
Database TuningDatabase Tuning
PostgreSQLPostgreSQL

André RestivoAndré Restivo

1 / 991 / 99

http://www.fe.up.pt/~arestivo

Physical SchemaPhysical Schema StorageStorage Sequential FilesSequential Files IndexesIndexes Ordered IndexesOrdered Indexes

Primary IndexesPrimary Indexes Secondary IndexesSecondary Indexes B+ Tree IndexesB+ Tree Indexes Hash IndexesHash Indexes

PostgreSQLPostgreSQL Full Text SearchFull Text Search Database TuningDatabase Tuning ExamplesExamples

Choosing IndexesChoosing Indexes DenormalizationDenormalization

IndexIndex

2 / 992 / 99

Physical SchemaPhysical Schema

3 / 993 / 99

Physical Schema
Logical Schema: A design-centric database structure built to meet your business requirements.

Physical Schema: How data is to be represented and stored.

How are tables stored? Using �les? With what structure?

What datatypes are we going to use and how should they be stored?

What triggers should be implemented?

How can we make sure queries have a good performance? denormalization, derived
attributes + triggers, indexes, ...

4 / 99

StorageStorage

5 / 995 / 99

Hard Disk

6 / 99

Blocks
Data is read or written from the hard disk a whole block at a time.

Each block can contain several tuples.

Table blocks are not necessarily sequential.

tuple

blockhard disk

relation

7 / 99

Performance
Biggest database performance bottleneck is having too many I/O operations.

Hard disk is accessed block by block.

Block fetch requires about 5 to 10 milliseconds (10-3), versus about 100 nanoseconds (10-9)
for memory access.

It is important to minimize the number of blocks fetched.

On many di�erent operations:

search, insert, delete, update, sort, ranges, ...

8 / 99

SSD

Image from CodeCapsule

9 / 99

http://codecapsule.com/2014/02/12/coding-for-ssds-part-2-architecture-of-an-ssd-and-benchmarking/

Indicators
Some important values that we will use throughout this presentation:

Number of tuples: t

Block size: B bytes

Tuple size: T bytes

Typically B >= T

Some important indicators:

Blocking Factor: bfr = B / T (how many tuples in each block)

Block Number: b = t / bfr (how many blocks to store all tuples)

10 / 99

Running Example

1024 bytes

100 bytes10 tuples
tuple

block

...

3000 blocks

t = 30000 tuples

B = 1024 bytes

T = 100 bytes

bfr = 1024 / 100 = 10 tuples/block

b = 30000 / 10 = 3000 blocks

11 / 99

Sequential FilesSequential Files

12 / 9912 / 99

54 jack

82 sarah

38 chris

33 ben

1 miranda

18 edgar

90 fred

29 helga

110 john

14 carl

76 lois

5 mary

...

Key

Unordered Sequential File
File has no special order between tuples.

Inserting and updating is very fast.

Searching and ordering very slow.

13 / 99

54 jack

82 sarah

38 chris

33 ben

1 miranda

18 edgar

90 fred

29 helga

110 john

14 carl

76 lois

5 mary

...

Key

Unordered Sequential File
File has no special order between tuples.

Inserting and updating is very fast.

Searching and ordering very slow.

Searching:

Keys: b / 2 = 1500 blocks

Non-keys: b = 3000 blocks

14 / 99

10 jack

12 sarah

24 chris

26 ben

40218 miranda

41762 edgar

42381 fred

44871 helga

1 john

2 carl

4 lois

6 mary

...

Key

Ordered Sequential File
File ordered by primary key.

Inserting and updating can be slow. Unless
sequentially or some space is wasted.

Searching and ordering very slow except on
primary key.

15 / 99

10 jack

12 sarah

24 chris

26 ben

40218 miranda

41762 edgar

42381 fred

44871 helga

1 john

2 carl

4 lois

6 mary

...

Key

Ordered Sequential File
File ordered by primary key.

Inserting and updating can be slow. Unless
sequentially or some space is wasted.

Searching and ordering very slow except on
primary key.

Searching:

Primary Keys: log2b = 12 blocks

Other Keys: b / 2 = 1500 blocks

Non-keys: b = 3000 blocks

16 / 99

IndexesIndexes

17 / 9917 / 99

A Useful Metaphor

18 / 99

Indexes
Mechanisms used to speed up data access.

Index �les are typically much smaller than the original �le.

Two basic kinds: ordered and hashed.

Index evaluation: genericity, performance and overhead.

19 / 99

Ordered IndexesOrdered Indexes

20 / 9920 / 99

Ordered Indexes
An ordered index typically consist of entries having a search-key and a pointer.

search-key

Entries (in the index) are sorted by their search-key.

Primary indexes:

An index having a search-key in the same order as the �le.
Only one per �le.
Also called clustering index.

Secondary indexes:

An index having a search-key in a di�erent order as the �le.
Many per �le are possible.

21 / 99

Primary IndexesPrimary Indexes

22 / 9922 / 99

Dense Primary Indexes
Dense indexes have one index entry for each search-key value in the indexed �le.

1 block
10 jack

12 sarah

24 chris

26 ben

40218 miranda

41762 edgar

42381 fred

44871 helga

1 john

2 carl

4 lois

6 mary

...

1

2

4

6

1

2

4

6

1

2

4

6

10

12

24

26

40218

41762

42381

44871

...

many
blocks 1230 anna

12 alex

1234 alex

26123 arthur

90 zed

1243 zed

8357 zed

568 zed

132 amelia

234 alice

45 anna

6123 anna

...

1

2

4

6

1

2

4

6

amelia

alice

anna

alex

arthur

albert

alfred

angus

yara

yanis

zander

zed

...

Dense index: file ordered by key Dense index: file ordered by non-key

23 / 99

Sparse Primary Indexes
Sparse indexes contain entries for only some search-key values.

Normally one entry per block.

Advantages: Less space and less maintenance.

Disadvantages: Only applicable when entries are ordered on search-key.

10 jack

12 sarah

24 chris

26 ben

40218 miranda

41762 edgar

42381 fred

44871 helga

1 john

2 carl

4 lois

6 mary

...

1

2

4

6

1

2

4

6

1

10

134

245

313

534

1023

1492

...

...

...

40218

...

10 anna

12 alex

24 alex

26 arthur

40218 zed

41762 zed

42381 zed

44871 zed

1 amelia

2 alice

4 anna

6 anna

...

1

2

4

6

1

2

4

6

amelia

alex

afred

angus

arthur

albert

alfred

angus

...

...

...

zed

...

Sparse index: file ordered by key Sparse index: file ordered by non-key

24 / 99

Dense Index

ti: 30000 (same as t)

Ti: 15 bytes (9 + 6)

bfri: 68 tuples/block (1024 / 15)

bi: 441 blocks (30000 / 68)

Sparse Index (one entry per block)

ti: 3000 (same as b)

Ti: 15 bytes (9 + 6)

bfri: 68 tuples/block (1024 / 15)

bi: 44 blocks (3000 / 68)

Dense or Sparse
Search-key: 9 bytes

Pointer: 6 bytes (2.8 * 1014 tuples)

25 / 99

Dense Index

ti: 30000 (same as t)

Ti: 15 bytes (9 + 6)

bfri: 68 tuples/block (1024 / 15)

bi: 441 blocks (30000 / 68)

Sparse Index (one entry per block)

ti: 3000 (same as b)

Ti: 15 bytes (9 + 6)

bfri: 68 tuples/block (1024 / 15)

bi: 44 blocks (3000 / 68)

Dense or Sparse
Search-key: 9 bytes

Pointer: 6 bytes (2.8 * 1014 tuples)

Search on dense: log2441 + 1 = 10 blocks

Search on sparse: log244 + 1 = 7 blocks

But search isn't everything...

26 / 99

Secondary IndexesSecondary Indexes

27 / 9927 / 99

Secondary Indexes
Always have to be dense.

In non-key indexes, entries point to a bucket of pointers to the actual tuples.

10 jack

12 amelia

24 amelia

26 ben

40218 anna

41762 edgar

42381 fred

44871 helga

1 amelia

2 carl

4 lois

6 mary

...

1

2

4

6

1

2

4

6

amelia

alice

anna

alex

arthur

albert

alfred

angus

yara

yanis

xander

zed

...

1230 anna

12 alex

1234 alex

26123 arthur

90 zed

1243 zed

8357 zed

568 zed

132 amelia

234 alice

45 anna

6123 anna

...

1

2

4

6

1

2

4

6

1

2

12

45

90

104

132

234

15093

19877

21223

26123

...

Secondary dense index to key field Secondary dense index to non-key field

28 / 99

Multi-Level Indexes
If an index does not �t in memory, access can become expensive.

Solution is to keep a �rst index (inner index) on disk and construct a sparse index on it (outer
index).

If even outer index is too large to �t in main memory, yet another level of index can be created,
and so on.

1230 anna

12 alex

1234 alex

26123 arthur

90 zed

1243 zed

8357 zed

568 zed

132 amelia

234 alice

45 anna

6123 anna

...

1

2

4

6

1

2

4

6

1

2

12

45

90

104

132

234

15093

19877

21223

26123

...

1

542

1234

2657

...

29 / 99

Multi-Level Indexes
bi2: 30000/68 = 442 blocks

bi1: 442/68 = 7 blocks

bi0: 7/68 = 1 blocks

30 / 99

Multi-Level Indexes
bi2: 30000/68 = 442 blocks

bi1: 442/68 = 7 blocks

bi0: 7/68 = 1 blocks

Search: 4 blocks (3 if outer index kept in memory)

One for each index + 1 for the block containing the tuple.

31 / 99

B+ Tree IndexesB+ Tree Indexes

32 / 9932 / 99

B+ Tree Indexes
Uses a tree-like data structure where each tree node has:

q pointers to another node

q – 1 values

5 234

The last level nodes (leafs) have:

q – 1 pointers to tuples/blocks

q – 1 values

1 pointer to the next leaf node

10 20

Allows searching, sorting, range search.

33 / 99

B+ Tree Indexes
37 127

12 24 54 88 145 167

8 12 17 24 28 37 42 54

8 12 17 24 28 37 42 54 ...

...

34 / 99

B+ Tree Indexes
Use partially full blocks to speed insertions and deletions.

When a level is too full, create a new level.

In a B+ Tree that is 70% full in each level:

34 value-pointer pairs per node.

34 * 0.7 = 22 values and 23 pointers.

Root: 1 node = 22 values and 23 pointers.

Level 1: 23 nodes = 506 values and 529 pointers.

Level 2: 529 nodes = 11638 values and 12167 pointers.

Leafs: 12167 nodes = 255507 pointers to blocks.

Each block has 10 tuples: 2.5 million tuples indexed

35 / 99

B+ Tree Indexes
Use partially full blocks to speed insertions and deletions.

When a level is too full, create a new level.

In a B+ Tree that is 70% full in each level:

34 value-pointer pairs per node.

34 * 0.7 = 22 values and 23 pointers.

Root: 1 node = 22 values and 23 pointers.

Level 1: 23 nodes = 506 values and 529 pointers.

Level 2: 529 nodes = 11638 values and 12167 pointers.

Leafs: 12167 nodes = 255507 pointers to blocks.

Each block has 10 tuples: 2.5 million tuples indexed

36 / 99

B+ Tree vs Ordered Indexes
Ordered Indexes:

performance degrades as �le changes.

periodic reorganization of entire �le is required.

B+ Trees:

automatically reorganizes itself with small local changes.

reorganization of entire �le is not required.

extra insertion and deletion overhead; space overhead.

Summary:

Advantages of B+ Trees outweigh disadvantages.

B+ Trees are used extensively.

37 / 99

Hash IndexesHash Indexes

38 / 9938 / 99

Hash Indexes
A bucket is a unit of storage containing one or more tuples (typically a block).

We obtain the bucket of a tuple directly from its search-key value using a hash function.

Hash function is a function from the set of all search-key values to the set of all bucket
addresses.

Tuples with di�erent search-key values may be mapped to the same bucket; thus entire
bucket has to be searched sequentially to locate a tuple.

Buckets can over�ow: link buckets together.

39 / 99

Hash Function
A hash-function receives a search key and returns the bucket for that search-key.

An ideal hash function is uniform: each bucket is assigned the same number of search-key
values (from all possible values).

An ideal hash function is random: each bucket will have the same number of tuples
(whatever tuples exist).

search-key
hash-function
h(search-key)

bucket

40 / 99

Example: Simple Hash Function
Consider we have 10 buckets.

An hash function that receives a string, calculates the binary representation of each character (a =
1, b = 2, ...) and returns the sum of those representations modulo 10.

int h(string word) {
 int sum = 0;
 for (int i = 0; i < word.length(); i++)
 sum += word[i] - 'a';
 return sum % 10;
}

h(john) = 3; h(carl) = 0; h(gustafsson) = 1; ...

Real hash functions are, obviously, more complex than this.

41 / 99

Hash Indexes
The over�ow buckets of a given bucket are chained together in a linked list.

Hash indexes are always secondary indexes.

Hash Indexes do not allow sorting or range searches.

Search-key
(sarah)

hash-function
h(search-key)

john
carl
louis
mary

0

jack
sarah
chris
ben

1

zed
alex
ann
...

jack
sarah
chris
ben

9

...

42 / 99

Indexes in PostgreSQLIndexes in PostgreSQL

43 / 9943 / 99

Creating Indexes
PostgreSQL supports both B+ Tree and Hash indexes:

CREATE INDEX name ON table (column); -- btree by default
CREATE INDEX name ON table USING btree (column);
CREATE INDEX name ON table USING hash (column);

PostgreSQL does not support primary indexes. All indexes are secondary and thus, dense.

44 / 99

Multicolumn Indexes
An index can be de�ned on more than one column of a table.

CREATE INDEX name ON table (column_a, column_b);

Works well on queries searching for values in columns a and b simultaneously or just on column
a; but not just on column b.

For example, a phone book is indexed on (last name, other names) making it easy to look for John
Doe but not for John.

45 / 99

Unique Indexes
Indexes can also be used to enforce uniqueness of a column's value, or the uniqueness of the
combined values of more than one column.

CREATE UNIQUE INDEX name ON table (column);

Unique indexes are automatically created on unique and primary key constraints.

In fact, primary and unique keys are enforced by these automatic unique indexes.

46 / 99

Indexes on Expressions
An index column need not be just a column of the underlying table, but can be a function
computed from one or more columns of the table.

CREATE INDEX idx_name ON employees (lower(name));

This index would be automatically used in this query:

SELECT * FROM employees WHERE lower(name) = 'john';

This can also be used to enforce constraints that are not de�nable as simple unique constraints:

CREATE UNIQUE INDEX idx_mail ON employees (lower(email));

47 / 99

Partial Indexes
A partial index is an index built over a subset of a table.

One reason for using a partial index is to avoid indexing common values.

CREATE INDEX idx_type ON employees (type) WHERE type <> 'normal';

Would be automatically used in this query:

SELECT * FROM employees WHERE type <> 'normal';

Another possible use for partial indexes is to enforce constraints in a subset of the table:

CREATE UNIQUE INDEX idx_mail ON employees (mail) WHERE type <> 'admin';

48 / 99

Clustering
PostgreSQL does not support primary indexes but the CLUSTER command can be used to reorder
a table based on one — and only one — index.

CLUSTER table_name USING index_name;

Clustering is a one-time operation: when the table is subsequently updated, the changes are not
clustered.

If needed, clustering can be set to run periodically using cron. PostgreSQL remembers which
indexes were clustered, so a single CLUSTER command with no parameters is enough.

49 / 99

https://en.wikipedia.org/wiki/Cron

Generalized Indexes in PostgreSQL
Besides Hash and B-tree, PostgreSQL also provides several other index types:

GiST - Generalized Inverted Seach Tree:

Lossy. May produce false positives.

Works by hashing components of the data into a single bit.

Best for dynamic data. Faster to update.

GIN - Generalized Inverted Index:

Faster than GiST and handles large ammounts of di�erent data better.

Best for static data. Slower to update.

Both these indexes are able to implement arbitrary indexing schemes.

They can be used for Full Text Search (FTS), geometric and spatial data, ...

50 / 99

Full Text SearchFull Text Search

51 / 9951 / 99

Why not just ILIKE?
When we execute a query like this one:

SELECT * FROM employee WHERE name ILIKE 'john%';

A B+ Tree index can be used to speed up the query. But for this one:

SELECT * FROM employee WHERE name ILIKE '%john%';

There is no way in which a normal index can help us.

Think of it as trying to �nd all people having john in their name in a phone book.

We need to index each word individually.

52 / 99

Lexemes and the tsvector type
FTS is based on lexemes.

A tsvector value is a sorted list of distinct lexemes.

SELECT to_tsvector('english', 'The quick brown fox jumps over the lazy dog')

'brown':3 'dog':9 'fox':4 'jump':5 'lazi':8 'quick':2

The to_tsvector function normalizes words into lexemes, removes duplicates, removes stop
words and records the position of each lexeme.

53 / 99

https://glossary.sil.org/term/lexeme

Searching using tsqueries
A tsquery value stores the lexemes that we want to search.

Lexemes can be combined using the boolean operators & (AND), | (OR), and ! (NOT):

SELECT to_tsquery('english', 'jumping & dog');

'jump' & 'dog'

The function plainto_tsquery simpli�es this operation:

SELECT plainto_tsquery('english', 'the jumping dog'); -- same result

54 / 99

Matching tsqueries to tsvectors
The @@ operator is used to assert if a tsvector matches a tsquery:

SELECT title
FROM posts
WHERE to_tsvector('english', title || ' ' || body) @@ plainto_tsquery('english', 'jumping dog');

Note: The || operator concatenates strings but it also concatenates ts_vectors.

SELECT title
FROM posts
WHERE (to_tsvector('english', title) || to_tsvector('english', body)) @@ plainto_tsquery('english', 'jumping dog');

55 / 99

FTS weights
Sometimes we want to give more importance to some speci�c �elds.

We can use the setweight to attach a weight to a certain ts_vector.

Weights go from 'A' (more important) to 'D' (less important).

SELECT
 setweight(to_tsvector('english', 'The quick brown fox jumps over the lazy dog'), 'A') ||
 setweight(to_tsvector('english', 'An English language pangram. A sentence that contains
 all of the letters of the alphabet.'), 'B')

'alphabet':24B 'brown':3A 'contain':17B 'dog':9A 'english':11B
'fox':4A 'jump':5A 'languag':12B 'lazi':8A 'letter':21B 'pangram':13B
'quick':2A 'sentenc':15B

As you can see, we can concatente tsvectors directly.

56 / 99

Ranking FTS results
The ts_rank and ts_rank_cd functions, return a score for each returned row for a certain match
between a tsquery and tsvector.

SELECT
 ts_rank(
 setweight(to_tsvector('english', 'The quick brown fox jumps over the lazy dog'), 'A') ||
 setweight(to_tsvector('english', 'An English language pangram. A sentence that contains
 all of the letters of the alphabet.'), 'B'),
 plainto_tsquery('english', 'jumping dog')
)

0.9524299

You can also change the weights of the ts_vector classes (A to D) and set how normalization, due
to di�erent document lengths, should be performed.

ts_rank([weights float4[],] vector tsvector, query tsquery [, normalization integer])

57 / 99

Pre-calculate FTS
For performance reasons, we should consider adding a column to tables where FTS is to be
performed containg the ts_vector values of each row.

This column should be updated whenever a row changes or is inserted. This can be done easily
using a trigger:

CREATE FUNCTION post_search_update() RETURNS TRIGGER AS $$
BEGIN
 IF TG_OP = 'INSERT' THEN
 NEW.search = to_tsvector('english', NEW.title);
 END IF;
 IF TG_OP = 'UPDATE' THEN
 IF NEW.title <> OLD.title THEN
 NEW.search = to_tsvector('english', NEW.title);
 END IF;
 END IF;
 RETURN NEW;
END
$$ LANGUAGE 'plpgsql';

58 / 99

Putting it all together
To select all posts containing jumping and dog we can use the following query:

SELECT title
FROM posts
WHERE search @@ plainto_tsquery('english', 'jumping dog')
ORDER BY ts_rank(search, plainto_tsquery('english', 'jumping dog')) DESC

Considering that search is a pre-calculated column containing the ts_vector of the columns we
want to search.

59 / 99

Indexing FTS
To improve the performance of our full text searches, we can use GIN or GiST indexes:

CREATE INDEX search_idx ON posts USING GIN (search);

CREATE INDEX search_idx ON posts USING GIST (search);

Note: We could also use an index on a ts_vector expression directly.

Which type to use?

GIN index lookups are about three times faster than GiST.

GIN indexes take about three times longer to build than GiST.

So use GIN if updates to searchable terms are rare and you want to make searches fast.

60 / 99

Database TuningDatabase Tuning

61 / 9961 / 99

Query Log Analysis
Sometimes we realize that our database isn't performing as well as we expected.

Are our indexes the correct ones? To help us answer this question, a query log analyzer tool is
invaluable.

One such tool is pgBadger (a sucessor to the older, and discontinued, pgFouine).

62 / 99

https://pgbadger.darold.net/
https://github.com/milo/pgFouine

Fouine vs Badger

63 / 99

pgBadger
To use pgBadger, we must �rst turn on query logging (this will make PostgreSQL slower, so be
careful) and run pgBadger against the generated log.

The ammount of statistical data generated by pgBadger is staggering, but in this case we will
focus on pgBadger's abbility to identify time consuming queries. Here's a sample report:

64 / 99

http://pgbadger.darold.net/samplev7.html#time-consuming-queries

PostgreSQL Planner
When executing a query, PostgreSQL:

Starts by analyzing all possible ways to scan each table using all available indexes (or no
index at all).

If the query requires joining two or more relations, plans for joining relations are
considered:

The right relation is scanned once for every row found in the left relation (nested loop
— might use existing indexes).

Each relation is sorted on the join attributes before the join starts (merge join — might
use existing indexes).

The right relation is �rst scanned and loaded into a hash table (hash join).

When the query involves more than two relations, the planner examines di�erent possible
join sequences.

65 / 99

Analyzing Plans
After identifying a problematic query, we might want to understand how PostgreSQL is executing
it.

For that we can use the EXPLAIN command that displays the execution plan that the PostgreSQL
planner generates for the supplied statement:

EXPLAIN <query>

Or EXPLAIN ANALYZE that causes the statement to be actually executed, not only planned.

EXPLAIN ANALYZE <query>

66 / 99

ExamplesExamples

67 / 9967 / 99

Example 1
Consider the following database:

68 / 99

Example 1
And the following query that selects all users that ordered more than one product costing 100:

EXPLAIN SELECT users.name, COUNT(*)
FROM orders JOIN
 contains ON orders.id = contains.o_id JOIN
 products ON products.id = contains.p_id JOIN
 users ON orders.u_id = users.id
WHERE products.price = 100
GROUP BY username, users.name
HAVING COUNT(*) > 1
ORDER BY COUNT(*) DESC

Notice that we added the EXPLAIN clause in the beginning.

69 / 99

Example 1
The result is a tree structure showing the plan as idealized by PostgreSQL:

cost before starting cost when finished

rows returned

size of each row

indexes being
used

Cost is measured, generically, in blocks read from the disk.

70 / 99

Example 1
Luckily, there are some tools that can help us understand these plans easier:

Like the Postgres EXPLAIN Visualizer by Alex Tatiyants.

Or pgAdmin

So let's try it again with PEV.

71 / 99

http://tatiyants.com/postgres-query-plan-visualization/
https://www.pgadmin.org/

Example 1
Much better. But it seems PostgreSQL is losing a lot of time joining the contains and products
table.

72 / 99

Example 1
Why is this happening?

After getting all products with the desired price, PostgreSQL has to �nd all orders containing
those products.

That table (contains) has 500k lines and PostgreSQL is taking almost 100ms doing it.

An index on the contains.p_id column could help us minimize this cost.

CREATE INDEX contains_product_idx ON contains USING btree (p_id);

73 / 99

Example 1
From 200ms to 14ms by just creating the right index.

74 / 99

Example 1
Now most of the time is spent looking for the products with the desired price.

Let's try creating another index:

CREATE INDEX product_price_idx ON products USING btree (price);

75 / 99

Example 1
Not as dramatic as before but still some improvement. Remember, indexes have theirs costs
(slower updates, space, ...).

76 / 99

Example 2
Now, let's consider this other query that selects all orders containing product with ids between
200 and 300:

EXPLAIN SELECT o_id
FROM contains
WHERE p_id > 200 AND p_id < 300

77 / 99

Example 2
We already have an index on the p_id column so the query should be pretty fast:

78 / 99

Example 2
But we can do better. Because the index on p_id is not clustered, it means most blocks have only a
few wanted rows.

If we try clustering the index, a much lower number of blocks has to be read:

CLUSTER contains
USING contains_product_idx;

not clustered
clustered

79 / 99

Example 2
We get the same data in fewer blocks and end up getting our results faster:

80 / 99

Example 3
We now have a single table containing all Wikipedia titles:

wikipedia (id, title)

The table has approximately 44 Million rows and we want to search the table for some words.

The total table size on the hard disk is 2436 MB. The primary key index occupies an extra 950 MB.

81 / 99

Example 3
If we try to search for oil painting using ILIKE:

SELECT * FROM wikipedia
WHERE title ILIKE '%oil%painting%'

We get 174 rows in 54 seconds:

82 / 99

Example 3
If we try using ts_vectors and a ts_query with no indexes:

SELECT * FROM wikipedia
WHERE to_tsvector('english', title) @@
 to_tsquery('english', 'oil & painting')

The query returns 158 rows in 4 minutes. The added time is due to having to calculate ts_vectors
for all rows:

83 / 99

Example 3
If we execute the same query but we add a GiST index �rst:

CREATE INDEX search_idx ON wikipedia USING GIST (to_tsvector('english', title));

It now takes only 600 ms. Creating the index took 52 minutes and used 1708 MB but you only
have to do it once:

84 / 99

Statistics
When calculating the ideal plan for a certain query, PostgreSQL relies on some key statistics
collected about the columns in the database:

The fraction of the column's entries that are null.

The number of distinct non null data values in the column.

Numerical statistics including histograms of the column values.

To force PostgreSQL to update these statistics when can use the ANALYZE command:

ANALYZE [table] [(column1, column2, ...)]

ANALYZE analyzes all tables by default but we can choose to analyze only one table or only some
columns.

It's important to keep these statistics updated (use a cron job).

85 / 99

Vacuum
In PostgreSQL, tuples that are deleted or obsoleted by an update are not physically removed
from their table.

The VACUUM command reclaims this storage by making available for reuse.

The VACUUM FULL command reclaims this storage by rewriting the entire contents of the
table into a new disk �le with no extra space.

It's important to do VACUUM periodically, especially on frequently updated tables.

VACUUM [FULL] [ANALYZE] [table] [(column1, column2, ...)]

VACUUM reorganizes all tables by default but we can choose to reorganize only one table or
only some columns.

We can VACUUM and ANALYZE tables at the same time.

VACUUM FULL is slow and requires an exclusive lock making it not recommended for
production.

86 / 99

Choosing IndexesChoosing Indexes

87 / 9987 / 99

Workload
In order to choose our indexes, we must �rst estimate the workload of the system:

The most important queries (SELECT) and how often they arise.

The most important updates (UPDATE, DELETE) and how often they arise.

The desired performance for these queries and updates.

An estimate of the number of tuples for each relation.

88 / 99

Table Estimates
We start by estimating the number of tuples in each relation:

Relation reference Relation Name Order of magnitude Estimated growth

R01 Users tens of thousands hundreds per day

R02 Products tens of thousands hundreds per week

R03 Orders hundreds of thousands hundreds per day

R04 Contains millions thousands per day

89 / 99

Important queries
We then start describing each one of the most important queries:

Query reference SELECT01

Query description Selects all orders made by a speci�c client.

Query frequency hundreds per hour

SQL code

 SELECT *
 FROM orders
 WHERE c_id = ?

90 / 99

Cardinality
The uniqueness of data values contained in a particular column. The lower the cardinality, the
more duplicate values in the column. Examples:

high cardinality - primary key

medium cardinality - last name in a customer table

low cardinality - boolean column

Cardinality is used by the PostgreSQL planner, amongst other statistics, to estimate the number
of rows returned by a WHERE clause. This is then used to decide if, and what, indexes should be
used.

91 / 99

When to Cluster?
To reduce the number of block reads:

When the number of tuples to be read is high enough and there are many tuples per
block.

Normally on medium cardinality columns in tables with small tuples.

To allow sequential reading of blocks:
Normally on range searches or low cardinality columns.

Specially in hard-disks (not important on SSD).

Clustering is useful whenever many tuples are to be retrieved, but not too many.

92 / 99

Choosing Indexes
Index reference IDX01

Query references SELECT01, ...

Index relation R03

Index attribute c_id

Index type Hash

Cardinality Medium

Clustering Yes

Justi�cation Table is very large, query SELECT01 has to be fast as it is

executed many times, doesn't need range query support,

cardinality is medium so it is a good candidate for clustering.

SQL code

 SELECT *
 FROM orders
 WHERE c_id = ?

93 / 99

DenormalizationDenormalization

94 / 9994 / 99

Denormalization
A strategy used on a previously normalized database to increase performance.

Denormalization is the process of trying to improve performance of a database by adding
redundant copies of data or by chosing alternative 3NF (or even lower NFs) schemas.

Redundant data should be kept consistent. For example, using triggers.

95 / 99

Example
Adding a redundant total column to the orders table to prevent having to calculate it everytime.

96 / 99

Keeping Data consistent
CREATE OR REPLACE FUNCTION calculate_total(order_id integer)
RETURNS trigger AS $$
BEGIN
 UPDATE orders
 SET total = (SELECT SUM(quantity * price)
 FROM products JOIN
 contains ON p_id = id
 WHERE o_id = order_id)
 WHERE id = order_id;
 RETURN NEW;
END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER contains_ins_upd
AFTER INSERT or UPDATE
ON contains
FOR EACH ROW
EXECUTE PROCEDURE calculate_total(NEW.order_id);

Another trigger is needed for UPDATE or DELETE using OLD.order_id as the parameter.

97 / 99

Materialized Views
An alternative to denormalization is the usage of materialized views.

A materialized view stores the result of a query in a table and can be refreshed as needed.

CREATE MATERIALIZED VIEW orders_total AS
SELECT orders.*, SUM(quantity * price)
FROM orders JOIN
 contains ON orders.id = o_id JOIN
 products ON products.id = p_id
GROUP BY orders.id

REFRESH MATERIALIZED VIEW orders_total

98 / 99

“ Premature optimization is the root of all evil. ”“ Premature optimization is the root of all evil. ”

— Donald Knuth— Donald Knuth

99 / 9999 / 99

