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Background Concepts
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Incidence Matrix
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Boolean Model

➔ In the Boolean Retrieval Model queries are represented in the form of a 
Boolean expression of terms. 

➔ E.g.: [Brutus AND Caesar AND NOT Calpurnia] 

➔ => 110100 AND 110111 AND 101111 = 100100 

➔ The model views each document as a set of words. 

➔ Bag of Words (BoW) model, where the exact ordering of terms in a document 
is ignored and only their presence is considered.
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Inverted Index
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Index Construction

➔ Choosing the document unit for indexing and the index granularity are 
important first steps. 

➔ There is a precision / recall tradeoff in this decision. 

➔ "If the units get too small (e.g. sentences), we are likely to miss important 
passages because terms were distributed over several mini-documents, 
whereas if units are too large (e.g. books) we tend to get spurious matches 
and the relevant information is hard for the user to find."
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Tokenization

➔ "Given a character sequence and a defined document unit, tokenization is the 
task of chopping it into pieces, called tokens." 

➔ "A token is an instance of a sequence of characters in some particular 
document that are grouped together as a useful semantic unit for processing." 

➔ "A type is the class of all tokens containing the same character sequence."
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Stop Words

➔ Stop words are words considered of little value in helping select documents in 
the retrieval process, e.g. a word that exists in all documents. 

➔ The strategy to determine stop words is by looking the collection frequency of 
a term (cf), i.e. the total number of times a term appears in the document 
collection. 

➔ A stop list is a (commonly) hand-picked list of terms to be discarded during 
the indexing process.
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Token Normalization

➔ "Token normalization is the process of canonicalizing tokens so that matches 
occur despite superficial differences in the character sequences of the tokens." 

➔ Some forms of normalization commonly employed are: accents, capitalization, 
and stemming and lemmatization for dealing with different forma of a word (e.g. 
watch, watches, watching). 

➔ Stemming refers to a heuristic process that chops off the ends of words in the 
hope of reducing inflectional forms. 

➔ Lemmatization refers to the process of reducing inflectional forms by using 
vocabularies and the morphological analysis of words to find a it's lemma.
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Term Weighting
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Ranked Retrieval

➔ With the Boolean model a document either matches or does not match a 
query. In large document collections this is not feasible, thus it is essential for a 
search system to ranked-order the documents. 

➔ Note that there are scenarios where recall is determinant (i.e. all documents 
need to be analyzed) and thus Boolean search is used.
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Parametric and Zone Indexes

➔ Although we have considered documents to be a simple sequence of terms, 
most documents have additional structure (e.g. email message). Additionally, 
metadata is often associated with a document (e.g. date, authors, title). 

➔ Parametric indexes are inverted indexes built for specific parameters, or fields, 
that support parametric search (e.g. "all documents from author Z containing 
word Y"). 

➔ Zones are a similar concept applied to arbitrary free text (e.g. portion of a 
document). For example, a document's abstract can be associated to a 
specific zone index.
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Zone Indexes
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Ranked Boolean Retrieval

➔ Zones (or fields) can be weighted differently to compute each document's 
relevance simply using a linear combination of zone scores, where each zone 
of the document contributes a Boolean value. 

➔ Zone weights can be specified by an expert (commonly the end user) but are 
usually learned by the system based on training examples. This method is 
known as "machine-learned relevance" or "learning to rank".
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Term Frequency (tf)

➔ The next step is not to consider only the presence or not of a query term in a 
zone, but the number of mentions of the term (i.e. term frequency). 

➔ The simplest form of weighting terms differently is simply to assign the weight 
of a term to the term's frequency. 

➔ The term frequency of a term in a document is denoted tf t,d. 

➔ In the bag of words model, the ordering is ignored but the number of 
occurrences of each term is key (in contract with Boolean retrieval).
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Document Frequency (df)

➔ Raw term frequency suffers from a problem: all terms are considered equally 
important when assessing a query, when in fact some terms are of little use in 
determining relevance. 

➔ For example, in a collection of thesis dissertations, the term "dissertation" is 
less likely to be of value since this term probably exists in every document. 

➔An important measure to incorporate the discriminative power of a term in a 
collection is the document frequency of a term (df), i.e. the number of 
documents that contain a term.
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Inverse Document Frequency (idf)

➔ The document frequency of a term is incorporated in the weight of a term by 
using the concept of inverse document frequency (idf). 

➔ Where N is the total number of documents in the collection. 

➔ The rarer the term is in a collection, the higher it is its idf.
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tf-idf

➔ Combining term frequency (tf) with inverse document frequency (idf) results in a 
classical measure in Information Retrieval, the tf-idf weighting scheme. 

➔ tf-idf t,d assigns a term t a weight in a document d that is: 

➔ highest when t occurs many times within a small number of documents; 

➔ lower when the term occurs fewer times in a document, or occurs in many 
documents; 

➔ lowest when the term occurs in virtually all documents.
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Vector Space Model

19



Vector Space Model

➔ The representation of a set of documents as vectors in a common vector 
space is known as the vector space model and is fundamental to number 
Information Retrieval operations. 

➔ In a nutshell, each document is represented as a vector, with a component 
vector for each dictionary term. tf-idf weights are used as components. 

➔ Thus, the set of documents in a collection may be viewed as a set of vectors 
in a vector space, in which there is one axis for each term.
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Cosine Similarity

➔ To quantify the similarity between two documents in this vector space, the 
cosine similarity of the vector representations of the two documents. 

➔ In other words, the similarity between two documents is given by the cosine of 
the angle between the two vector representations of the documents. 

➔ This approach compensates the effect of document length. 
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Queries as Vectors

➔ Queries can also be represented as vectors in a n-dimensional space, being n 
the number of terms in the query. Basically, queries are viewed as very short 
documents. 

➔ The top ranked results for a given query are thus the documents whose 
vectors have the highest cosine similarity in comparison with the query vector.
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Language Models for Information Retrieval
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Language Models for Information Retrieval

➔ Central idea: a document is a good match for a query if the document model 
is likely to generate the query. 

➔ In the basic language model approach, a probabilistic language model is built 
for each document in the collection (Md). 

➔ For a given query, documents are ranked based on the probability of the 
model generating the query: P(q|Md).
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Language Models

➔ A language model is a function that puts a probability measure over strings drawn 
from some vocabulary. 

➔ The sum of all probabilities over a vocabulary for a language model is 1. 

➔ The simplest language model, discards all context information (i.e. nearby words), 
and estimated the probability of each term independently — this is called an 
unigram model. 

➔ In this case, the probability of a sequence of terms (e.g. a query) is simply the 
product of independent term probabilities: 

➔ Punigram(t1t2t3t4) = P(t1) x P(t2) x P(t3) x P(t4)
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Language Models

➔ Bigram language models condition the probability of each term on the 
previous item: 

➔ Pbigram(t1t2t3t4) = P(t1) x P(t2|t1) x P(t3|t2) x P(t4|t3) 

➔More complex language models are important in tasks such as speech 
recognition, spelling correction, or machine translation. 

➔ In Information Retrieval most language-modeling work uses unigram language 
models. In IR language models are often estimated from a single model so 
there is little information to do more.
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Example of Language Models

➔ D1: Portugal eyes political balance in presidential election 

➔ D2: After Portuguese elections, Spain braces for elections 

➔ Unigram Language Models: 

➔ Md1: portugal: 0.143 (1/7); eye: 0.143; ... 

➔ Md2: after: 0.143; portugal: 0.143; election: 0.286 (2/7); ...
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Retrieval based on Language Models

➔ Approach for retrieving documents under a language model (LM): 

➔ 1. Infer a LM for each document. 

➔ 2. Estimate P(q|Mdi), the probability of generating the query according to 
each of these document models. 

➔ 3. Rank the documents according to these probabilities. 
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Example of Retrieval with Language Models

➔ D1: Portugal eyes political balance in presidential election 

➔ D2: After Portuguese elections, Spain braces for elections 

➔ Q: [ portugal election ] 

➔ P(q|d1) = P(portugal|Md1) x P(election|Md1) = 1/7 x 1/7 = 0.0204 

➔ P(q|d2) = P(portugal|Md2) x P(election|Md2) = 1/7 x 2/7 = 0.0408
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