
Billboard 200
João Miguel, José Azevedo, Ricardo Ferreira
Information Description, Storage and Retrieval, DAPI

Master in Informatics and Computing Engineering, MIEIC
Faculty of Engineering, University of Porto, FEUP
{up201604241,up201506448,up200305418}@fe.up.pt

ABSTRACT
Billboard 200 is a record chart which ranks the top 200 music

albums on a weekly basis. This chart is published by the Billboard
magazine in the United States for more than 30 years. The charts
are frequently used to convey the popularity of artists. This data
was crossed with information on artists, musical genres, lyrics and
more, allowing the creation of new datasets with rich content about
the most popular music since 1963 to 2019. These datasets have
been divided into four types: Albums, Artists, Tracks and Ranks.
They were analysed, conceptually described and made ready for
being incorporated on an Information Retrieval tool. During the
analysis it was possible to find some patterns about the changes on
the music industry like for example the increased number of songs
per album or the increased diversity of artists in the Billboard 200
charts. While evaluating the Information Retrieval tool, Apache Solr
proves to be a good choice, providing powerful filters and analyzers
and also highly customizable to fit the collections in analysis. The
final information system provides very high precision, with values
near 98%, an increased of 30% regarding values without the usage
of custom filters and analyzers. To finalize the analisys of this
dataset, concepts of web semantic have been applied and created
an ontology, the Billboard 200 Ontology. Available ontologies, like
the Music ontology, have been analysed and served has basis to the
creation of the Billboard 200 Ontology. This ontology lead to some
changes in the conceptual model, for example to better identify
classes that have tags or to create better relations between authors
and their work. This ontology was then queried with SPARQL
which proved to be a very powerful tool to infer about the dataset.
In the end, a comparison between information retrieval and web
semantics is done as well as a reflexion on possible applications.

1 INTRODUCTION
The Billboard 200 is a popular platform that publishes a weekly

chart for the top 200 most popular albums on that week. This
chart is the music industry reference for popularity of albums in
the United States and is active since 1945 [20]. The format of the
chart changed through the years, it started with only five positions
and published without a clear frequency, updates were between
three to seven weeks. In 1956 the Billboard chart started to be
published weekly with the 10 to 30 best selling albums and in 1963
it started to publish 150 positions, it continues to change until, in
1967, publishing 200 positions which are the positions published
still today. These changes were driven by the changes in the music
industry, in the formats the albumswere released and in the increase
and diversity of artists andmusical genres that appeared throughout

DAPI, 2020 - 2021, FEUP, Porto, PT

the years. Using the Billboard 200 [1] chart as a base, this work tries
to create an information access system about music. The goal is
to have in one place and easily accessible information on albums,
musics and artists since 1963 to 2019. The platform will provide
ranks on the Billboard 200, albums names, release dates, artists,
bands, biographies, song lyrics, characterization by musical genre
and performing queries to get and order this information. This
system will act has an access point for the history of music, at least
of the most popular music, between 1963 and 2019.

In this document, it is described the preparation and charac-
terization of the proposed dataset and the use of an information
retrieval tool on the proposed dataset and their exploitation with
free-text queries. Concepts of Web Semantics are also applied and
an ontololy created to be later queried with SPARQL.

Related to the preparation and characterization of the dataset, it
is described which datasets are used for this project and its sources
(Sec. 2), how was the data collected, cleaned and enriched (Sec. 3),
a conceptual model for the datasets (Sec. 4), the return documents
and possible search tasks of the platform (Sec. 5) and the data
characterization of the data collected (Sec. 6).

Related with the use of the information retrieval tool and ex-
ploitation of queries, it is described the tool used, comparing it to
other available tools (Sec. 7), the documents analysis and index-
able components (Sec. 8) and the indexing and retrieval processes,
including weighting experimentation and results evaluation (Sec.
9).

Related with web semantics and the ontology created, it starts
with a study on existing ontologies (Sec. 10), then it is provided a
description of the ontology developed (Sec. 11), query exploration of
the ontology with SPARQL and results analysis (Sec. 12), evaluation
of the developing tool used (Sec. 13), a comparison between web
semantics and information retrieval tools (Sec. 14) and possible
applications for the ontology developed (Sec. 15).

2 DATA SOURCES
Three sources of information are used for this project. One struc-

tured dataset with the Billboard 200 charts which comes in a SQL
database. The other sources come from two websites, Metro Lyrics
and Last.Fm and provide unstructured data. With this information
new datasets will be built. The datasets used for this project are
presented in details in the next subsections.

2.1 Billboard 200 Datasets
The main dataset used is a database provided by the Components

One group [11], a publication and research group that assembles,
investigate and editorializes large datasets with various members
from different backgrounds and located around the United States
of America. This database is free for use [12] and covers ranking

DAPI, 2020 - 2021, FEUP, Porto, PT DAPI 2020/21

charts from 1963 to the first month of 2019. Two tables from this
dataset are used, the Albums table and the Acoustics table.

The Albums table provides information about the albums that
were nominated for the Billboard 200 ranking, more specifically,
the date it was introduced on the rank, the name, the artist, as well
as the length of the album.

The Acoustics table provides information about the songs of the
albums selected for the Billboard 200, which include the name of
the song, the album, the artist, as well as a number of technical fea-
tures about the songs, like the acousticness, danceability, duration,
energy, instrumentalness, key, liveness, loudness, mode, speechi-
ness, tempo, time_signature and valence. But this extra information
will not be used since we consider that it doesn’t add valuable
information.

In total, this dataset covers 33,011 albums, 9,675 artists and
339,854 songs.

2.2 Last.fm
Last.fm [14] is a music website founded in the United Kingdom

in 2002 [21]. This website provides a handful of information about
music, which is used to complement the albums, songs and artists,
that can be used for personal and non-commercial purposes [13].
The process we used to extract and treat this information is de-
scribed in the Section 3.2. The data obtained is stored on JavaScript
Object Notation (JSON) files.

2.3 MetroLyrics
MetroLyrics [4] is a lyrics-dedicated website, founded in Decem-

ber 2002[22]. It is used to obtain the lyrics of the songs from the
albums on Billboard 200. The data obtained is stored in JavaScript
Object Notation (JSON) files and can be used for personal and non-
commercial purposes [3]. More about the process of extraction can
be found on Section 3.2.

3 DATA PREPARATION
The main dataset used is very organized and needs minimal

action to extract the relevant data. Besides, since it is stored in
a SQLite database, it is also easy to query. In the same way, the
information retrieved via web scrapping is also very organized and
easy to get and process. The pipeline used to extract and enrich the
data is outlined in the Figure 1.

This pipeline has twomain purposes, to clean the data and enrich
it. This two operations will be described in more detailed in the
next sections.

3.1 Data Cleaning
The first stage of the pipeline from Figure 1 is the data cleaning,

accomplished through the use of the tool OpenRefine [6]. This tool
is used to remove empty entries from the database and to remove
entries with extra characters. This operation will result in two files:

• Albums - A file with all the albums and their ranks in the
Billboard 200 since 1963 to 2019 (published weekly);

• Tracks - A file with songs and artists that match with the
albums file.

In this dataset one album can have hundreds of entries, because
it can be featured in the Billboard 200 for several weeks or even
months or years, this imposes a problem in the next phase of the
pipeline, the scraping data. This will lead to an album to be pro-
cessed several times and the pipeline becomes extremely inefficient
and slow. To overcome this problem, and since we cannot discard
any entry (we would end up losing the rank information) from
the previous files, the pipeline generates an auxiliary dataset with
duplicates removed, without discarding the original dataset. This
is done in the step 1 and 2 marked in the pipeline. In these steps
all the characters are also escaped to HTML format to be used
to generate the URL addresses for MetroLyrics and Last.Fm. Both
websites have simple and intuitive URLs using the name of the
album, the name of the music or the name of the artist. For ex-
ample to get information about the band Pink Floyd in Last.FM
the URL is "https://www.last.fm/music/Pink+Floyd" and to get the
lyrics for the music Wish you were here in MetroLyrics the URL
is "https://www.metrolyrics.com/wish-you-were-here-lyrics-pink-
floyd.html".

3.2 Data Enrichment
The second stage of the pipeline is the data enrichment. To

enrich the datasets already obtained from Billboard 200, the web-
sites Last.fm and MetroLyrics were crawled using the Scrapy frame-
work [17].

The crawler uses the cleaned files stated in the previous section
and load these files into 4 dataframes using Pandas [15], an open
source data analysis and manipulation library for Python:

• ranks: Table loaded from albums.csv with information of
the albums positions on the Billboard 200 charts on different
dates.

• albums: Table with albums information obtained from al-
bums.csv by separating the albums columns and removing
duplicates.

• tracks: Table loaded from tracks.csv.
• artists:Tablewith artists information obtained from tracks.csv
by separating the artists columns and removing duplicates.

Both Last.fm andMetrolyrics, like already said, have user-friendly
links, than can be built following a common structure and using
the information from the columns of the dataframes above:
LASTFM_URL = https://www.last.fm/music ML_URL =
https://www.metrolyrics.com

• LASTFM_URL/{artist}/{subset} : Links to pages with infor-
mation of an artist.;

• LASTFM_URL/{artist}/_/{song}/{subset} : Links to pages
with information of a song;

• LASTFM_URL/{artist}/{album}/{subset} : Links to pages
with information of an album;

• ML_URL/{song}-lyrics-{artist}.html : Links to pages with
the lyrics of a song.

The {artist}, {song} and {album} fields can be obtained from the
dataframes to search for specific albums, artists and tracks. The
{subset} section indicates what kind of information we want to
obtain for that album, artist or song, which can be either "tags",
"wiki", or even empty if we want an overview.

Billboard 200 DAPI, 2020 - 2021, FEUP, Porto, PT

acoustic_features

albums

billboard-200

last.fm

python scrapymetrolyrics	(website)

Scraping

Cleaning	and
Exploration

OpenRefine

albums

tracks

Cleaned	Data

Data	Sources

Scraping

python scrapy

Enriched	Data	(Source
Data	+	Scraped	Data)

Final	Datasets	Storage

tracks_lyrics

artists_wikiartists_tags

tracks_tags albums_tags

artists_overview

tracks_overview

albums_overview

Data	Alignment

1

2

3

Figure 1: Data Pipeline.

Each spider searches for a subsect of all artists, albums or tracks
and exports that information to a JSON file. As a result, the crawler
obtains 8 JSON files with scraped data:

• albums_overview: Number of listeners and release date of
the albums.

• albums_tags: List of tags for each album.
• tracks_lyrics: Lyrics of the tracks.
• tracks_overview: Number of listeners and duration of the
tracks.

• tracks_tags: List of tags for each track.
• artists_overview: Number of listeners of the artists.
• artists_tags: List of tags for each artist.
• artists_wiki: The biography and number of listeners of all
artists. If the artist is an individual (Solo) it also contains its
birth date and birth location. If the artist is a group of indi-
viduals (Band) it also contains the location of the foundation,
years of activity and a list of its members.

The next step is to complement the dataframes above with the
scraped data that was stored in the JSON files. Each JSON file
has the keys to the albums, artists or tracks which the scraped
data corresponds to, so the information can be aggregated. This
aggregation would result in 4 main tables: ranks, albums, tracks
and artists (solo and band).

4 DATA MODEL
Figure 2 shows the final data model. Which is comprised of the

following elements:

Album

+ album: string

+ album_artist: string

+ num_listeners: integer

+ release_date: string

Track

+ song: string

+ track_album: string

+ track_artist: string

+ length: string

+ date: string

+ num_listeners: integer

+ lyrics: string

1..* 1..*

Rank

+ date: string

Tag

+ tag: string

*

*

Artist

+ artist: string

+ num_listeners: integer

+ biography: string

*

*

*

*

*

1..*

1..*

*

Extends Extends

2..* *

+ position: integer

Solo

+ born_date: string

+ born_in: string

Band

+ founded_in: string

+ years_active: string

member

+ period: string

* *

playlist

Figure 2: Conceptual Data Model.

• Rank: List of top albums on the Billboard 200 chart on a
specific date. An album can be at the top of the chart on
different dates, so it can be associated to several ranks and
in different positions between them.

• Album: Saves all the information of an album, such as name
of the album, name of the artist, release date, number of
tracks, total duration and number of listeners.

• Artist: Saves general information of an Artist, such as name
of the artist, number of listeners and its biography (textual
information). An Artist can also be one of two subclasses

DAPI, 2020 - 2021, FEUP, Porto, PT DAPI 2020/21

that hold more specific information, depending on whether
it is a Solo (referring to an individual) or a Band (group of
individuals).

• Solo: Saves specific information of an individual artist, such
as birth date and birth location.

• Band: Saves information of a group of artists that perform
together, such as foundation location, years of activity, and
the list of members (can be Solo artists, if their information
is provided by the datasets).

• Tag: A tag contains a string that can label many albums,
artists or songs, giving important information about them,
such as genre.

5 INFORMATION RETRIEVAL TASKS
The information described in the previous sections will feed a

platform thatwill allow searches andwill return relevant documents
based on the search parameters.

5.1 Returned Documents
Each search will return one or more documents. There are 4

types of documents for this project:
• Albums: It provides album information as well as its songs
and artist;

• Tracks: It provides song information as well as its lyrics;
• Artists: It provides artist information as well as its albums;
• Ranks: It provides an album ranking chart corresponding
to a date.

5.2 Possible Search Tasks
Several search queries are possible and can be simple or very

complex. For example, one user can be interested in all information
about an artist and type in the query only the artist name, this users
expects to see results has songs from this artists, albums, ranks
and of course the artist document. Other users could be interested
in one album and type in the query field the name of the album
and probably also the artist name, expecting to retrieve the album
document, its songs and the artist document.

The possible search tasks and the possible documents returns
for this project are:

• Rank by date (year, month, day): returns albums, artists
and ranks;

• Artists (band or solo): returns artists and albums;
• Location: returns artists;
• Album: returns album, artist, songs and best rank;
• Release date (year,month, day): returns albums and artists;
• Musical genre: returns albums, artists and songs;
• Songs (by name or words/sentences from lyrics): re-
turns songs.

6 DATA CHARACTERIZATION
The dataset in analysis is very big, having 574,000 entries. Given

the nature of the data, the same album can have hundreds of entries
in the database, because really popular entries will be featured in
the Billboard 200 for several years, or months. Since this dataset is
in a SQLite database we can characterize the data with relative ease.

In this dataset the album with the most entries is The Dark Side of
the moon with 942 entries. Another particularity which increases
the complexity of the analysis is the quantity of albums named
Greatest Hits from different artists, this represents 5,905 entries. To
overcome this, the scripts always consider the pair album and artist.

The number of albums per year is constant from one year to
the other has can be seen in Appendix A - Figure 5, which was
predictable, being the variations due to repeating albums in mul-
tiple weeks. The year 2019 has only data featuring the month of
January. Looking at the number of songs per year, Appendix A
- Figure 6, we can see that the number of songs included in the
albums has increased over the years, being the year 2014 the year
with most songs in the Billboard 200. This increase throughout
the years happens because of the increasing number of songs per
album. Similar conclusions can be taken relatively to the number
of artists with albums in the rank, Appendix A - Figure 7, this can
be a consequence of the increase number of diffusion mediums,
which put more artists on the spotlight. Also, we study the average
length of songs lyrics per year, Appendix A - Figure 8, observing the
song length tended to increase throughout the 60s to the late 90s,
decreased a bit through the late 2000s and early 10s and increasing
again towards the latter years from the dataset.

7 INFORMATION RETRIEVAL TOOLS
EVALUATION

To create a suitable information retrieval tool, Elastic Search [9]
and Apache Solr [10] have been put side by side and compared. This
analysis does not focus on performance, because the data collection
is not so big, all the documents together have less than 500MB, and
both tools are prepared to index and query terabytes of data. Both
tools are build on top of Apache Lucene, supporting similar features
but they differ in terms of query language, deployment and other
functionalities.

Apache Solr provides search capabilities through HTTP requests
with powerful features such as distributed full-text search, faceting,
near real time indexing, high availability, NoSQL features, among
others and uses the Lucene Syntax for queries which is very robust
and allows very complex queries.

Elasticsearch uses a RESTful API’s to provide its index and search
functionalities and it archives the distribution of data on multiple
servers using the shards concept, providing horizontal scaling, dis-
tributed full-text search, a powerful query language, multitenancy
and others. Elasticsearch is completelly based on JSON and is suit-
able for time series and NoSQL data.

Apache Solr has native request handlers to ingest data from
various sources, XML files, CSV files, databases, JSON and more
with a simple post command. Elasticsearch on the other hand uses
the Beats [8] tool to ingest formats other than JSON. These two tools
support custom analyzers, synonym-based indexing, stemming and
various tokenization options which is a desirable feature for the
work under analysis. Both tools are open source and have very
active communities which is a good point because it is easy to get
help in the community.

From the above, both tools could be used to index and query
the datasets under analysis but in the end, Apache Solr is more
appropriate, it is lightweight than Elasticsearch, easier to set up

Billboard 200 DAPI, 2020 - 2021, FEUP, Porto, PT

and requires less resources to run which is desirable for this small
project. Apache Solr is also more suitable for static data, like the
one under analysis, while Elasticsearch is more focused on scaling
and data analytics, features that will not be used. For all this, the
next sections will use Apache Solr to query the data.

8 DOCUMENTS AND INDEXABLE
COMPONENTS

Four types of documents could be returned after each query, like
described on Section 5. Each of these documents has different fields
with different importance for the search that will be exploited to
tune the search and compare different approaches.

The Artist document contains the field artist with the name of
the artist, num_listeners with the number of listeners, tags with
a list of tags related with the artist, born_date the birth date of the
artist, born_in the born location of an artist, usually the city and
country, died date of the artist death if applicable, years_active
with the number of years a band is active, not applicable to solo
artists, founded_in location of foundation of a band, usually the
city and country and the fieldmembers with a list of the names of
the band members. In this document born_date, born_in, died,
years_active, founded_in andmembers can be null if not appli-
cable.

The Album document contains the field albumwith the name of
the album, album_artistwith the name of the artist,num_listeners
with the number of listeners, release_datewith the date the album
was released, tags with a list of tags related with the album and
playlist with a list of the songs included in the album.

The Track document contains the field song with the name of
the song, track_artists with the name of the artist, track_album
with the name of the album were the music is included, date the
release date of the song, length the length of the song in minutes,
num_listeners the number of listeners and lyrics with the lyrics
for the song.

The Rank document contains the field date with the date of the
rank list and the field ranks with a list of albums, their artist and
position on the rank.

All four documents could be related with each other by the artist
name and some documents have even more relations as specified in
the Data Model, Figure 2. The index processes will focus on textual
fields because they allow the usage of more filters and analyzers
and because all the fields that relate the documents with each other
are textual. Fields like dates or numbers will be left to be indexed
by the default analyzers already present in Apache Solr.

8.1 Schemas, filters and analyzers
The collections will be indexed using two different schemas, one

using the default filters and analyzers already present on Apache
Solr and the other using custom filters and analyzers to allow
smarter and improved search results and queries. In the default
mode Solr uses the mode "field guessing" feature, where Solr at-
tempts to guess what type of data is in a field while it’s indexing it.
It is also called the "schemaless" mode.

The default filters schema uses the text_general field typewhich
apply simple filters like tokenization, stop words and lower case.

The custom approach uses three custom field types: artist-name,
tag-text and descriptive-text.

The artist-name applied to fields that hold the artists names
uses the following analyzers:

• PatternReplaceFilter: Used to replace the characters $ and
! by s and i, respectively, since several artists use those spe-
cial characters to replace those letters: artists such as P!nk,
A$ap Rock, $uicideBoy$ should also be identified as Pink,
Asap Rocky and SuicideBoys. Then, it is used to remove the
characters . and /, so artists such as N.W.A and AC/DC can
also be identified by NWA and ACDC.

• LowerCaseFilter: Converts text to lower case, so the artists
names are case insensitive.

• ManagedSynonymGraph: Various artists and bands may
be known by different names. For example, the band known
as Red Hot Chili Peppers, is also quite often referred to by
its acronym RHCP. This filter allows to register those sim-
ilarities. (searching by rhcp will return the same results as
searching for Red Hot Chili Peppers).

The tag-text field applied to tags, uses the following analyzer:
• PatternReplaceFilter: Removes the s character from the
end of tags that refer to years or decades, such as 80s and 90s.
Thus, these tags are also identified when the user searches
without the s (80 and 80s can be used interchangeably).

The descriptive-text, applied to fields that hold extensive and
descriptive text, such as biography and lyrics, derives from the
standard text_general and adds the following analyzers:

• StopFilter: Removes stop words
• EnglishPossessive, EnglishMinimal andPorterStemFil-
ter: Used to stemming in order to obtain the base form of
the words of a text. For example, words such as win, winned
and winning will match each other.

9 INDEXING AND RETRIEVAL PROCESSES
To test the adequacy of the filters, analyzers and indexing strate-

gies exposed in the previous section, three different information
needs will be used. Each query explores a different behaviour of
the indexing strategy built. Besides this queries, it will also be put
together a set of weights for each of the relevant fields to change
the way the results are ordered and influencing the relevancy of
the top results. The first 20 results will be compared.

9.1 Information needs and queries
TOPIC#1
Title: The album M.A.A.D city by Kendrick Lamar
Description: Find out information about the album M.A.A.D

City and its artist.
Narrative: Relevant results will be the document of the album

itself, documents of songs included in the album and documents of
the ranks where the album was present.

Query: kendrick lamar maad city

TOPIC#2
Title: The artist P!nk

DAPI, 2020 - 2021, FEUP, Porto, PT DAPI 2020/21

Description: Get information about the artist P!nk.
Narrative: Searching for the work "pink" it is very likely that

a user is looking for the artist P!nk, it’s albums, musics and ranks.
So relavant documents here would be documents related with the
artists and not with the word pink.

Query: pink

TOPIC#3
Title: Artists born or bands active during the 80s decade that

won or have been nominated for a Grammy award.
Description: Find artists (solo or bands) that have born or have

been active in the 80s and won or have been nominated for the
Grammies.

Narrative: Relevant documents would be artists from the 80s,
born or active in that decade, that have references to winning or
nomination to the Grammy awards in the description.

Query: (born_date:198? OR years_active:198?)
AND biography:“Grammies”

9.2 Weights
The Table 1 shows the weights that were applied in the retrieval

process. The weights are applied to the most relevant fields, the
ones that have more information and the ones that are thought to
have the information that a user is seeking. The weights have been
tuned to provide three special behaviours. If the query only has the
name of the artist, the first result is the artist document, followed by
albums from that artists and then songs. If the query has references
to the album, the first document returned is the album, followed by
the songs in that album followed by documents about the artists
and ranks. Finally, if the query is about a song the first document
returned will be the song followed by albums that have that song
in their playlist.

Document Field Weight

artist 3.2
album_artist 2.8
track_artist 2.6

album 2.4
track_album 2.2
rank.album 2.0

song 1.8
playlist 1.6

Table 1: Weights applied per relevant fields.

9.3 Evaluation
The query from TOPIC#1 uses the name of the album and the

artist and shows very interesting results with and without custom
analyzers and with and without filters. For start, this query gives
10,690 results without the use of custom analyzers and only 5,114 re-
sults with analyzers, showing that the use of analyzers narrows the

results, making the search more accurate and less comprehensive,
for example, results that only have one of the therms of the search
query are ignored. The use of weights did not change the number of
results but improves the ordering of the results, giving much more
relevant results at the top. In Table 3, included in Appendix B it is
possible to see which were the relevant documents in the first 20
results for the case without filters or analyzers and for the case with
analyzers and filters and the improve on quality from one case to
the other is very relevant. Without filters non relevant documents
show up on the 7th result and using filters and weights the non
relevant document only shows up at the 19th position. Also, the
number of relevant and non relevant documents is very different
on the two cases, using custom analyzers and weights there’s only
2 non relevant results and without there are 11 non relevant results.
Tracing a Precision-Recall graph (Figure 10) it is possible to see that
the use of custom analyzers and weights improves significantly the
query results showing precision of 1.0 for all recall values against
a reduce of precision for values of recall above 0.6. The influence
of weights is also very evident when looking at the first result
which is the album document and without weights the first result
is a song document. This behaviour shows that the weights and
analyzers used are very appropriate for this query and fulfill the ob-
jectives pointed earlier. For TOPIC#2 the influence of the analyzers
is even more evident. Without custom analyzers all the documents
that include the word "pink" are returned, but none of the results
is related with the artist "P!nk" which makes the top 20 results
non relevant for this information need (Appendix B, Table 4). The
PatternReplaceFilter changes completely this search returning
results with the pattern "P!nk" as expected, passing from results
with zero precision to results with precision higher than 50% in
almost all the 20 first results. The last information need, TOPIC#3
uses a query with specific fields were two of them does not use
custom analyzers, born_date and years_active and one that use the
analyzer descriptive-text, the biography. The query without the
use of custom analyzers returns only 1 value, and with the analyzer
returns 155 results. This difference is easy to understand because
the query uses the therm "Grammies" and only one result in the
entire collection refers to the Grammy Award in the plural form.
With custom filters and analyzers the plural and singular forms are
merged in the results and the quality and quantity of the results
increases like can be seen on Appendix B in the TOPIC#3 tables and
graphs. Overall the use of custom analyzers and filters improves
significantly. The Minimum Average Precision increases more than
30%, from 64,7% to 97,6% and the Average Precision-Recall curve
for the three information needs shows significant improvement
with the usage of filters, as can be seen in Figure 3 where the values
of the precision are very close to 1.0 for all the recall values in the
case with filters and lower than 0.75 for the case without filters.

Billboard 200 DAPI, 2020 - 2021, FEUP, Porto, PT

Recall

0,000

0,250

0,500

0,750

1,000

0,0 0,2 0,4 0,6 0,8

No filters W/ filters

Precision-Recall (interpolated)

Figure 3: Average Precision-Recall curve for TOPICS 1, 2 and
3.

10 EXISTING ONTOLOGIES FOR THE
DOMAIN

From a short state of the art review of existing ontologies related
to music, there were two that ressembled this project subject: The
Music Ontology [16] [5] and Schema.org ontology [2].

The Music Ontology, created in 2006 provides main concepts and
properties to describe music in the Semantic Web, including albums
and artists. It is subdivided in 3 levels:

• The first level deals with editorial information, describing
superficially a song, its artists and its album;

• The second level introduces the Event ontology. This ontol-
ogy can describe the workflow involving the composition
of a song, and physical events in which the song was per-
formed;

• The third level decomposes the events, going into very spe-
cific details like: in that particular moment, that person play-
ing that instrument played that key.

Although this ontology would be more than enough to cover
information about songs, artists and albums for this project, it
doesn’t cover information about music ranking charts, which is
necessary for the Billboard 200 chart. It is also more detailed than
necessary for our use case, as the first level would be enough to
cover most of the information on Billboard 200 dataset.

The Schema.org ontology, founded in 2011 by Google, Microsoft,
Yahoo and Yandex, is a generic ontology, which can cover multiple
subjects, but not going to the level of detail encountered in more
specific ontologies like The Music Ontology previously described.
However, it seem capable of covering the dataset in study, having
classes to cover tracks (MusicComposition and MusicRecording),
albums (MusicAlbum), artists (Person for solo artists andMusicGroup
for bands) and also ranks (ItemList), which was lacking on the
previous ontology. It doesn’t cover tags, but some generic fields
could be adapted to fill that gap, however not the same field in all
types.

With some changes both ontologies could be adapted to describe
the model under study, but none of them with the level of detail
required for some fields, like artists or albums tags, years active for
Bands or the number of listeners. These ontologies also provide a

lot of fields that the model does not need and does not have infor-
mation to fill in those fields, but above all, both ontologies would
require many adaptations and for those reasons a new ontology
was developed and will be described in the next sections.

11 THE BILLBOARD 200 ONTOLOGY
The ontology was created using the tool Protégé [18]. To create

the ontology the conceptual model proposed in Figure 2 was slightly
changed to better represent some concepts, like individuals that
have tags, work done by artists (bands and solo) and to create a
better distinction between the rank and the rank positions. This
new model is represented on Figure 4.

Album
Track

+ album_name: string

+ length: string

+ lyrics: string

Rank

+ date: date

Tag

+ tag: string

Artist

+ biography: string

2..* *

RankPosition

+ position: integer

Solo

+ born_date: string

+ born_in: string

Band

+ founded_in: string

+ years_active: string

member

+ period: string

Work

+ artist_name: string

+ release_date: date

1..* *

Taggable

+ name: string

+ num_listeners: integers

1..* 1..*playlist

author

* *

1

1..*

1

1..*

Figure 4: Conceptual Data Model updated for the Billboard
200 ontology.

In this new model all the classes that can have a tag are under
the super class Taggable. Another significant change is the new
classWork which is the super class of Track and Album which
can be seen has work done by artists. In this new model a new
class RankPosition was introduced to represent the position of
a specific Rank. Each Rank has a specific date and is related to
many individuals of RankPosition. EachRankPosition is related
to only one individual of the Rank class and to the Album that
stayed in that position.

11.1 Classes and Properties
The class hierarchy follows the model on Figure 4 and has the

following structure:

owl:Thing

Rank

RankPosition

Tag

Taggable

Artist

Band

Solo

Work

Album

Track

DAPI, 2020 - 2021, FEUP, Porto, PT DAPI 2020/21

TheRank holds various positions and each instance is associated
with a date. The RankPosition represents a position of a specific
Rank and is related to only one Album.

Taggable is the class of individuals that can be categorized by
tags and a name and that have a number of listeners. It has two
subclasses: Artist andWork.

Artist is the class to represent individuals who have created
albums and/or tracks. Artists can be divided in two classes, Band
and Solo. The class Artist has the property biography which of
course is present in both its subclasses.

The classWork, used to represent work done by artists has two
subclasses,Album andTrack. Both classes have an author (Artist)
and release date.

To relate all the classes the following Object Properties have
been created:

owl:topObjectProperty

hasAuthor

hasInPlaylist

hasMember

hasRankedAlbum

hasRankPosition

hasTag

isAuthorOf

isInPlaylistOf

isMemberOf

isOnRank

isPositionOfRank

isTagOf

wasRankedOnPosition

The property hasAuthor links an individual of the Work class
(Album or Track) to its creator, who is an individual of the Artist
class (Band or Solo). It is the inverse of the relation isAuthorOf.

hasInPlaylist links an individual of the Album class to one of
its songs, which is an individual of the Track class. It is the inverse
of the relation isInPlaylistOf.

asMember links an individual of the Band class to one of its
members, which is an individual of the Solo class. It is the inverse
of the relation isMemberOf.

hasRankPosition links an individual of the Rank to one of its
positions, which is an individual of the RankPosition class. It is the
inverse of the relation isPositionOfRank.

hasRankedAlbum links an individual of the RankPosition to
the album that was in that position of the related Rank, which is
an individual of the Album class. It is the inverse of the relation
wasRankedOnPosition.

hasTag links an individual of the Taggable class (Album, Track,
Band, or Solo) to one of its tags, which is an individual of the Tag
class. It is the inverse of the relation isTagOf.

To complete the ontology the following data properties have
been added:

owl:topDataProperty

hasActiveYears

hasBiography

hasBirthDate

hasBirthLocation

hasDeathDate

hasFoundationLocation

hasLength

hasLyrics

hasName

hasNumListeners

hasPosition

hasRankDate

hasReleaseDate

hasString

The hasName and hasNumListeners data properties hold the
name and number of listeners of an individual of the Taggable class
(Band, Solo, Album, or Track).

The hasBiography data property holds the biography text of
an individual of the Artist class (Band or Solo).

The hasReleaseDate data property holds the date an individual
of the Work class (either Album or Track) was released.

The hasActiveYears and hasFoundationLocation data prop-
erties hold information about the years an individual of the Band
class was active, and the location where it was founded.

ThehasBirthDate,hasBirthLocation andhasDeathLocation
hold the birth date and location of an individual of the Solo class,
and its death date (if applicable).

The hasLength and hasLyrics hold the lenght and the lyrics
of an individual of the Track class.

The hasString data property holds the label of an individual of
the Tag class.

11.2 Restrictions
From the classes and properties described so far it is easy to

understand that some restrictions must be applied to guarantee
that the data is valid, coherent and respects the conceptual model.
The Table 2 shows the type restrictions applied to the classes of the
ontology.

A Rank has only one date. A RankPosition is associated with
exactly one Rank by the property isPositionOfRank, and one
Album by the property hasRankedAlbum. All individuals in the
Taggable class have exactly one name and a single value for the
number of listeners. All individuals of the classArtist have a biogra-
phy, plus a Band has a period of active years and a Solo artist have
a birth date and a birth location. All individuals in theWork class
are associated to at least one Artist by the property hasAuthor
and have a release date. An Album is associated to at least two
individuals of the Track class by the property hasInPlaylis. All
individuals of Track have lyrics and a length.

11.3 Data population strategy
To populate the Billboard 200 ontology, the Cellfie Protégé [7]

plugin was used. The plugin is simple to use but has the drawback
of only being compatible with data in xlsx format (Microsoft Excel).
This increased the complexity to use this plugin, since all the data
at the end of the data preparation pipeline (Figure 1) is in JSON
format, divided in four different files: albums.json, artists.json,
ranks.json and tracks.json.

Billboard 200 DAPI, 2020 - 2021, FEUP, Porto, PT

Class Property Restriction
Rank hasRankDate exactly 1 rdfs:Literal

RankPosition
hasPosition exactly 1 rdfs:Literal
hasRankedAlbum exactly 1 rdfs:Album
isPositionOfRank exactly 1 rdfs:Rank

Tag isTagOf some rdfs:Taggable

Taggable hasName exactly 1 rdfs:Literal
hasNumListeners exactly 1 rdfs:Literal

Artist hasBiography exactly 1 rdfs:Literal

Band
hasActiveYears exactly 1 rdfs:Literal
hasFoudationLocation exactly 1 rdfs:Literal
hasMember min 2 rdfs:Solo

Solo hasBirthDate exactly 1 rdfs:Literal
hasBirthLocation exactly 1 rdfs:Literal

Work hasAuthor Some rdfs:Artist
hasReleaseDate exactly 1 rdfs:Literal

Album hasInPlaylist min 2 rdfs:Track

Track hasLength exactly 1 rdfs:Literal
hasLyrics exactly 1 rdfs:Literal

Table 2: Type restrictions applied to the ontology classes.

To adapt and convert the information, a Python script, using the
Pandas library [15] was developed. This script gathers the informa-
tion from the four JSON files and converts them to six Excel sheets.
A sample of each of these sheets as well as the rules used to map the
information with classes can be see on Appendix C. The six Excel
sheets are bands.xlsx, solos.xlsx, albums.xlsx, tracks.xlsx, tags.xlsx
and ranks.xlsx and are used to populate the analogous classes.

It is important to note that the dataset refined and enriched in
the early stage of the analysis is quite extensive, as it contains data
related to the Billboard ranks since 1963 and importing all of this
data through the Cellfie plugin is very slow and resource demanding.
To overcome this the script selects the last ten Billboard Ranks and
the first twenty albums from each of those ranks, together with
artists and tracks. With this strategy the ontology only has a sample
of the data, but this sample is enough to be queried and to reasoning
about the dataset like will be seen in the following sections.

12 QUERYING THE BILLBOARD 200
ONTOLOGY

A total of seven SPARQL queries [19] were used to test the ontol-
ogy. Some are similar to the queries developed for the information
needs in Solr and others try to explore features of SPARQL and how
it could be used to infer new information about the dataset.

The Listing 1 shows the query used to get all the albums and
their rank dates together with the artist name and rank position.
The results can be seen on Figure 27 on Appendix D.

SELECT ?albumName ? a r t i s tName ?
r a n kPo s i t i o n ? rankDate

WHERE {
? rank a : Rank .
? rank : hasRankDate ? rankDate .
? rank : ha sRankPo s i t i on ? p o s i t i o n .

? p o s i t i o n : h a s P o s i t i o n ? r a n kPo s i t i o n
.

? p o s i t i o n : hasRankedAlbum ? album .
? album : hasName ?albumName .
? album : hasAuthor ? au thor .
? au thor : hasName ? a r t i s tName .

}
ORDER BY ? r a n kPo s i t i o n DESC (? rankDate)

Listing 1: SPARQL Query #1: Get albums and their rank by
date

The second query on Listing 2 gets the number of times each
album has been ranked and the result can be seen on Figure 28 on
Appendix D.

SELECT ?albumName ? a r t i s tName (count (?
r a n kPo s i t i o n) as ? nrOfTimesInRank)

WHERE {
? p o s i t i o n a : R ankPos i t i on .
? p o s i t i o n : h a s P o s i t i o n ? r a n kPo s i t i o n

.
? p o s i t i o n : hasRankedAlbum ? album .
? album : hasName ?albumName .
? album : hasAuthor ? au thor .
? au thor : hasName ? a r t i s tName .

}
GROUP BY ?albumName ? a r t i s tName
ORDER BY DESC (? nrOfTimesInRank)

Listing 2: SPARQL Query #2: Get number of times each
album has been ranked

The next is a simple query, just to get a list of artists and their bi-
ography. The query used is on Listing 3 and the results on Figure 29
on Appendix D.

SELECT ? a r t i s tName ? b iography
WHERE {

{ ? a r t i s t a : So l o }
UNION { ? a r t i s t a : Band }
? a r t i s t : hasName ? a r t i s tName .
? a r t i s t : hasB iography ? b iography

}
Listing 3: SPARQL Query #3: Get artists and their biography

To get artists that have more than 800.000 listeners monthly, the
query on Listing 4 was used. The results are on Appendix D on
Figure 30.

SELECT ? a r t i s tName ? numLi s t ene r s
WHERE {

{ ? a r t i s t a : So l o }
UNION { ? a r t i s t a : Band }
? a r t i s t : hasName ? a r t i s tName .
? a r t i s t : hasNumLis teners ?

numLi s t ene r s
FILTER (? numLi s t ene r s > 800000)

DAPI, 2020 - 2021, FEUP, Porto, PT DAPI 2020/21

}
ORDER BY DESC (? numLi s t ene r s)
LIMIT 15

Listing 4: SPARQL Query #4: Get 15 artists that have more
than 800.000 listeners

The query on Listing 5 gets the average number of listeners per
track per album. The results can be seen on Figure 31 on Appen-
dix D.

SELECT ? a r t i s tName ?albumName (AVG(?
numLi s t ene r s) as ?
avgTrackAlbumLi s t ene r s)

WHERE {
? t r a c k a : Track .
? t r a c k : hasNumLis teners ?

numLi s t ene r s .
? t r a c k : i s I n P l a y l i s t O f ? album .
? album : hasName ?albumName .
? album : hasAuthor ? a r t i s t .
? a r t i s t : hasName ? a r t i s tName .

}
GROUP BY ?albumName ? a r t i s tName
ORDER BY DESC (? avgTrackAlbumLi s t ene r s)

Listing 5: SPARQL Query #5: Get track average number of
listeners by album

Albums release date can be fetched with the query on Listing 6
and the results can be viewed on Figure 32 on Appendix D.

SELECT ? a r t i s tName ?albumName ?
r e l e a s eD a t e

WHERE {
? album a : Album .
? album : hasName ?albumName .
? album : ha sRe l e a s eDa t e ? r e l e a s eD a t e

.
? album : hasAuthor ? a r t i s t .
? a r t i s t : hasName ? a r t i s tName .

}

Listing 6: SPARQL Query #6: Get albums release date

The final query tries to understand which albums fromAmerican
Artists are related with Christmas and Love. The Listing 7 shows
the query used and the results are on Figure 33 on Appendix D.

SELECT ? a r t i s tName ?albumName ? albumTag
WHERE {

? album a : Album .
? album : hasName ?albumName .
? album : hasAuthor ? a r t i s t .
? a r t i s t : hasName ? a r t i s tName .
? album : hasTag ? f u l l T a g .
? f u l l T a g : h a s S t r i n g ? albumTag .
? a r t i s t : hasTag ? f u l l A r t i s t T a g .

? f u l l A r t i s t T a g : h a s S t r i n g ? a r t i s t T a g
.

FILTER regex (s t r (? albumTag) , "
c h r i s tma s | xmas | l o v e ")

FILTER regex (s t r (? a r t i s t T a g) , "
amer ican ")

}

Listing 7: SPARQLQuery #7: Get Christmas and love albums
from american artists

12.1 Result analysis
The usage of a tool that provides a powerful Query Language

like SPARQL allows a thorough exploration of the dataset and to
infer and understand the information it contains. The queries and
the results presented on the previous section shows exactly this,
even though not all the features of the language have been used.
This is probably one of the biggest advantages when compared
with the Information Retrieval tools used in this project.

Looking at the simplest queries like the Query#3 to get only the
biography or Query#4 to get the number of listeners per artists or
even Query#6 to get the release date of albums we can see that the
results are very accurate and organized. The tabular form of the
results is easy to read and can be easily configured with the SELECT
clause of the query. This kind of information retrieval was also
possible in Solr but the organization of the results in documents is
much more difficult to read, since each document returns all the
fields related and not only the relevant ones.

Query#5 is a little bit more complex and allows to understand
which albums have more listeners per track. This metric could
be used to infer on the popularity of artists and albums specially
if crossed with the information on Query#2, to get the number
of times each album was on ranks. With these two queries one
can see if an album where all the tracks have a large number of
listeners would keep this album more time on the Billboard 200
Charts. Unfortunatelly, since it was only uploaded a subset of the
data those conclusions are not possible.

To filter albums by a particular characteristic, the Query#7 was
used. In this query it was intended to find American Artists with
Albums related with Christmas and Love. This query is in some
how analogous to the information need of TOPIC#3 presented
on Section 9, were it was intended to get artists from the 80’s
that have won a grammy, since both queries are trying to filter
albums foloowing a rule. Comparing both results, the ones returned
by SPARQL are much more accurate, also the usage of regular
expressions filters can leverage the power of the query, but on
the other side the query is much more complex.

The results from Query#1 shows how easily is to cross the data
from different classes and still get a pretty and organized table of
results. In this query, the albums, their artists and the dates and
positions they were rankedd were put together. The information
was ordered by date of the rank.

Billboard 200 DAPI, 2020 - 2021, FEUP, Porto, PT

13 EVALUATION OF THE SEMANTIC WEB
TOOLS USED

Essentially two tools have been used, Protégé [18] to create the
ontology and SPARQL [19] to query the ontology.

Protégé is a free and open source editor to create ontologies.
The desktop version, the one used, has an outdated interface and
is in somehow confused to use since it requires a lot of clicks
and to open and close several tabs to create classes, properties,
restrictions and so on. There is also a cloud based version, the
WebProtégé, with a more modern look, but with limited features.
The tool served the project’s purpose, since it is compliant with
W3C Standards with compatibility for the usage of RDF and OWL
2. The tool also has pre installed description logic reasoners which
was a good feature since it was possible to do all the tasks in the
same tool. One major problem of Protégé was is limited capabilities
to populate the ontology. Firstly because it needed external plugins,
like the Cellfie plugin [7] and the plugins are limited in the formats
supported. Secondly because the population process is very resourse
demanding and such, it was only possible to upload a subset of the
dataset.

Protégé comes with an editor for the SPARQL language and also
allowed to run the queries on the ontology developed. Having this
integrated with the tool makes a lot of sense, since we can create
and infer over the ontology on one place with only one tool. But,
again, this interface is poor and boring to use. Code highlight is not
available and errors on queries are returned on the form of popups.

Regarding SPARQL, it is a powerfull language and its similiraties
with SQL make its learning curve small. The language comes with
ordering functionalities, very handy filters like regular expressions
and other functionalities.

Overall, the tools and languages used were adequate to the con-
text of this work.

14 COMPARISON BETWEENWEB
SEMANTICS AND INFORMATION
RETRIEVAL TOOLS

Comparing the semantic web tool used Protégé with the informa-
tion retrieval tool used Apache Solr, Protégé offered better and more
complex schema implementation, allowing for stronger relations
and better hierarchy between classes, making it easier to find new
relationships. Although, the additional level of complexity and dept,
makes it not as user-friendly as Solr, which was easier to use, with
simple model implementation and population. While with Solr it
was possible to populate the schema using all information on the
dataset, on Protégé the dataset had to be cut.

Protégé also had the edge on data querying, SPARQL allowing
for powerful queries while on Solr the queries were more limited,
required more tuning to return the expected results, and better
knowledge of the model beforehand. With SPARQL, it’s possible to
better structure query results, as you can specify which resources or
properties are returned. It is also easier to group data: for example,
to obtain the number of times an albumwas ranked on The Billboard
200, it is possible to obtain that information with a simple query
with SPARQL, while on Solr, it is not possible with the basic query
tool.

SPARQL results are also more assertive and more restricted than
in Solr : for example, searching for the artist "P!nk" in Solr, the results
include not only artist’s information, but also albums and songs;
in SPARQL, the query has to be much more complex to obtain the
same information. However, with SPARQL, the results are always
relevant, returning exactly what the query asks, while with Solr,
not all results are relevant. Returning to the previous example,
searching for the artist "P!nk" in Solr, returns also information
about other artists (like "Pink Floyd") and songs with the word
"pink".

15 POSSIBLE APPLICATIONS FOR THE
BILLBOARD 200 ONTOLOGY

The developed ontology, since it was based on a popular music
ranking website dataset, it’s main purpose would be to describe
ranking charts about music. However, it also can be used for music
archives, since it is also rich in information about artists, songs
and albums, without necessarily ranking them, or to complement
information on other music databases or websites, like Last.fm.

It can also be used on some studies about music, for example,
based on the biography and rank positions from their albums, try to
infer characateristics and traits that popular artists tend to have, or
comparing those caracteristics with other time periods, obtaining
an idea about the evolution of artists throughout time.

It can also be crossed with social networks, for example, in an
atempt to help new artists reach larger audiences, by giving some
tips on how to interact with their fans, based on the intended target
audience.

16 CONCLUSIONS
The data was characterized and its usage defined. The data cho-

sen is very complete and will provide lots of information about
music since 1963 and can act has a repository for the history of the
most popular music from the period in analysis (1963 to 2019). The
database with the Billboard 200 proved to be an awesome starting
point to extract information since it gives an exhaustive list of al-
bums, artists and musics. Even though, the database has a huge list
of albums it only has information about albums in the Billboard
200, lacking information about other less popular albums. This will
render the final datasets incomplete, but on the other hand, since we
are considering information from 1963 to 2019, all albums produced
in these dates would represent datasets with giant proportions and
challenges that are not in the scope of this analysis. The sources
used to enrich this data also proved to be very satisfactory and
with high quality information, leading to very complete groups of
datasets. The process of characterization, data cleaning and enrich-
ment performed ended in good quality documents that allowed the
usage of an information retrieval tool and the return of satisfactory
results.

Apache Solr, has several mechanisms to index the data, filter and
analyze it, all with a simple and intuitive API. These characteristics
lead to the fast creation of an information retrieval system with
high precision. The returned results have high relevancy which
shows that the characterization, analyzes, index and filtering ap-
plied meets the proposed requirements. Looking at the information
needs presented in Section 9.1 and their results is very interesting

DAPI, 2020 - 2021, FEUP, Porto, PT DAPI 2020/21

to observe how those searches can be tunned which will greatly
influence which results are returned. It can also help to understand
how a search engine works and how important is to use filters with
care to not manipulate the results and biased the users.

Exporting the models to Web Semantics required some changes
to the conceptual model that allowed to reinforce some relations
between the different classes, showing that Web Semantics is based
on solid hierarchies and well defined rules and relations. Due to
this, querying in this domain is more powerful and structured.

Information Retrieval has been central to the success of the
Web and Web Semantics uses the same documents but enriched
by machine understandable annotations. Through this article is
easier to understand that Web Semantics are more adequate to
the usage of artificial intelligence since finding new relationships
in the data is simple and can be an automated process. Not only
the queries can be more complex but also the results are more
accurate and amazingly well organized. The level of complexity of
the queries in Information Retrieval can also be quite high but not
to the level provided by Web Semantics, but Information Retrieval
has the possibility of tunning the search and completelly change
the results for the same query, which in the World Wide Web is a
very appreciated feature, as, for example, paid publications can be
easily put on top.

REFERENCES
[1] BILLBOARD. 2020. Billboard 200. https://www.billboard.com/charts/billboard-

200 Accessed: November 30, 2020.
[2] Schema.org Community. 2021. Schema.org website. https://schema.org/ Accessed:

January 09, 2021.
[3] MetroLyrics Red Ventures Company. 2020. MetroLyrics - Terms of Use. https:

//redventures.com/legal/cmg-terms-of-use.html Accessed: December 1, 2020.
[4] MetroLyrics Red Ventures Company. 2020. MetroLyrics Website. https://www.

metrolyrics.com/ Accessed: December 1, 2020.
[5] Music Ontology Contributors. 2021. Music Ontology website. http://

musicontology.com/ Accessed: January 09, 2021.
[6] OpenRefine Contributors. 2020. Open Refine Documentation. https://openrefine.

org Accessed: December 1, 2020.
[7] Protege Project contributors. 2018. Cellfie Plugin Github Page. https://github.

com/protegeproject/cellfie-plugin Accessed: January 10, 2020.
[8] Elasticsearch. 2020. Elasticsearch Beats tool. https://www.elastic.co/beats/ Ac-

cessed: November 25, 2020.
[9] Elasticsearch. 2020. Elasticsearch website. https://www.elastic.co Accessed:

November 25, 2020.
[10] Apache Software Foundation. 2020. Apache Solr website. https://lucene.apache.

org/solr/ Accessed: November 25, 2020.
[11] Components One Group. 2019. Acoustic and meta features of albums and songs

on the Billboard 200. https://components.one/datasets/billboard-200 Accessed:
November 27, 2020.

[12] Components One Group. 2020. Components One - About. https://components.
one/pages/about Accessed: December 1, 2020.

[13] CBS Interactive. 2020. Last.fm - Terms of Use. https://www.last.fm/legal/terms#
para6 Accessed: December 1, 2020.

[14] CBS Interactive. 2020. Last.fm website. https://www.last.fm/ Accessed: December
1, 2020.

[15] NumFocus. 2020. Pandas, Python Data Analysis Library. https://pandas.pydata.
org/ Accessed: December 1, 2020.

[16] Yves Raimond, Samer A Abdallah, Mark B Sandler, and Frederick Giasson. 2007.
The Music Ontology.. In ISMIR, Vol. 2007. Citeseer, 8th.

[17] Scrapinghub and contributors. 2020. Scrapy, A Fast and Powerful Scraping and
Web Crawling Framework. https://scrapy.org/ Accessed: December 1, 2020.

[18] Stanford University. 2020. Protégé website. https://protege.stanford.edu Accessed:
January 10, 2020.

[19] W3C. 2013. SPARQL Query Language for RDF. https://www.w3.org/TR/rdf-
sparql-query/ Accessed: January 10, 2020.

[20] Wikipedia. 2020. Billboard 200 article based on Joel Whitburn books about the Bill-
board charts. https://en.wikipedia.org/wiki/Billboard_200 Accessed: November
30, 2020.

[21] Wikipedia. 2020. Last.fm on Wikipedia. https://en.wikipedia.org/wiki/Last.fm
Accessed: December 1, 2020.

[22] Wikipedia. 2020. MetroLyrics on Wikipedia. https://en.wikipedia.org/wiki/
MetroLyrics Accessed: December 1, 2020.

https://www.billboard.com/charts/billboard-200
https://www.billboard.com/charts/billboard-200
https://schema.org/
https://redventures.com/legal/cmg-terms-of-use.html
https://redventures.com/legal/cmg-terms-of-use.html
https://www.metrolyrics.com/
https://www.metrolyrics.com/
http://musicontology.com/
http://musicontology.com/
https://openrefine.org
https://openrefine.org
https://github.com/protegeproject/cellfie-plugin
https://github.com/protegeproject/cellfie-plugin
https://www.elastic.co/beats/
https://www.elastic.co
https://lucene.apache.org/solr/
https://lucene.apache.org/solr/
https://components.one/datasets/billboard-200
https://components.one/pages/about
https://components.one/pages/about
https://www.last.fm/legal/terms#para6
https://www.last.fm/legal/terms#para6
https://www.last.fm/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://scrapy.org/
https://protege.stanford.edu
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://en.wikipedia.org/wiki/Billboard_200
https://en.wikipedia.org/wiki/Last.fm
https://en.wikipedia.org/wiki/MetroLyrics
https://en.wikipedia.org/wiki/MetroLyrics

Billboard 200 DAPI, 2020 - 2021, FEUP, Porto, PT

A DATA CHARACTERIZATION

Figure 5: Albums per year in the Billboard 200.

Figure 6: Songs per year in the Billboard 200.

DAPI, 2020 - 2021, FEUP, Porto, PT DAPI 2020/21

Figure 7: Artists per year in the Billboard 200.

tracks_3

Page 1

19
63

19
64

19
65

19
66

19
67

19
68

19
70

19
71

19
72

19
73

19
74

19
75

19
76

19
77

19
78

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

0

50

100

150

200

250

300

350

Average Lyrics Length per Year

Number of words

Figure 8: Average lyrics length per year in the Billboard 200.

Billboard 200 DAPI, 2020 - 2021, FEUP, Porto, PT

B INFORMATION RETRIEVAL RESULTS
TOPIC#1
QUERY: kendrick lamar maad city

Result 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
No Filters R R R R R R N R R N N N R N N N N N N N
w/ Filters R R R R R R R R R R R R R R R R R R N N

Table 3: Top 20 results relevancy for TOPIC#1.

0,000

0,250

0,500

0,750

1,000

5 10 15 20

No Filters W/ Filters

Precision @ 20

Figure 9: Precision @ 20 for TOPIC#1.

DAPI, 2020 - 2021, FEUP, Porto, PT DAPI 2020/21

Recall

0,000

0,250

0,500

0,750

1,000

0,0 0,2 0,4 0,6 0,8

No Filters W/Filters

Precision-Recall (interpoled)

Figure 10: Precision vs Recall (interpolated) for TOPIC#1.

Billboard 200 DAPI, 2020 - 2021, FEUP, Porto, PT

TOPIC#2
QUERY: pink

Result 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
No Filters N
w/ Filters R R R R R R R R R N N N N N N N N N N R

Table 4: Top 20 results relevancy for TOPIC#2.

0,000

0,250

0,500

0,750

1,000

5 10 15 20

No Filters W/ Filters

Precision @ 20

Figure 11: Precision @ 20 for TOPIC#2.

DAPI, 2020 - 2021, FEUP, Porto, PT DAPI 2020/21

Recall

0,000

0,250

0,500

0,750

1,000

0,0 0,2 0,4 0,6 0,8

No Filters W/ Filters

Precision-Recall (interpoled)

Figure 12: Precision vs Recall (interpolated) for TOPIC#2.

Billboard 200 DAPI, 2020 - 2021, FEUP, Porto, PT

TOPIC#3
QUERY: (born_date:198? OR years_active:198?) AND biography:“Grammies”

Result 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
No Filters R - - - - - - - - - - - - - - - - - - -
w/ Filters R R R R R R R R R R R R N R R R R R R R

Table 5: Top 20 results relevancy for TOPIC#3.

0,000

0,250

0,500

0,750

1,000

5 10 15 20

No Filters W/ Filters

Precision @ 20

Figure 13: Precision @ 20 for TOPIC#3.

DAPI, 2020 - 2021, FEUP, Porto, PT DAPI 2020/21

Recall

0,000

0,250

0,500

0,750

1,000

0,0 0,2 0,4 0,6 0,8

No Filters W/ Filters

Precision-Recall (interpoled)

Figure 14: Precision vs Recall (interpolated) for TOPIC#3.

Billboard 200 DAPI, 2020 - 2021, FEUP, Porto, PT

C POPULATING THE ONTOLOGY - DATA SAMPLES AND RULES
Class Band

Figure 15: Sample data for the Band class in xlsx format.

Figure 16: Rules to map the data of the Band class.

Class Solo

Figure 17: Sample data for the Solo class in xlsx format.

Figure 18: Rules to map the data of the Solo class.

Class Album

Figure 19: Sample data for the Album class in xlsx format.

DAPI, 2020 - 2021, FEUP, Porto, PT DAPI 2020/21

Figure 20: Rules to map the data of the Album class.

Class Track

Figure 21: Sample data for the Track class in xlsx format.

Figure 22: Rules to map the data of the Track class.

Class Tag

Figure 23: Sample data for the Tag class in xlsx format.

Figure 24: Rules to map the data of the Tag class.

Class Rank

Billboard 200 DAPI, 2020 - 2021, FEUP, Porto, PT

Figure 25: Sample data for the Rank class in xlsx format.

Figure 26: Rules to map the data of the Rank class.

DAPI, 2020 - 2021, FEUP, Porto, PT DAPI 2020/21

D SPARQL QUERIES RESULTS
Query #1: Get Albums and their rank by date

Figure 27: SPARQL Query #1: Results.

Query #2: Get number of times each album has been ranked

Figure 28: SPARQL Query #2: Results.

Query #3: Get Artists and their biography

Figure 29: SPARQL Query #3: Results.

Query #4: Get 15 Artists that have more than 800000 listeners monthly

Billboard 200 DAPI, 2020 - 2021, FEUP, Porto, PT

Figure 30: SPARQL Query #4: Results.

Query #5: Get the track average number of listeners by album

Figure 31: SPARQL Query #5: Results.

Query #6: Get Albums release date

Figure 32: SPARQL Query #6: Results.

Query #7: Get Christmas and Love albums from american artists

Figure 33: SPARQL Query #7: Results.

	Abstract
	1 Introduction
	2 Data Sources
	2.1 Billboard 200 Datasets
	2.2 Last.fm
	2.3 MetroLyrics

	3 Data Preparation
	3.1 Data Cleaning
	3.2 Data Enrichment

	4 Data Model
	5 Information Retrieval Tasks
	5.1 Returned Documents
	5.2 Possible Search Tasks

	6 Data Characterization
	7 Information Retrieval Tools evaluation
	8 Documents and indexable components
	8.1 Schemas, filters and analyzers

	9 Indexing and retrieval processes
	9.1 Information needs and queries
	9.2 Weights
	9.3 Evaluation

	10 Existing ontologies for the domain
	11 The Billboard 200 Ontology
	11.1 Classes and Properties
	11.2 Restrictions
	11.3 Data population strategy

	12 Querying the Billboard 200 Ontology
	12.1 Result analysis

	13 Evaluation of the semantic web tools used
	14 Comparison between Web Semantics and Information Retrieval tools
	15 Possible applications for the Billboard 200 Ontology
	16 Conclusions
	References
	A Data Characterization
	B Information Retrieval Results
	C Populating the Ontology - Data Samples and rules
	D SPARQL Queries Results

