
Database Specification

Databases and Web Applications Laboratory (LBAW)

Bachelor in Informatics Engineering and Computation (L.EIC)

Sérgio Nunes

Dept. Informatics Engineering

FEUP · U.Porto

Outline

➔ Requirements Specification (ER) delivery

➔ Database Specification (EBD) development

➔ Conceptual Data Modeling

➔ Relational Schema

➔ Schema Validation and Refinement

➔ PostgreSQL

2

LBAW Plan

➔ Plan: https://web.fe.up.pt/~ssn/wiki/teach/lbaw

➔ 4th week of classes;

➔ Delivery of first component (ER);

➔ Lab classes: start new artefact (EBD); work on the conceptual data model (A4).

➔ Groups: https://moodle.up.pt/mod/choicegroup/view.php?id=35701

➔ No pending situations.

➔ Monitor sessions: start this Wednesday, at 15h, online

➔ First session on Git and GitFlow.

3

https://web.fe.up.pt/~ssn/wiki/teach/lbaw
https://moodle.up.pt/mod/choicegroup/view.php?id=35701

Requirement Specification (ER) Delivery

Requirements Specification (ER) Delivery
➔ First component delivery this week (8th — 12th Nov)

➔ Deadline is on the day before the lab class, before 12h00. Submission steps:

➔ 1. Fill the group spreadsheet checklist:

➔ update the “Group Self-Evaluation” tab

➔ fill the ER, A1, A2, and A3 tabs

➔ 2. Verify that the component on the group’s GitLab wiki is updated with the ER component.

➔ 3. Export the component wiki page to PDF and submit it on Moodle:

➔ Only one submission per group is necessary.

➔ Ensure all images were correctly exported.

➔ Only the information included in the PDF will be considered for evaluation.

5

Questions about ER component submission?

6

Database Specification (EBD) Development

Database Specification (EBD) Component

➔ The EBD component groups the artefacts to be made by the development team in order to
support the storage and retrieval requirements identified in the requirements specification.

➔ It consists of three artefacts:

➔ A4: Conceptual Data Model

➔ A5: Relational Schema, Validation and Schema Refinement

➔ A6: Indexes, Triggers, Transactions and Database Population

➔ https://web.fe.up.pt/~ssn/wiki/teach/lbaw/202122/artefacts

8

https://web.fe.up.pt/~ssn/wiki/teach/lbaw/202122/artefacts/index#ii_database_specification_ebd_25

A4. Conceptual Data Model

➔ In this artefact the data requirements of the system are detailed.

➔ The Conceptual Domain Model contains the identification and description of the entities of the domain
and the relationships between them.

➔ The Conceptual Domain Model is simplified to include only concepts (entities and relationships) of the
domain that are stored in the database.

➔ The Conceptual Data Model is obtained by using a UML class diagram containing the classes,
associations, multiplicity and roles.

➔ For each class, the attributes, associations and constraints are included in the class diagram.

➔ Business rules not included in the class diagram are described by words or using OCL (Object
Constraint Language) included as UML notes.

9

A4. Data Modeling

➔ To obtain a conceptual model, iteratively go through these steps:

➔ 1. Identify entity types (a collection of people, places, things, events, or concepts);

➔ 2. Identify relationships (entities have relationships with other entities);

➔ 3. Identify attributes (each entity type will have one or more data attributes);

➔ 4. Apply naming conventions (team standards and guidelines applicable to data modeling).

➔ Scott Ambler. The Object Primer. Cambridge University Press, 3rd Edition, 2004. Section. 8.5

10

A4. Data Modeling

➔ Data models are used for a variety of purposes, from conceptual models to physical design models

➔ Logical data models are used to explore domain concepts and their relationships

➔ With data modeling, you identify data entities and assign data attributes to them

➔ whereas with class modeling you identify classes and assign responsibilities to them

➔ Then, you identify the associations between entities

➔ relationships, inheritance, and composition

➔ similar to the associations between classes

➔ Scott Ambler. The Object Primer. Cambridge University Press, 3rd Edition, 2004. Section. 8.5

11

A4. MediaLibrary Class Diagram

12

A4. MediaLibrary Business Rules

➔ BR01. A user cannot loan its own items.

➔ BR02. An item can only be lended by its owner.

➔ BR03. An item can only be loaned to one user at a time.

13

A4. Checklist

14

A5. Relational Schema, Validation and Schema Refinement

➔ The A5 artifact contains the Relational Schema obtained by mapping from the Conceptual Data
Model.

➔ The Relational Schema includes each relation schema, attributes, domains, primary keys, foreign keys
and other integrity rules: UNIQUE, DEFAULT, NOT NULL, CHECK.

➔ Relation schemas are specified in the compact notation.

➔ In addition to this representation, the relational schema is also presented in SQL as an annex.

➔ To validate the Relational Schema obtained from the Conceptual Model, all functional dependencies
are identified and the normalization of all relation schemas is accomplished.

➔ Should it be necessary, in case the scheme is not in the Boyce–Codd Normal Form (BCNF), the
relational schema is refined using normalization.

15

A5. Relational Schema Compact Notation

➔ Relation schemas are specified in the compact notation:

➔ table1(id, attribute NN)
table2(id, attribute → Table1 NN)
table3(id1, id2 → Table2, attribute UK NN)
table4((id1, id2) → Table3, id3, attribute)

➔ Primary keys are underlined. UK means UNIQUE and NN means NOT NULL.

➔ The specification of additional domains can also be made in a compact form, using the notation:

➔ Today DATE DEFAULT CURRENT_DATE
Priority ENUM ('High', 'Medium', 'Low')

➔ In PostgreSQL use lower case and the "snake_case" convention.

16

A5. Relational Schema Mapping

17
Alberto Manuel Rodrigues da Silva e Carlos Alberto Escaleira Videira, UML, metodologias
e ferramentas CASE, 2ª Edição, Volume 1, Centro Atlântico Editora, Maio 2005.

A5. Relational Schema Mapping

18
Alberto Manuel Rodrigues da Silva e Carlos Alberto Escaleira Videira, UML, metodologias
e ferramentas CASE, 2ª Edição, Volume 1, Centro Atlântico Editora, Maio 2005.

A5. MediaLibrary Relational Schema

19

A5. Schema Validation and Refinement

➔ To validate the Relational Schema obtained from the Conceptual Model,

➔ all functional dependencies are identified and

➔ the normalization of all relation schemas is accomplished.

➔ Should it be necessary, in case the scheme is not in the Boyce–Codd Normal Form
(BCNF), the relational schema is refined using normalization.

20

A5. Problems of Redundancy

➔ Redundancy is at the root of several problems associated with relational schemas:

➔ redundant storage;

➔ insert / delete / update anomalies.

➔ Integrity constraints, in particular functional dependencies, can be used to identify
schemas with such problems and to suggest refinements.

➔ Main refinement technique: decomposition (replacing ABCD with, say, AB and BCD,
or ACD and ABD).

21
R. Ramakrishnan, J. Gehrke. Schema Refinement and Normal Forms. In Database Management
Systems. McGRAW-Hill International Editions, 3rd Edition, 2003, Chapter 19.

A5. Normal Forms

➔ If a relation is in a certain normal form (BCNF, 3NF, etc), it is known that certain kinds
of problems are avoided / minimized.

➔ Boyce-Codd normal form (BCNF) is a slightly stronger version of the third normal
form (3NF). It deals with certain types of anomalies not addressed by the 3NF.

➔ A relation R is in BCNF if and only if, for every functional dependency, at least one of
the following conditions hold:

➔ X → Y is a trivial functional dependency (Y ⊆ X),

➔ X is a superkey for schema R.

22
R. Ramakrishnan, J. Gehrke. Schema Refinement and Normal Forms. In Database Management
Systems. McGRAW-Hill International Editions, 3rd Edition, 2003, Chapter 19.

A5. MediaLibrary Validation and Schema Refinement

23

A5. MediaLibrary SQL Code

➔ The A5 artefact only includes types and tables creation statements in SQL.

➔ The SQL creation script is expanded in the A6 to include indexes, triggers, and
transactions.

➔ Test the SQL creation script in the production server

➔ Include it as a file in the repository, with a reference in the wiki.

24

A5. Checklist

25

A6. Indexes, Triggers, Transactions and Database Population

➔ This artefact contains the physical schema of the database,

➔ the identification and characterization of the indexes,

➔ the support of data integrity rules with triggers,

➔ the definition of the database user-defined functions,

➔ and the identification and characterization of the database transactions.

➔ This artefact also includes the complete database creation script, including all SQL code
necessary to define all integrity constraints, indexes, triggers and transactions.

➔ Also, the database creation script and the database population script should be included as
separate elements.

26

PostgreSQL

PostgreSQL

➔ PostgreSQL is the database management system used in LBAW.

➔ PostgreSQL is a free and open-source RBDMS that follows a client-server paradigm.

➔ A PostgreSQL production environment is available, which must be used in the
application's production version, at db.fe.up.pt

➔ Each group has a user account lbaw21gg, and a database lbaw21gg.

➔ This service is managed by UPdigital and is only available using the VPN to FEUP.

28

http://db.fe.up.pt

Setup PostgreSQL Connection

➔ To configure a connection to the database, use the following settings:

➔ Host: db.fe.up.pt
Port: 5432
Database: lbaw21gg
Username: lbaw21gg
Password: <group password, given in class>

➔ For development, groups can use a local PostgreSQL instance through Docker containers.

➔ Instructions can be found at: https://git.fe.up.pt/lbaw/template-postgresql

29

https://git.fe.up.pt/lbaw/template-postgresql

PostgreSQL Clients

➔ PostgreSQL clients exist for all major operating system environments.

➔ https://wiki.postgresql.org/wiki/PostgreSQL_Clients

➔ pgAdmin, used in LBAW, is one of the most popular clients - www.pgadmin.org

➔ Binary packages exist, but simply use Docker to quickly setup a local instance.

➔ A command line interface client is available with the psql command.

➔ Connect with: psql -h db.fe.up.pt -d lbaw21gg -U lbaw21gg

30

https://wiki.postgresql.org/wiki/PostgreSQL_Clients
https://www.pgadmin.org/
http://db.fe.up.pt

About the PostgreSQL Production Environment (important!)
➔ A PostgreSQL database contains one or more schemas, which in turn contains one or more tables.

➔ All databases contain a public schema, which is used as default.

➔ In PostgreSQL's command line interface, you can view the current active schema with: show search_path;

➔ To change the schema for the current session use: SET search_path TO <schema>;

➔ In the PostgreSQL setup at FEUP (db.fe.up.pt), the public schema is shared between all accounts,

➔ Tables created in the public schema are visible to all users (although not accessible).
If you look at the tables in the publish schema, you will find a long list of tables.

➔ It is important to not use the public schema and instead create a schema with the name of your group (lbaw21gg).

➔ To create this schema, use the following command: CREATE SCHEMA <lbaw21gg>;

➔ To always use this schema as the default in your project, add the following line to the beginning of your SQL scripts.

➔ SET search_path TO <lbaw21gg>;

31

References

Bibliography and Further Reading

➔ Scott Ambler, The Object Primer, Cambridge University Press, 3rd Edition, 2004.

➔ Alberto Rodrigues da Silva, Carlos Videira, UML — Metodologias e Ferramentas
CASE, 2ª Edição, Centro Atlântico Editora, Maio 2005.

➔ Raghu Ramakrishnan, Johannes Gehrke. Database Management Systems.
McGRAW-Hill International Editions, 3rd Edition, 2003.

33

Lab Class #3

➔ Start the EBD component.

➔ Develop and discuss the conceptual data model (A4).

➔ Develop and discuss the relational schema (A5).

➔ Connect to the group's database at db.fe.up.pt.

➔ Setup a local development environment for PostgreSQL.

34

http://db.fe.up.pt

