking FTS Results

➔ PostgreSQL provides two predefined ranking functions, which take into account 
lexical, proximity, and structural information:


➔ how often the query terms appear in the document;


➔ how close together the terms are in the document;


➔ how important is the part of the document where they occur.


➔ Different applications might require additional information for ranking, e.g., document 
modification time. The built-in ranking functions are only examples.



Ranking FTS Results

➔ The ts_rank and ts_rank_cd functions, return a score for each returned row for a certain match 
between a tsquery and tsvector.


➔ SELECT  ts_rank( 
setweight(to_tsvector('english', 'The quick brown fox jumps over the lazy dog'), 'A') || 
setweight(to_tsvector('english', 'An English language pangram. A sentence that contains all of the 
letters of the alphabet.'), 'B'), 
plainto_tsquery('english', 'jumping dog') 
)


➔ 0.9524299


➔ You can also change the weights of the tsvector classes (A to D) and set how normalization, due to 
different document lengths, should be performed.



Pre-calculate FTS

➔ For performance reasons, we should consider adding a column to tables where FTS 
is to be performed containing the tsvector values of each row.


➔ This column should be updated whenever a row changes or is inserted. This can be 
done easily using a trigger.

25

CREATE FUNCTION post_search_update() RETURNS TRIGGER AS $$

BEGIN

  IF TG_OP = 'INSERT' THEN

    NEW.search = to_tsvector('english', NEW.title);

  END IF;

  IF TG_OP = 'UPDATE' THEN

      IF NEW.title <> OLD.title THEN

        NEW.search = to_tsvector('english', NEW.title);

      END IF;

  END IF;

  RETURN NEW;

END

$$ LANGUAGE 'plpgsql';



Indexing FTS

➔ To select all posts containing jumping and dog we can use the following query


➔ SELECT titleFROM posts 
WHERE search @@ plainto_tsquery('english', 'jumping dog') 
ORDER BY ts_rank(search, plainto_tsquery('english', 'jumping dog')) DESC


➔ Note that search is a pre-calculated column containing the tsvector of the columns we want to search.


➔ To improve the performance of our full text searches, we can use GIN or GiST indexes:


➔ CREATE INDEX search_idx ON posts USING GIN (search);


➔ CREATE INDEX search_idx ON posts USING GIST (search);


➔ Rule of thumb, use GIN if updates to searchable terms are rare and you want to make searches fast.

26



A6. MediaLibrary Indexes (Performance)

27



A6. MediaLibrary Indexes (Full Text Search)

28



A6. Indexes Checklist

29



A6. Triggers and User Defined Functions

➔ To enforce integrity rules that cannot be achieved in a simpler way, the necessary triggers are identified and 
described by presenting the event, the condition, and the activation code.


➔ User-defined functions, and trigger procedures, that add control structures to the SQL language, or perform 
complex computations, are identified and described to be trusted by the database server.


➔ Every kind of function (SQL functions, Stored procedures, Trigger procedures) can take base types, composite 
types, or combinations of these as arguments (parameters). In addition, every kind of function can return a base 
type or a composite type. Functions can also be defined to return sets of base or composite values.


➔ Common examples:


➔ User cannot post in groups when he is not a member;


➔ When a vote is cast, the rating (karma) of the author is updated;


➔ When an event happens, relevant notifications are sent. 

30



User-Defined Functions
➔ A user-defined function provides a mechanism for extending the functionality of the database server by adding a function.


➔ Advantages of using stored procedures:


➔ Reduce the number of round trips between application and database server


➔ Increase the application performance, because user-defined functions are pre-compiled and stored in the database server 
uses its full-power


➔ Be able to be reused in many applications


➔ Disadvantages of stored procedures:


➔ Slow software development because it requires specialized skills that many developers do not possess (PL/SQL)


➔ Make it difficult to manage versions and hard to debug


➔ Less portable code to other database management systems (MySQL, SQL Server, PostgreSQL, Oracle, DB2)

31



UDF Example

CREATE OR REPLACE FUNCTION totalRecords ()

RETURNS INTEGER AS $total$

DECLARE

  total INTEGER;

BEGIN

  SELECT COUNT(*) INTO total FROM company;

  RETURN total;

END;

$total$ LANGUAGE plpgsql;


SELECT totalRecords();

CREATE [OR REPLACE] FUNCTION function_name (arguments)

RETURNS return_datatype AS $name$

DECLARE

declaration;

[...]

BEGIN

< function_body >

[...]

RETURN { variable_name | VALUE }

END;

$name$ LANGUAGE plpgsql;

32



Triggers

➔ Triggers are event-condition-action rules:


➔ Event, a change to the database that activates the trigger


➔ Condition, a query or test that is run when the trigger is activated


➔ Action, a procedure that is executed when the trigger is activated and its condition is true


➔ The action can be executed before, after or instead of the trigger event


➔ The action may refer the new values and old values of records inserted, updated or deleted in the trigger event


➔ The programmer specifies that the action is performed:


➔ once for each modified record (FOR EACH ROW)


➔ once for all records that are changed on a database operation

33



Triggers Example

34

CREATE FUNCTION loan_item() RETURNS TRIGGER AS

$BODY$

BEGIN

        IF EXISTS (SELECT * FROM loan WHERE NEW.id_item = id_item AND end_t > NEW.start_t) THEN

           RAISE EXCEPTION 'An item can only be loaned to one user in every moment.';

        END IF;

        RETURN NEW;

END

$BODY$

LANGUAGE plpgsql;


CREATE TRIGGER loan_item

        BEFORE INSERT OR UPDATE ON loan

        FOR EACH ROW

        EXECUTE PROCEDURE loan_item();



A6. MediaLibrary Triggers

35



A6. Triggers Checklist

36



A6. Transactions
➔ Transactions bundle multiple steps into a single, all-or-noting operation, ensuring data integrity with concurrent accesses. 


➔ For each necessary transaction, include:


➔ Justification


➔ Isolation level


➔ SQL code to create it


➔ Common examples:


➔ insert data (e.g. generalizations, latest generated PK)


➔ delete data (e.g. user deletes account)


➔ checkout purchase (move products from cart to purchase)


➔ many more

37



Transaction Isolation
➔ RDBMS offer different isolation levels, which are achieved mostly by locking access to tables.


➔ Stricter or looser isolation levels will allow less or more concurrent accesses.


➔ We should aim to the less restrictive isolation level that still guarantees that data is consistent


➔ Advice: declare transactions as READ ONLY when possible.


➔ Isolation levels are defined in terms of the problems (phenomena) that can occur when concurrent transactions execute:


➔ Dirty read — a transaction reads data written by a concurrent uncommitted transaction;


➔ Non-repeatable read — a transaction re-reads data and finds that data has been modified by another transaction;


➔ Phantom read — a transaction re-executes a query and finds that the results have changed by another transaction;


➔ Serialization anomaly — the result of committing a group of transactions is inconsistent is inconsistent with all 
possible orderings of running those transactions on at a time.  

38



Transaction Isolation in PostgreSQL
➔ PostgreSQL https://www.postgresql.org/docs/current/transaction-iso.html


➔ serializable — transactions see only data committed before the transaction began and never sees uncommitted data or changes


➔ repeatable read — transactions can only read committed records and between two reads the transactions cannot modify the record


➔ read committed — transactions can only read committed records (between two reads the record may have been modified)


➔ read uncommitted — records still uncommitted can be read

39

https://www.postgresql.org/docs/current/transaction-iso.html


A6. MediaLibrary Transactions

40



A6. Transactions Checklist

41



A6. Database Population

➔ The EBD Component includes two SQL scripts


➔ Database creation script, including SQL creation statements for all tables, key 
constraints, performance indexes, full text search indexes, triggers, user defined 
functions;


➔ Database population script, including SQL insert statements to populate a 
database with test data with an amount of tuples suitable for testing and with 
plausible values for each field type.


➔ These scripts must run, as-is, in the production PostgreSQL environment.

42



A6. MediaLibrary Database Population

43



A6. Database Creation and Population Checklist

44



PostgreSQL



Docker

➔ Docker is a key technology in LBAW (PostgreSQL, pgAdmin, Laravel)


➔ It is mandatory for deploying your prototypes and final products


➔ Docker is a lightweight virtualization environment, widely used to package 
applications and its dependencies in isolated containers.


➔ With Docker you can manage your product infrastructure as applications.


➔ Available for Windows, Mac and Linux - https://docs.docker.com/get-docker/ 


➔ Important: don't postpone using Docker.

46

https://docs.docker.com/get-docker/


PostgreSQL Docker Container

➔ Official PostgresSQL are available at: https://hub.docker.com/_/postgres 


➔ Start a local PostgreSQL server with:

➔ docker run --name some-postgres -e POSTGRES_PASSWORD=mysecretpassword -d postgres


➔ Run a local pgAdmin installation (available at localhost:80) with:

➔ docker run -p 80:80 \ 

-e 'PGADMIN_DEFAULT_EMAIL=user@domain.com' \ 

-e 'PGADMIN_DEFAULT_PASSWORD=SuperSecret' \ 

-d dpage/pgadmin4

47

https://hub.docker.com/_/postgres


Docker Compose
➔ Docker Compose is used to setup multi-container Docker applications.


➔ A YAML file is used to configure the containers to start and run.


➔ The LBAW 'template-postgresql' repository, setups up two containers - https://git.fe.up.pt/lbaw/template-postgresql 

48

version: '3'

services:


  postgres:

    image: postgres:11.13

    restart: always

    environment:

      POSTGRES_USER: postgres

      POSTGRES_PASSWORD: pg!password

    ports:

      - "5432:5432"


  pgadmin:

    image: dpage/pgadmin4:6

    environment:

      PGADMIN_DEFAULT_EMAIL: postgres@lbaw.com

      PGADMIN_DEFAULT_PASSWORD: pg!password

    ports:

      - "4321:80"

    depends_on:

      - postgres

https://git.fe.up.pt/lbaw/template-postgresql


About the PostgreSQL Production Environment (important!)
➔ A PostgreSQL database contains one or more schemas, which in turn contains one or more tables.


➔ All databases contain a public schema, which is used as default.


➔ In PostgreSQL's command line interface, you can view the current active schema with: show search_path;


➔ To change the schema for the current session use: SET search_path TO <schema>; 


➔ In the PostgreSQL setup at FEUP (db.fe.up.pt), the public schema is shared between all accounts,


➔ Tables created in the public schema are visible to all users (although not accessible). 
If you look at the tables in the publish schema, you will find a long list of tables.


➔ It is important to not use the public schema and instead create a schema with the name of your group (lbaw21gg). 


➔ To create this schema, use the following command:  CREATE SCHEMA <lbaw21gg>;


➔ To always use this schema as the default in your project, add the following line to the beginning of your SQL scripts. 


➔ SET search_path TO <lbaw21gg>; 

49

review



References



Bibliography and Further Reading

➔ PostgreSQL Manual, Chapter 11. Indexes, https://www.postgresql.org/docs/14/indexes.html 


➔ PostgreSQL Manual, Chapter 12. Full Text Search, https://www.postgresql.org/docs/14/textsearch.html 


➔ Scott Ambler, The Object Primer, Cambridge University Press, 3rd Edition, 2004.


➔ Alberto Rodrigues da Silva, Carlos Videira, UML — Metodologias e Ferramentas CASE, 2ª Edição, 
Centro Atlântico Editora, Maio 2005.


➔ Raghu Ramakrishnan, Johannes Gehrke. Database Management Systems. McGRAW-Hill International 
Editions, 3rd Edition, 2003.

51

https://www.postgresql.org/docs/14/indexes.html
https://www.postgresql.org/docs/14/textsearch.html


Lab Class #4
➔ Discuss the conceptual data model (A4)


➔ Develop and discuss the relational schema (A5)


➔ Map the classes and relationships of the conceptual schema into relation schemas


➔ For each relation, identify the functional dependencies (FD) that apply


➔ Check if each relation is in BCNF


➔ If the relation is not in BCNF and there are no other impediments, look for several possible decompositions (lossless) 


➔ If there is no satisfactory decomposition to BCNF and if the relation is no longer in 3NF, consider the decomposition lossless for 
3NF, preserving the functional dependencies


➔ Develop and test a first version of the database creation script in SQL


➔ Test the local development environment for PostgreSQL.


➔ Test the connection to the production PostgreSQL server at db.fe.up.pt 

52

http://db.fe.up.pt

