Data Collection and Preparation

DAPI . Information Description, Storage and Retrieval Course MIEIC, 2020/21 Edition

Sérgio Nunes DEI, FEUP, U.Porto

Work in progress

Plan for Today

- \rightarrow COVID-19 logistics
- Data Collection and Preparation
- → Groups update
 - Present topic and data sources. Discuss and approve.
 - Check data exploration and characterization.
- → Dataset characterization
- → Group work

Logistics (ongoing)

- → Managing "morning shifts" and DAPI.
 - → Start 30 min later?
 - → Try to reserve room for the morning?
 - → Implement shifts in DAPI?

→ Other pending issues?

Milestone #1

- \rightarrow Goal: prepare and characterize the datasets.
- \rightarrow Depends heavily on the datasets (e.g. crawling, scraping, other).
- → Checklist
 - → Properties of the datasets (media, formats, volume, structure, license, source authority, ...)
 - \rightarrow Describe process to collect the dataset (sample, whole dataset, API, ...)
 - \rightarrow Describe the data pipeline process (collecting, cleaning, alignment, integration, enrichment, ...)
 - \rightarrow Present the conceptual model of the data (and of the domain if needed)
 - Which are possible search tasks / ideias? What other works exist?

https://web.fe.up.pt/~ssn/dokuwiki/teach/dapi/202021/delivery1/index

Data Pipelines

Data Workflow

- → Data collection
- → Data storing
- → Data cleaning
- → Data enrichment
- → Data exploration and analysis
- → Data presentation

Data Collection

- → Data formats: unstructured text, CSV, JSON, XML, Excel, PDF, ...

\rightarrow Character encoding.

 \rightarrow Work with small samples.

→ Data sources: data repositories, databases, APIs, web scrapping, files, ...

Data Storage

- → Flat files / local storage
- → Databases: document oriented, relational database, key-value, ...
- → Clusters (e.g. Hadoop)
- → Cloud-storage (e.g. AWS, Azure)

Data Cleaning

- \rightarrow During data cleaning, data analysis is implicit.
- \rightarrow Automating the process is key deal with changes in the input, document, repeat
- → Expected tasks
 - → Identify missing / invalid values
 - → Normalize data (e.g. "PT" vs. "pt" vs. "Port." vs. "Portugal")
 - → Format data
 - → Find outliner and bad data
 - → Find duplicate data

Data Enrichment

- Can be done by adding metadata (e.g. timestamps, author)
- → Or by combining different datasets
 - Finding key attributes for aligning different collections is key

Tools for Data { collection, preparation, exploration, characterization }

OpenRefine

- → Explore Data
- Clean and Transform Data
- Reconcile and Match Data

→ https://openrefine.org/

 \rightarrow Task: view online tutorials / videos and experiment with your datasets.

\rightarrow Open source tool for data exploration and cleaning (formerly Google Refine).

Apache Tika

Apache open-source tool to parse and extract text and metadata from multiple formats (e.g. PPT, XLS, PDF).

→ https://tika.apache.org/

spaCy

- Natural Language Processing in Python
- → Open source (MIT license)
- \rightarrow Pre-trained models (>50 languages)
- → Very active project and community
- measures, ...

→ Features: tokenization, named entity recognition, part-of-speech tagging, similarity

Other NLP tools

→ NLTK (Natural Language Toolkit)

reference book — <u>https://www.nltk.org/book/</u>

→ <u>https://www.nltk.org</u>

→ Apache OpenNLP

 \rightarrow Java. Open source library.

→ https://opennlp.apache.org

Python. Open source tool with many resources available, including a freely available

Web Data

→ Scrapy

Open source Python tool for crawling and scraping

→ https://scrapy.org/

→ Beautiful Soup

→ Python library designed for screen-scraping

→ https://www.crummy.com/software/BeautifulSoup/

Command Line tools

- Command Line is a powerful solution in many data processing stages.
 - \rightarrow Agile (interactive, close to the file system)
 - Extensible (integrates well with other technologies, language agnostic)
 - Scalable (automatable with scripts, repeatable)
 - → Ubiquitous
 - \rightarrow ! Core knowledge with wide impact in many areas

→ <u>https://www.datascienceatthecommandline.com/1e/</u>

Data Exploration and Visualization

 \rightarrow R

- \rightarrow Free software for statistical computing and graphics.
- Many resources and documentation. Strong community
- → https://www.r-project.org/
- → Pandas
 - Open source Python library for data analysis.

→ <u>https://pandas.pydata.org/</u>

Conceptual Domain Modeling

You need to understand the fundamental concepts within your problem domain

 \rightarrow ... it is the task of discovering the entity types that represent the things and <u>concepts</u>, and <u>their relationships</u>, pertinent to your problem space.

 \rightarrow ... depict your detailed understanding for the problem space for your system.

- \rightarrow Various tools and techniques can be used for this task.
- problem, i.e. consider what is included in the dataset.

→ We will use UML Class Diagrams and focus on the data dimension of the

Conceptual Data Modeling

- → Iterative process, i.e. start simple and add complexity.
- → Identify main concepts (i.e. things, entities) to define classes.
- → Describe properties of the entities to define attributes.
- → Use basic data types (e.g. number, text, date). Be specific if needed.
- → Identify relationships (i.e. verbs) to define associations.
- Consider complex associations to better describe your domain, e.g. inheritance, dependency, compositions, association classes, etc.

Tasks

- → Characterize the datasets
- Obtain the conceptual model of the domain
- → Try available tools to work with datasets
- → Discuss the storage of datasets
- → Identify retrieval tasks using the datasets

-> Next week: Moodle post with data pipeline diagram (thread with first message).

References

- Cambridge University Press, 3rd Edition, 2004 (Section 8.4)
- tools to make your life easier. O'Reilly, 2016.

Scott Ambler, The Object Primer, Chapter 8: Conceptual Domain Modeling,

-> Jacqueline Kazoo, and Katharine Jarmul. Data wrangling with python: tips and

-> Garrett Grolemund, and Hadley Wickham. R for data science: import, tidy, transform, visualize, and model data. O'Reilly, 2016. <u>https://r4ds.had.co.nz/</u>

