Evaluation in Information Retrieval

DAPI . Information Description, Storage and Retrieval Course MIEIC, 2020/21 Edition

Sérgio Nunes DEI, FEUP, U.Porto

Based on Chapter 8 from Introduction to Information Retrieval, Manning, C. et al. (2008)

Evaluation in Information Retrieval

Evaluation of Information Retrieval Systems

- \rightarrow Evaluation is at the heart of Information Retrieval.
- \rightarrow Evaluation is important to:
 - \rightarrow Understand the use of a system by its users.
 - → Make decisions on new designs and features to implement.
- \rightarrow A primary distinction must be made between <u>effectiveness</u> and <u>efficiency</u>.
 - \rightarrow Effectiveness measures the ability of a search system to find the right information.
 - Efficiency measures how quickly a search system provides an answer.
- \rightarrow User satisfaction encapsulates these and other aspects (ux, coverage, effort, etc).

Information Retrieval System Evaluation

- - \rightarrow A document collection;
 - \rightarrow A test suite of information needs, expressible as queries;
 - relevant for each query-document pair.
- non-relevant documents.
- classification as either relevant or non-relevant (gold standard or ground truth).

 \rightarrow To measure the effectiveness of a search system in the standard way, we need three things:

- A set of relevance judgements, standardly a binary assessment of either relevant or non-

The standard approach to IR system evaluation revolves around the notion of relevant and

-> With respect to a user information need, a document in the test collection is given a binary

Information Need

- \rightarrow Relevance is assessed relative to an information need, not a query.
- \rightarrow An information need might be:
 - heart attacks than drinking white wine.
- \rightarrow This might be translated into a query such as:
 - \rightarrow [wine red white heart attack effective]
- practice, because the information need is not clear.

Information on whether drinking red wine is more effective at reducing your risk of

→ A document is relevant if it addresses the stated information need, not because it just happens to contain all the words in the query. This distinction is often misunderstood in

The Cranfield Paradigm

- initiated in the 50's by Cyril Cleverdon.
- \rightarrow The insights derived from these experiments provide a foundation for the evaluation of IR systems.
- These experiments culminated in the metrics of Precision and Recall.
- documents, queries, and relevance judgements.
- evaluate different ranking systems.

Evaluation of Information Retrieval systems is the result of early experimentation

Cyril Cleverdon introduced the notion of test reference collections, composed of

Reference collections allows using the same set of documents and queries to

Illustration of Cranfield Evaluation Methodology

Figure 9.1 Illustration of Cranfield evaluation methodology.

From: Zhai, ChengXiang, Sean Massung. Text data management and analysis: a practical introduction to information retrieval and text mining. ACM and Morgan & Claypool, 2016.

Test Collection Evaluation

TREC Topic Example

<top> <num> Number: 794

<title> pet therapy

<desc> Description: How are pets or animals used in therapy for humans and what are the benefits?

<narr> Narrative:

Relevant documents must include details of how pet- or animal-assisted therapy is or has been used. Relevant details include information about pet therapy programs, descriptions of the circumstances in which pet therapy is used, the benefits of this type of therapy, the degree of success of this therapy, and any laws or regulations governing it.

</top>

From: W. Bruce Croft, Donald Metzler, Trevor Strohman, Search Engines: Information Retrieval in Practice, Pearson, 2009.

Example Test Collections

- relevance judgments generated by government information analysts.
- relevance judgments generated by government analysts.

From: W. Bruce Croft, Donald Metzler, Trevor Strohman, Search Engines: Information Retrieval in Practice, Pearson, 2009.

CACM: Titles and abstracts from the Communications of the ACM from 1958-1979. Queries and relevance judgments generated by computer scientists.

→ AP: Associated Press newswire documents from 1988–1990 (from TREC disks 1–3). Queries are the title fields from TREC topics 51–150. Topics and

 \rightarrow GOV2: Web pages crawled from websites in the .gov domain during early 2004. Queries are the title fields from TREC topics 701–850. Topics and

Example Test Collections

Collection	Number of	Size	Average number		
	documents		of words/doc.		
CACM	3,204	2.2 MB	64		
AP	242,918	0.7 GB	474		
GOV2	25,205,179	426 GB	1073		

Table 8.1. Statistics for three example text collections. The average number of words per document is calculated without stemming.

From: W. Bruce Croft, Donald Metzler, Trevor Strohman, Search Engines: Information Retrieval in Practice, Pearson, 2009.

Example Test Collections

Collection	Number of	Average number of	Average number of		
	queries	words/query	relevant docs/query		
CACM	64	13.0	16		
AP	100	4.3	220		
GOV2	150	3.1	180		

Table 8.2. Statistics for queries from example text collections

From: W. Bruce Croft, Donald Metzler, Trevor Strohman, Search Engines: Information Retrieval in Practice, Pearson, 2009.

Evaluation of Unranked Retrieval

- The two most frequent and basic measures for information retrieval effectiveness are Precision and Recall.
- \rightarrow Precision is the fraction of retrieved documents that are relevant.
 - \rightarrow Precision (P) = #(relevant items retrieved) / #(retrieved items)
- \rightarrow Recall is the fraction of relevant documents that are retrieved.
 - \rightarrow Recall (R) = #(relevant items retrieved) / #(relevant items)
- → Precision and Recall are set-based measures.

Precision and Recall

Recall

P(q1) = 4 relevant documents retrieved / 6 documents retrieved = 0.67

R(q1) = 4 relevant docs retrieved / 8 existing relevant docs = 0.5

Contingency Table

	relevant	not relevant		
retrieved	true positives (tp)	false positives (fp)		
not retrieved	false negatives (fn)	true negatives (tn)		

- \rightarrow Precision = true positives / (true positives + false positives)
- \rightarrow Recall = true positives / (true positives + false negatives)

 \rightarrow Accuracy, the fraction of classifications that are correct (not useful for IR). \rightarrow Accuracy = #(true positives + true negatives) / #(tp + fp + fn + tn)

F measure

- A measure that trades-off Precision versus Recall is the F measure (or F score), which is the weighted harmonic mean of precision and recall.
- F measure defined by:

$$F = (1 + \beta^2) \times \frac{P \times R}{\beta^2 \times P + \beta^2}$$

 \rightarrow It is possible to emphasize Precision ($\beta < 1$) or Recall ($\beta > 1$).

 \rightarrow By default a balanced harmonic mean is used ($\alpha = 1/2$) resulting in a balanced

 $F_{\beta=1} = \frac{2PR}{P+R}$ R

Evaluation of Ranked Retrieval

- Precision and Recall are computed over unordered sets of documents.
- These measures need to be extended to evaluate the ranked lists of results common in search engines.
- → In ranked retrieval contexts, appropriate sets of retrieved documents are naturally given by the top k retrieved documents. For each set, Precision and Recall values can be computed.
- → These values can be plotted to obtain a precision-recall curve.

Precision-Recall Curves

 \rightarrow S_a = R R N R N N R N R N

- documents.
 - \rightarrow We say that we have 100% precision at 20% recall.
- relevant document have been retrieved.

 \rightarrow We say that we have 75% precision at 60% recall.

 \rightarrow Using this data, we can plot a precision-recall curve.

 \rightarrow Consider the ordered set of relevant (R) and non-relevant (N) results from a search system A:

 \rightarrow In this ranking, the first result is relevant and corresponds to 20% of all (available) relevant

→ At position 4, three documents out of four are relevant, and three documents of a total of five

Precision-Recall Curves

Fig. 8.3. Recall and precision values for rankings from two different queries

From: W. Bruce Croft, Donald Metzler, Trevor Strohman, Search Engines: Information Retrieval in Practice, Pearson, 2009.

Fig. 8.4. Recall-precision graphs for two queries

Precision-Recall Curves (interpolated)

Fig. 8.4. Recall-precision graphs for two queries

From: W. Bruce Croft, Donald Metzler, Trevor Strohman, Search Engines: Information Retrieval in Practice, Pearson, 2009.

Fig. 8.5. Interpolated recall-precision graphs for two queries

Comparing Systems

Comparison of two PR curves. (Courtesy of Marti Hearst) Figure 9.5

Precision at k (P@k)

- precision at fixed low levels of retrieved results.
- \rightarrow For example, "precision at 5" (P@5) or "precision at 10" (P@10).
- \rightarrow Considering the following ranking for a given query:

 \rightarrow RRNNRNRRR

 $\rightarrow P@5 = 0.6; P@10 = 0.7$

 \rightarrow In the case of web search, the majority of users do not require high recall.

What matters are high quality results on the first page. This leads to measuring

Mean Average Precision

- recall levels for a single query.
- document is retrieved.

Average Precision (AvP) provides a single-figure measure of quality across

 \rightarrow For a single information need, average precision is the average of the precision value obtained for the set of top k documents existing after each relevant

Given a set of queries, the Mean Average Precision (MAP) is the mean over the AvP values. This is one of the most commonly used measures in IR.

Average Precision

→ Ranking #1

	X		X	X	X	X				X
R	0.17	0.17	0.33	0.5	0.67	0.83	0.83	0.83	0.83	1.0
Р	1.0	0.5	0.67	0.75	0.8	0.83	0.71	0.63	0.56	0.6

→ Ranking #2

		X			X	X	X		X	X
R	0	0.17	0.17	0.17	0.33	0.5	0.67	0.67	0.83	1.0
Р	0	0.5	0.33	0.25	0.4	0.5	0.57	0.5	0.56	0.6

 \rightarrow AvP (R#1) = (1 + 0.67 + 0.75 + 0.8 + 0.83 + 0.6) / 6 = 0.78

 \rightarrow AvP (R#2) = (0.5 + 0.4 + 0.5 + 0.57 + 0.56 + 0.6) / 6 = 0.52

 \rightarrow MAP = (0.78 + 0.52) / 2 = 0.65

Measuring Efficiency

Example Efficiency Metrics

Metric name Description Measures the amount of time necessary to build a docu-Elapsed indexing time ment index on a particular system. Measures the CPU seconds used in building a document Indexing processor time index. This is similar to elapsed time, but does not count time waiting for I/O or speed gains from parallelism. Number of queries processed per second. Query throughput The amount of time a user must wait after issuing a query Query latency before receiving a response, measured in milliseconds. This can be measured using the mean, but is often more instructive when used with the median or a percentile bound. Indexing temporary space Amount of temporary disk space used while creating an index. Index size Amount of storage necessary to store the index files.

Table 8.5. Definitions of some important efficiency metrics

