Database Specification

Databases and Web Applications Laboratory (LBAW)
Bachelor in Informatics Engineering and Computation (L.EIC)

Sérgio Nunes
Dept. Informatics Engineering
FEUP - U.Porto

Outline

-> Requirements Specification (ER) delivery

-> Database Specification (EBD) development
- Conceptual Data Modeling
- Relational Schema

2> Schema Validation and Refinement

-> PostgreSQL

L BAW Plan

-> Plan: https://web.fe.up.pt/~ssn/wiki/teach/llbaw

- 4th week of classes;

=

- Lab classes: start new artefact (

Delivery of first component (ER);

3

D); work on the conceptual data model (A4).

-> Groups: https://moodle.up.pt/mod/choicegroup/view.php?id=35701

- No pending situations.

=> Monitor sessions: start this Wednesday, at 15h, online

=

-irst session on Git and GitFlow.

https://web.fe.up.pt/~ssn/wiki/teach/lbaw
https://moodle.up.pt/mod/choicegroup/view.php?id=35701

Requirement Specification (ER) Delivery

Requirements Specification (ER) Delivery

-> First component delivery this week (8th — 12th Nov)
-> Deadline is on the day before the lab class, before 12h00. Submission steps:

—> 1. Fill the group spreadsheet checklist:
= update the “Group Self-Evaluation” tab

= fill the ER, A1, A2, and A3 tabs
-> 2. Verify that the component on the group’s GitLab wiki is updated with the ER component.

- 3. Export the component wiki page to PDF and submit it on Moodle:
- Only one submission per group is necessary.
- Ensure all images were correctly exported.

- Only the information included in the PDF will be considered for evaluation.

Questions about ER component submission?

Datalbase Specification (EBD) Development

Database Specification (EBD) Component

-> [he EBD component groups the artefacts to be made by the development team in order to
support the storage and retrieval requirements identified in the requirements specification.

=> |t consists of three artefacts:

= A4: Conceptual Data Model

=2 Ab5: Relational Schema, Validation and Schema Refinement

> AOG: Indexes, Iriggers, Transactions and Database Population

=> https://web.fe.up.pt/~ssn/wiki/teach/lbaw/202122/artefacts

https://web.fe.up.pt/~ssn/wiki/teach/lbaw/202122/artefacts/index#ii_database_specification_ebd_25

A4d. Conceptual Data Model

-> |n this artefact the data requirements of the system are detailed.

-> The Conceptual Domain Model contains the identification and description of the entities of the domain
and the relationships between them.

-> The Conceptual Domain Model is simplified to include only concepts (entities and relationships) of the
domain that are stored in the database.

-> The Conceptual Data Model is obtained by using a UML class diagram containing the classes,
associations, multiplicity and roles.

—> For each class, the attributes, associations and constraints are included in the class diagram.

-> Business rules not included in the class diagram are described by words or using OCL (Object
Constraint Language) included as UML notes.

A4. Data Modeling

> [o obtain a conceptual model, iteratively go through these steps:
- 1. ldentify entity types (a collection of people, places, things, events, or concepts);
- 2. |ldentify relationships (entities have relationships with other entities);
- 3. |dentify attributes (each entity type will have one or more data attributes);

> 4. Apply naming conventions (team standards and guidelines applicable to data modeling).

-> Scott Ambler. The Object Primer. Cambridge University Press, 3rd Edition, 2004. Section. 8.5

10

A4. Data Modeling

- Data models are used for a variety of purposes, from conceptual models to physical design models
> Logical data models are used to explore domain concepts and their relationships
> With data modeling, you identify data entities and assignh data attributes to them
> whereas with class modeling you identify classes and assign responsibilities to them
> Then, you identify the associations between entities
= relationships, inheritance, and composition

2> similar to the associlations between classes

-> Scott Ambler. The Object Primer. Cambridge University Press, 3rd Edition, 2004. Section. 8.5

11

A4d. MediaLibrary Class Diagram

Author

+ comment: String
+ name: String

1.*

Collection

Review

+ name: String

+
+

constraints
{ name NOT NULL }

+-

comment: String
date: Date
rating: 0..5

User

O

constraints

{ comment NOT NULL }

email: Email
name: String
obs: String
password: String
url: URL

+ + + + +

constraints

+ Ul URL . { name NOT NULL }
constraints { email NOT NULL }
{ name NOT NULL } { email UNIQUE }
{ password NOT NULL }
? {disjoint, complete} ' 1 1
Work -
i Loan
Band Singie + classification: 0..5
+ comment: String
+ end: Date " + born: Date + id: Autonumber + start_date: Date
+ start: Date + die: Date + obs: String + end_date: Date
+ title: Strin ,
constraints constraints + url: URL g constraints
{ end > start } { died > born } + year: Positive { end_date > start_date }
{ start NOT NULL } { born NOT NULL } { start NOT NULL }
* consltraints *
{id NOT NULL) 1
itl T
Period { titte NOT NULL } 1
? Item
+ dateln: Date
+ dateOut: Date + code: Integer
constraints + date: Date
{ dateOut > dateln } NonBook Book omeairs
{ dateln NOT NULL } - . { code NOT NULL }
+ cover: Path : 9(:,'“-021 String { date NOT NULL }
IS SRR { date DEFAULT today }
{disjoint, complete} ? constraints *
{isbn NOT NULL }
{ isbn UNIQUE }
N 1
CD MP3 DVD VHS Slides Photos .
0.1 Location
Publisher + address: String

+ gps: String
+ name: String

+ name: String

constraints
constraints {name NOT NULL }
{ name NOT NULL } { address NOT NULL }

Ad.

Medialibrary Business Rules

- B

- B

- B

R01. A user cannot loan 1ts own items.

R02. An item can only be lended by its owner.

R03. An item can only be loaned to one user at a time.

13

A4. Checklist

A4. Conceptual Data Model

Artefact 1.1 | The artefact reference and name are clear
1.2 |The goal of the artefact is briefly presented (1, 2 sentences)
2.1 |UML notation is consistently used
2.2 |Diagram layout is clear (visual organization)
UML 2.3 |Classes are correctly represented
2.4 |Generalizations are correctly represented
2.5 |Associations are correctly represented
2.6 |Restrictions and business rules are correctly represented
3.1 |Classes are presented with areas for name and attributes
Classes 3.2 |Classes do not have methods associated

Attributes,
domains and
restrictions

5.1

All attributes have a generic type (text, number, date, boolean)

5.2

Attribute visibility is omitted (e.g. '+' prefix not included)

5.3

Domains are defined for attributes that have predefined fixed values

54

Not null attributes are indicated in the restrictions

5.5

Unique attributes are indicated in the restrictions

5.6

Restrictions related to numerical attributes are indicated (e.g. > 0)

5.7

Restrictions related to date types are indicated (e.g. > today)

5.8

Attributes with default values are indicated

5.9

All generalizations have constraints defined

5.10

All restrictions and business rules defined in A2 are included

3.3

The classes support all high priority user stories defined in A2

3.4

Class names are consistent (e.g. always singular, always in English)

Associations,
multiplicity,
roles

4.1

Automatic primary keys are not presented

4.2 |Natural keys are not used as primary keys (e.g. NIF)

4.3 |Multiplicity is defined for all associations

4.4 |Roles are used to explain how an object participates in the relationship
4.5 |Mandatory associations (not null) are indicated in the multiplicity

4.6 |In 1-1 associations, directionality is defined

4.7 |The associations support all high priority user stories defined in A2

4.8

There is an "Authorship® association

14

A5. Relational Schema, Validation and Schema Refinement

-> The Ab artifact contains the Relational Schema obtained by mapping from the Conceptual Data
Model.

-> The Relational Schema includes each relation schema, attributes, domains, primary keys, foreign keys
and other integrity rules: UNIQUE, DEFAULT, NOT NULL, CHECK.

—> Relation schemas are specified in the compact notation.

-> |n addition to this representation, the relational schema is also presented in SQL as an annex.

-> o validate the Relational Schema obtained from the Conceptual Model, all functional dependencies
are identified and the normalization of all relation schemas is accomplished.

-> Should it be necessary, in case the scheme is not in the Boyce—Codd Normal Form (BCNF), the
relational schema is refined using normalization.

15

A5. Relational Schema Compact Notation

-> Relation schemas are specitfied in the compact notation:

- {a d, attribute NN)

(
(id, attribute — Table1 NN)

e3(id1, id2 = Table?, attribute UK NN)
e4((id1, id2) — Table3, id3, attribute)

A Y 7

a
a
a

O O O O

-> Primary keys are underlined. UK means UNIQUE and NN means NOT NULL.

—-> [he specification of additional domains can also be made in a compact form, using the notation:

- [oday DATE D
Priority ENUM

“AULT CURRENT _DATE
'High', 'Medium', 'Low’)

N

- In PostgreSQL use lower case and the "snake_case" convention.

16

Ab. Relational Schema Mapping

Summary of Mapping Rules from
Logical UML Models to Relational Schemas

Translated from:

UML - Metodologias e Ferramentas CASE, Vol. 1, 22 Edi¢cao, pp. 314-315
Alberto Silva e Carlos Videira, Centro Atlantico (2005)

Rule 1

Rule 2

Rule 3

Rule 4

Rule 5

Rule 6:

Rule 7:

Classes are mapped into relation schemas
Class attributes are mapped to attributes of relations.

Operations of classes are generally not mapped. They can nevertheless be mapped to stored procedures, stored
and executed in the global context of the database involved.

Objects are mapped into tuples of one or more relations.

Each object is uniquely identified.

If the identification of an object is defined explicitly by the OID (object identifier) stereotype, associated with one
or more attributes, this attribute is mapped to primary key in the relation schema.

Otherwise, we assume implicitly that the corresponding primary key is derived from a new attribute with the
name of the relation and common suffix (e.g. "PK", "ID").

The mapping of many-to-many associations involves the creation of a new relation schema, with attributes acting
together as primary key, and individually as foreign key for each of the schemas derived from the classes
involved.

The mapping of one-to-many associations involves the introduction, in the relation schema corresponding to the
class that has the constraint "many", of a foreign key attribute for the other schema.

Alberto Manuel Rodrigues da Silva e Carlos Alberto Escaleira Videira, UML, metodologias
e ferramentas CASE, 22 Edicao, Volume 1, Centro Atlantico Editora, Maio 2005.

17

Ab. Relational Schema Mapping

Rule 8:

Rule 9:

Rule 10:

Rule 11:

The mapping of one-to-one associations has in general two solutions. The first corresponds to the fusion of the
attributes of the classes involved in one common schema. The second solution is to map each of the classes in the
corresponding schema and choose one of the schemas as the most suitable for the introduction of a foreign key
attribute for the other schema. This attribute should also be defined as unique within that schema.

Association navigability in general has no impact on the mapping process. The exception lies in one-to-one
associations, when they are complemented with navigation cues it helps in the selection of the schema that
should include the foreign key attribute.

Aggregation and composition associations have a minimal impact on the mapping process, which may correspond
to the definition of constraints cascade ("CASCADE") in changing operations and/or removal of tuples.

The mapping of generalization associations in general presents three solutions.

The first solution consists in crushing the hierarchy of classes in a single schema corresponding to the original
superclass. This solution is appropriate when there is a significant distinction in the structure of sub-classes
and/or when the semantics of their identification is not strong.

The second solution is to consider only schemas corresponding to the sub-classes and duplicate the attributes of
the super-class in these schemas; in particular it works if the super-class is defined as abstract.

The third solution is to consider all the schemas corresponding to all classes of the hierarchy, resulting in a mesh
of connected schemas and maintained at the expense of referential integrity rules. This solution has the
advantage of avoiding duplication of information among different schemas, but suggests a dispersion of
information by various schemas, and might involve a performance penalty in query operations or updating of
data by requiring the execution of various join operations (i.e. "JOIN") and/or validation of referential integrity.

Alberto Manuel Rodrigues da Silva e Carlos Alberto Escaleira Videira, UML, metodologias
e ferramentas CASE, 22 Edicao, Volume 1, Centro Atlantico Editora, Maio 2005.

18

A5. MedialLibrary Relational Schema

RO1

user(id, email UK NN, name NN, obs, password NN, img, is_admin NN)

RO2

author(id, name NN, img)

RO3

collection(id, name NN)

RO4

work(id, title NN, obs, img, year NN CK year > 0, id_user -> user NN,
id_collection -> collection)

ROS

author_work(id_author -> author, id_work -> work)

RO6

nonbook(id_work -> work, type NN CK type IN Types)

RO7

publisher(id, name NN)

RO8

book(id_work -> work, edition, isbn UK NN, id_publisher -> publisher)

RO9

location(id, name NN, address NN, gps)

R10

item(id, id_work -> work NN, id_location -> location NN, code NN, date NN
DF Today)

R11

loan(id, id_item -> item NN, id_user -> user NN, start_date NN, end_date NN
CK end > start)

R12

review(id_user -> user, id_work -> work, date NN DF Today, comment NN,
rating NN CK rating > 0 AND rating < = 5)

R13

wish_list(id_user -> user, id_work -> work)

19

A5. Schema Validation and Refinement

-> Jo validate the Relational Schema obtained from the Conceptual Model,
- all functional dependencies are identified and

- the normalization of all relation schemas is accomplished.

-> Should it be necessary, in case the scheme is not in the Boyce—Codd Normal Form
(BCNF), the relational schema is refined using normalization.

20

AdS. Problems of Redundancy

- Redundancy is at the root of several problems associated with relational schemas:
- redundant storage;

- insert / delete / update anomalies.

-> Integrity constraints, in particular functional dependencies, can be used to identify
schemas with such problems and to suggest refinements.

-> Main refinement technique: decomposition (replacing ABCD with, say, AB and BCD,
or ACD and ABD).

R. Ramakrishnan, J. Gehrke. Schema Refinement and Normal Forms. In Database Management
Systems. McGRAW-HIll International Editions, 3rd Edition, 2003, Chapter 19.

21

A5. Normal Forms

-> |f a relation is in a certain normal form (BCNF, 3NF, etc), it is known that certain kinds
of problems are avoided / minimized.

-> Boyce-Codd normal form (BCNF) is a slightly stronger version of the third normal
form (3NF). It deals with certain types of anomalies not addressed by the 3NF.

-> A relation R is in BCNF if and only if, for every functional dependency, at least one of
the following conditions hold:

- X = Y is a trivial functional dependency (Y C X),

> X IS a superkey for schema R.

R. Ramakrishnan, J. Gehrke. Schema Refinement and Normal Forms. In Database Management
Systems. McGRAW-HIll International Editions, 3rd Edition, 2003, Chapter 19. 22

A5. Medialibrary Validation and Schema Refinement

Table RO1 (user)

Keys: {id}, {email}

Functional Dependencies

FDO101

{id} = {email, name, obs password, img, is_admin}

FD0102

{email} — {id, name, obs, password, img, is_admin}

Normal Form

BCNF

Table R02 (author)

Keys: {id}

Functional Dependencies

FD0201 {id} = {name, img}
Normal Form BCNF

Table ROS5 (author_work)

Keys: {id_author, id_work}

Functional Dependencies none

Normal Form BCNF

23

A5. MediaLibrary SQL Code

-> The A5 artefact only includes types and tables creation statements in SQL.

-> The SQL creation script is expanded in the A6 to include indexes, triggers, and
transactions.

-> Test the SQL creation script in the production server

- |nclude it as a file In the repository, with a reference in the wiki.

24

A5. Checklist

AS5. Relational Schema

Schema
validation

4.1

Schema validation section is included

4.2

For each relation, all candidate keys are listed

4.3

For each relation, all FD are listed

4.4

Each relation's normal form is identified

4.5

The schema's normal form is identified and a justification is provided

Artefact 1.1 |The artefact reference and name are clear
1.2 | The goal of the artefact is briefly presented (1, 2 sentences)
2.1 | The compact notation is correctly used
2.2 |Each relation has a unique reference
2.3 |Relation names are lowercase and in snake case when needed
2.4 |(All UML classes are mapped
2.5 |All class attributes are mapped
2.6 |(All associations are mapped
Schema 2.7 |All relations have a PK

2.8

No natural keys are used as PK

2.9

All FK attributes reference a relation

210

In 1-1 associations, a FK is used considering the directionality

2.1

In 1-N associations, a FK is used

212

In N-N associations, a relation is defined with a composite PK of two FKs

213

Generalisations are correctly mapped and the choices well justified

2.14

Domains are defined and used if necessary

Integrity rules

3.1

All NN attribute restrictions are included

SQL Code

5.1

The SQL script is included

5.2

The SQL script contains the creation statements

5.3

The SQL script cleans up the current database state

54

The SQL script is cleaned (e.g. excluded from export comments)

5.5

Code highlighting is used for readability

5.6

All domains are included in the SQL script

5.7

All relations are included in the SQL script

5.8

PK are defined as SERIAL

5.9

FK are not defined as SERIAL

5.10

The SQL script works without errors

5.11

SQL script is included in the group's repository

5.12

The production database (at db.fe.up.pt) has been set up with the SQL script

3.2

All UK attribute restrictions are included

3.3

All date attributes have adequate restrictions

3.4

All numeric attributes have adequate restrictions

25

AO. Indexes, Triggers, Transactions and Database Population

-> This artefact contains the physical schema of the database,
- the identification and characterization of the indexes,
- the support of data integrity rules with triggers,
- the definition of the datalbase user-defined functions,

= and the identification and characterization of the database transactions.

-> This artefact also includes the complete database creation script, including all SQL code
necessary to define all integrity constraints, indexes, triggers and transactions.

—> Also, the database creation script and the database population script should be included as
separate elements.

26

PostgreSQL

PostgreSQL

-> PostgreSQL is the database management system used in LBAW.
-> PostgreSQL is a free and open-source RBDMS that follows a client-server paradigm.

-> A PostgreSQL production environment is available, which must be used in the
application's production version, at db.fe.up.pt

- Each group has a user account lbaw21gg, and a database lbaw21gg.

-> This service Is managed by UPdigital and is only available using the VPN to FEUP.

28

http://db.fe.up.pt

Setup PostgreSQL Connection

—> [0 configure a connection to the datalbase, use the following settings:

> Host: db.fe.up.pt
Port: 5432
Database: lbaw21gg
Jsername: lbaw21gg

—-> For development, groups can use a local

Password: <group password, given in class>

PostgreSQL instance through

Docker containers.

-> [nstructions can be found at: https://qit.fe.up.pt/lbaw/template-postgresal

https://git.fe.up.pt/lbaw/template-postgresql

PostgreSQL Clients

-> PostgreSQL clients exist for all major operating system environments.

- https://wiki.postgresal.org/wiki/PostgreSQL Clients

> pgAdmin, used in LBAW, Is one of the most popular clients - www.pgadmin.org

- Binary packages exist, but simply use Docker to quickly setup a local instance.

—=> A command line interface client is available with the psgl command.

= Connect with: psgl -h db.fe.up.pt -d lbaw21gg -U lbaw2l1gg

30

https://wiki.postgresql.org/wiki/PostgreSQL_Clients
https://www.pgadmin.org/
http://db.fe.up.pt

About the PostgreSQL Production Environment (important!)

-> A PostgreSQL database contains one or more schemas, which in turn contains one or more tables.
-> All databases contain a public schema, which is used as default.

- |In PostgreSQL's command line interface, you can view the current active schema with: show search_path;

—> [o change the schema for the current session use: SET search_path TO <schema>;

- In the PostgreSQL setup at FEUP (db.fe.up.pt), the public schema is shared between all accounts,

- Tables created in the public schema are visible to all users (although not accessible).
If you look at the tables in the publish schema, you will find a long list of tables.

= |t is important to not use the public schema and instead create a schema with the name of your group (lbaw21gg).

-> [0 create this schema, use the following command: CREATE SCHEMA <lbaw21gg>;

-> To always use this schema as the default in your project, add the following line to the beginning of your SQL scripts.

> SET search_path TO <lbaw21gg>;

31

References

Bibliography and Further Reading

-> Scott Ambler, The Object Primer, Cambridge University Press, 3rd Edition, 2004,

-> Alberto Rodrigues da Silva, Carlos Videira, UML — Metodologias e Ferramentas
CASE, 22 Edicao, Centro Atlantico Editora, Maio 2005.

-> Raghu Ramakrishnan, Johannes Gehrke. Database Management Systems.
McGRAW-HIll International Editions, 3rd Edition, 2003.

33

Lab Class #3

-> Start the EBD component.
-> Develop and discuss the conceptual data model (A4).

-> Develop and discuss the relational schema (A5).

-> Connect to the group's database at db.fe.up.pt.

-> Setup a local development environment for PostgreSQL.

34

http://db.fe.up.pt

