
Database Specification

Databases and Web Applications Laboratory (LBAW)

Bachelor in Informatics Engineering and Computation (L.EIC)


Sérgio Nunes

Dept. Informatics Engineering

FEUP · U.Porto



Outline

➔ Requirements Specification (ER) delivery


➔ Database Specification (EBD) development


➔ Conceptual Data Modeling


➔ Relational Schema


➔ Schema Validation and Refinement


➔ PostgreSQL

2



LBAW Plan

➔ Plan: https://web.fe.up.pt/~ssn/wiki/teach/lbaw


➔ 4th week of classes;


➔ Delivery of first component (ER);


➔ Lab classes: start new artefact (EBD); work on the conceptual data model (A4).


➔ Groups: https://moodle.up.pt/mod/choicegroup/view.php?id=35701 


➔ No pending situations.


➔ Monitor sessions: start this Wednesday, at 15h, online


➔ First session on Git and GitFlow.

3

https://web.fe.up.pt/~ssn/wiki/teach/lbaw
https://moodle.up.pt/mod/choicegroup/view.php?id=35701


Requirement Specification (ER) Delivery



Requirements Specification (ER) Delivery
➔ First component delivery this week (8th — 12th Nov)


➔ Deadline is on the day before the lab class, before 12h00. Submission steps:


➔ 1. Fill the group spreadsheet checklist:


➔ update the “Group Self-Evaluation” tab


➔ fill the ER, A1, A2, and A3 tabs


➔ 2. Verify that the component on the group’s GitLab wiki is updated with the ER component.


➔ 3. Export the component wiki page to PDF and submit it on Moodle:


➔ Only one submission per group is necessary.


➔ Ensure all images were correctly exported.


➔ Only the information included in the PDF will be considered for evaluation.

5



Questions about ER component submission?

6



Database Specification (EBD) Development



Database Specification (EBD) Component

➔ The EBD component groups the artefacts to be made by the development team in order to 
support the storage and retrieval requirements identified in the requirements specification.


➔ It consists of three artefacts:


➔ A4: Conceptual Data Model


➔ A5: Relational Schema, Validation and Schema Refinement


➔ A6: Indexes, Triggers, Transactions and Database Population


➔ https://web.fe.up.pt/~ssn/wiki/teach/lbaw/202122/artefacts 

8

https://web.fe.up.pt/~ssn/wiki/teach/lbaw/202122/artefacts/index#ii_database_specification_ebd_25


A4. Conceptual Data Model

➔ In this artefact the data requirements of the system are detailed.


➔ The Conceptual Domain Model contains the identification and description of the entities of the domain 
and the relationships between them.


➔ The Conceptual Domain Model is simplified to include only concepts (entities and relationships) of the 
domain that are stored in the database. 


➔ The Conceptual Data Model is obtained by using a UML class diagram containing the classes, 
associations, multiplicity and roles.


➔ For each class, the attributes, associations and constraints are included in the class diagram.


➔ Business rules not included in the class diagram are described by words or using OCL (Object 
Constraint Language) included as UML notes. 

9



A4. Data Modeling

➔ To obtain a conceptual model, iteratively go through these steps:


➔ 1. Identify entity types (a collection of people, places, things, events, or concepts);


➔ 2. Identify relationships (entities have relationships with other entities);


➔ 3. Identify attributes (each entity type will have one or more data attributes);


➔ 4. Apply naming conventions (team standards and guidelines applicable to data modeling).


➔ Scott Ambler. The Object Primer. Cambridge University Press, 3rd Edition, 2004. Section. 8.5

10



A4. Data Modeling

➔ Data models are used for a variety of purposes, from conceptual models to physical design models


➔ Logical data models are used to explore domain concepts and their relationships


➔ With data modeling, you identify data entities and assign data attributes to them


➔ whereas with class modeling you identify classes and assign responsibilities to them


➔ Then, you identify the associations between entities


➔ relationships, inheritance, and composition


➔ similar to the associations between classes


➔ Scott Ambler. The Object Primer. Cambridge University Press, 3rd Edition, 2004. Section. 8.5

11



A4. MediaLibrary Class Diagram

12



A4. MediaLibrary Business Rules

➔ BR01. A user cannot loan its own items.


➔ BR02. An item can only be lended by its owner.


➔ BR03. An item can only be loaned to one user at a time.

13



A4. Checklist

14



A5. Relational Schema, Validation and Schema Refinement

➔ The A5 artifact contains the Relational Schema obtained by mapping from the Conceptual Data 
Model.


➔ The Relational Schema includes each relation schema, attributes, domains, primary keys, foreign keys 
and other integrity rules: UNIQUE, DEFAULT, NOT NULL, CHECK.


➔ Relation schemas are specified in the compact notation.


➔ In addition to this representation, the relational schema is also presented in SQL as an annex. 


➔ To validate the Relational Schema obtained from the Conceptual Model, all functional dependencies 
are identified and the normalization of all relation schemas is accomplished.


➔ Should it be necessary, in case the scheme is not in the Boyce–Codd Normal Form (BCNF), the 
relational schema is refined using normalization.

15



A5. Relational Schema Compact Notation

➔ Relation schemas are specified in the compact notation: 


➔ table1(id, attribute NN) 
table2(id, attribute → Table1 NN) 
table3(id1, id2 → Table2, attribute UK NN) 
table4((id1, id2) → Table3, id3, attribute)  


➔ Primary keys are underlined. UK means UNIQUE and NN means NOT NULL. 


➔ The specification of additional domains can also be made in a compact form, using the notation: 


➔ Today DATE DEFAULT CURRENT_DATE 
Priority ENUM ('High', 'Medium', 'Low') 


➔ In PostgreSQL use lower case and the "snake_case" convention.

16



A5. Relational Schema Mapping

17
Alberto Manuel Rodrigues da Silva e Carlos Alberto Escaleira Videira, UML, metodologias 
e ferramentas CASE, 2ª Edição, Volume 1, Centro Atlântico Editora, Maio 2005.



A5. Relational Schema Mapping

18
Alberto Manuel Rodrigues da Silva e Carlos Alberto Escaleira Videira, UML, metodologias 
e ferramentas CASE, 2ª Edição, Volume 1, Centro Atlântico Editora, Maio 2005.



A5. MediaLibrary Relational Schema

19



A5. Schema Validation and Refinement

➔ To validate the Relational Schema obtained from the Conceptual Model,


➔ all functional dependencies are identified and


➔ the normalization of all relation schemas is accomplished.


➔ Should it be necessary, in case the scheme is not in the Boyce–Codd Normal Form 
(BCNF), the relational schema is refined using normalization.

20



A5. Problems of Redundancy

➔ Redundancy is at the root of several problems associated with relational schemas:


➔ redundant storage;


➔ insert / delete / update anomalies.


➔ Integrity constraints, in particular functional dependencies, can be used to identify 
schemas with such problems and to suggest refinements.


➔ Main refinement technique: decomposition (replacing ABCD with, say, AB and BCD, 
or ACD and ABD).

21
R. Ramakrishnan, J. Gehrke. Schema Refinement and Normal Forms. In Database Management 
Systems. McGRAW-Hill International Editions, 3rd Edition, 2003, Chapter 19.



A5. Normal Forms

➔ If a relation is in a certain normal form (BCNF, 3NF, etc), it is known that certain kinds 
of problems are avoided / minimized.


➔ Boyce-Codd normal form (BCNF) is a slightly stronger version of the third normal 
form (3NF). It deals with certain types of anomalies not addressed by the 3NF.


➔ A relation R is in BCNF if and only if, for every functional dependency, at least one of 
the following conditions hold:


➔ X → Y is a trivial functional dependency (Y ⊆ X),


➔ X is a superkey for schema R.

22
R. Ramakrishnan, J. Gehrke. Schema Refinement and Normal Forms. In Database Management 
Systems. McGRAW-Hill International Editions, 3rd Edition, 2003, Chapter 19.



A5. MediaLibrary Validation and Schema Refinement

23



A5. MediaLibrary SQL Code

➔ The A5 artefact only includes types and tables creation statements in SQL.


➔ The SQL creation script is expanded in the A6 to include indexes, triggers, and 
transactions.


➔ Test the SQL creation script in the production server


➔ Include it as a file in the repository, with a reference in the wiki.

24



A5. Checklist

25



A6. Indexes, Triggers, Transactions and Database Population

➔ This artefact contains the physical schema of the database,


➔ the identification and characterization of the indexes,


➔ the support of data integrity rules with triggers,


➔ the definition of the database user-defined functions,


➔ and the identification and characterization of the database transactions.


➔ This artefact also includes the complete database creation script, including all SQL code 
necessary to define all integrity constraints, indexes, triggers and transactions.


➔ Also, the database creation script and the database population script should be included as 
separate elements.

26



PostgreSQL



PostgreSQL

➔ PostgreSQL is the database management system used in LBAW.


➔ PostgreSQL is a free and open-source RBDMS that follows a client-server paradigm.


➔ A PostgreSQL production environment is available, which must be used in the 
application's production version, at db.fe.up.pt


➔ Each group has a user account lbaw21gg, and a database lbaw21gg.


➔ This service is managed by UPdigital and is only available using the VPN to FEUP.

28

http://db.fe.up.pt


Setup PostgreSQL Connection

➔ To configure a connection to the database, use the following settings: 


➔ Host: db.fe.up.pt 
Port: 5432 
Database: lbaw21gg 
Username: lbaw21gg 
Password: <group password, given in class>


➔ For development, groups can use a local PostgreSQL instance through Docker containers.


➔ Instructions can be found at: https://git.fe.up.pt/lbaw/template-postgresql 

29

https://git.fe.up.pt/lbaw/template-postgresql


PostgreSQL Clients

➔ PostgreSQL clients exist for all major operating system environments.


➔ https://wiki.postgresql.org/wiki/PostgreSQL_Clients


➔ pgAdmin, used in LBAW, is one of the most popular clients - www.pgadmin.org 


➔ Binary packages exist, but simply use Docker to quickly setup a local instance.


➔ A command line interface client is available with the psql command.


➔ Connect with: psql -h db.fe.up.pt -d lbaw21gg -U lbaw21gg

30

https://wiki.postgresql.org/wiki/PostgreSQL_Clients
https://www.pgadmin.org/
http://db.fe.up.pt


About the PostgreSQL Production Environment (important!)
➔ A PostgreSQL database contains one or more schemas, which in turn contains one or more tables.


➔ All databases contain a public schema, which is used as default.


➔ In PostgreSQL's command line interface, you can view the current active schema with: show search_path;


➔ To change the schema for the current session use: SET search_path TO <schema>; 


➔ In the PostgreSQL setup at FEUP (db.fe.up.pt), the public schema is shared between all accounts,


➔ Tables created in the public schema are visible to all users (although not accessible). 
If you look at the tables in the publish schema, you will find a long list of tables.


➔ It is important to not use the public schema and instead create a schema with the name of your group (lbaw21gg). 


➔ To create this schema, use the following command:  CREATE SCHEMA <lbaw21gg>;


➔ To always use this schema as the default in your project, add the following line to the beginning of your SQL scripts. 


➔ SET search_path TO <lbaw21gg>; 

31



References



Bibliography and Further Reading

➔ Scott Ambler, The Object Primer, Cambridge University Press, 3rd Edition, 2004.


➔ Alberto Rodrigues da Silva, Carlos Videira, UML — Metodologias e Ferramentas 
CASE, 2ª Edição, Centro Atlântico Editora, Maio 2005.


➔ Raghu Ramakrishnan, Johannes Gehrke. Database Management Systems. 
McGRAW-Hill International Editions, 3rd Edition, 2003.

33



Lab Class #3

➔ Start the EBD component.


➔ Develop and discuss the conceptual data model (A4).


➔ Develop and discuss the relational schema (A5).


➔ Connect to the group's database at db.fe.up.pt.


➔ Setup a local development environment for PostgreSQL.

34

http://db.fe.up.pt

