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Abstract—This paper concerns the collection and analysis of
datasets pertaining to the statistics of professional matches in and
news related to Counter-Strike: Global Offensive, a Multiplayer
First-Person Shooter which has been cimenting its presence in
the Esports scene for the past 8 years. HLTV - one of the
most recognizable entities in the CS:GO professional scene and
responsible for an extensive database of match statistics and
news related to the competitions and its actors - players, teams,
coaches, etc. - was used as the source for both datasets. The
website was scraped in order to collected said datasets, followed
by a cleaning and enrichment processes. From here, the data
was analysed in order to understand if the data patterns are
semantically expected. Then, the result of this pipeline was fed
to an information retrieval system, with the aim of answering
domain-specific queries, and the performance of the system was
evaluated under different configurations of the indexing and
ranking processes. The different configurations of the search
engine wielded mean-average precision values between 0.75 and
0.8, considered satisfactory for the task at hands. Solr proved to
be an adequate choice for information retrieval tasks; however,
unclear and conflicting documentation hinders its potential.
Finally, a semantic web approach was studied as an alternative
way to structure and reason about the data. Using Protégé,
a CS:GO ontology was conceived and tested with a series of
SPARQL queries. This approach was then compared to the
previous implementation of an information retrieval system, and
avenues for future work were defined.

Index Terms—data extraction, data refinement, data analysis,
information retrieval, Counter-Strike, Solr, semantic web, Protégé

I. INTRODUCTION

The Counter-Strike series started in 1999 as a Multiplayer
First-Person video-game in which two teams - the “Ter-
rorists” and the “Counter-Terrorists” - compete in a series
of challenges that involve the “Counter-Terrorists” stopping
the “Terrorists” from commiting acts of terror (planting ex-
plosives, holding hostages, assassinations, etc.) [1]. Multiple
sequels appeared throughout the years, the most recent of
which being Counter-Strike: Global Offensive, or CS:GO, as
how it will be refered to from this point forward [2]. As of
October 2020, CS:GO has amassed a considerable player base,
having an average daily peak of around 870,000 players [3],
as well as a very active competitive scene, with prize pools
reaching the millions [4] and viewership numbers equally as
high [5]. This growth has coincided with the rise in popularity
of eSports (of which the broadcast of the CS:GO Major
Championship in American television is proofc̃iteb9), video
game competitions “coordinated by different leagues, ladders
and tournaments, and where players customarily belong to
teams or other ‘sporting’ organizations who are sponsored by
various business organizations. [6]”

Taking into consideration the aforementioned levels of
engagement with the competitive leagues of CS:GO, it is
to be expected that matches are heavily documented by
the community, with varying degrees of attention to detail.
Throughout the years, online platforms such as HLTV [13]
and Liquipedia [23] have stood out as information hubs
that centralize all matters CS:GO-related. Enumerous statis-
tics are collected from the matches, ranging from player
kills (e.g “Natus Vincere vs NiP” [17]) to heatmaps (visual
representations of the location of relevant events that take
place during a match - e.g. “BLAST Premier Fall Series
2020” [18]), and subsequently analysed in a variety of formats
(YouTube [19], platforms that aim to help players improve
their performance [20], etc.). Given the amount of data this
entails, the need for a search system that allows for querying
on multiple criteria is substantial (both HLTV and Liquipedia
offer said services, with HLTV usually providing the user with
more stastistics). The results of these search tasks allow for
the previously mentioned analysis to take place, indicating
a teams’s potential winning trajectory, a listing of the most
commonly strategies used in a given map, how players perform
when playing as “Counter-Terrorists” or as “Terrorists”, among
other various topics.

In addition to match statistics, news regarding the game’s
competitive scene are also frequently produced. While match
performances can provide more factual information on a
team’s current standing, news can highlight other equally
relevant (if more subjective) matters, such as a player’s contro-
versies [21], player exchanges between teams [22], and much
more. As such, they are necessary to obtain the full picture of
CS:GO’s professional leagues.

The goal of this paper is to describe the preparation of a
search system that allows for the user to obtain information on
CS:GO matches and news in an expedited manner. Sections
1 through 3 present the necessary steps to obtain and refine
the relevant data, as well as an overview of the datasets,
in order to understand the domain and how the information
is distributed. In Section 4, the implementation of a search
system built upon the documents collected will be discussed.
The topics under discussion relate to the selection of tools,
to the collections used, to the indexing process and to the
retrieval tasks conducted to test the performance of the system.
Finally, in Section 5, the implementation of an ontology based
upon a subset of the matches dataset will be described. We
will present an analysis of existing ontologies, the process
for ontology creation and population, the exploration of the
ontology through SPARQL queries, the evaluation of the used



tools, a comparison with information retrieval systems, and
possible applications.

II. DATA PIPELINE

In this section, a brief overview on the data sources will
be given, as well as a rundown of the main steps behind
the cleaning and refinement processes of the two collected
datasets.

A. Data Collection

HLTV is an online platform that tracks CS:GO professional
matches and offers a way for collaborators to contribute with
news pertaining to the video game’s competitive scene [13]. It
started in 2002 and has since become a hub for Counter-Strike
related information. The website counts with nearly 200,000
daily unique viewers [8], and has stood out has one of the
most relevant entities in CS:GO journalism. Its importance
in the CS:GO scene is recognized by tournaments, who have
used their team world rankings for seeding purposes [11], and
the game developers themselves, who provide a schedule of
professional games in the CS:GO client, using data provided
by HLTV [12].

As was previously mentioned, HLTV keeps records of a
substantial number of professional CS:GO matches throughout
the years, both in minor and major competitions. It is from this
database that the dataset on this topic stems from. Since no
API is made available by HLTV, the data had to be scraped
from the website. The result of this process was a collection
of matches held between 2015 and 2020 that was posted
on Kaggle (a hub for data scientists and machine learning
enthusiasts [7]), and subsequently downloaded in the context
of this project [24]. No information on the scraping process
was divulged by the author. The dataset was released under a
CC BY-NS-SA 4.0 license.

In regards to CS:GO related news, no pre-existing dataset
was found; as such, HLTV was scraped in order to obtain all
news from 2018 and 2019 using Scrapy, “an open source and
collaborative framework” for scraping and web crawling [15].
No information regarding scraped content was found on the
source (HLTV); however, it is mentioned that copyright to all
content on the website is owned by the platform [25].

B. Data Cleaning and Refinement

Upon a more thorough analysis of the matches dataset,
a number of inconsistencies were detected and handled ac-
cordingly. For this cleaning process, OpenRefine was used, a
tool for data cleaning and wrangling [14]. The tasks revolved
mostly around date formating and removal of columns that
were deemed irrevelant to the project at hands. In regards
to the professional matches, they were additionally filtered to
include only entries from 2018 and 2019. As for the news,
only the date information was formatted to fit the template
adopted when cleaning the matches dataset.

One of the advantages of the match dataset was the inclusion
of ID values which allowed the user of said dataset to connect
information between the several files it provided (the structure

of the data will be detailed in a subsequent section). This
opened up the possibility, for example, for different infor-
mation (from distinct sources) regarding a particular match
to be reconciled. However, the news dataset, as it was in
its original form, did not provide any way to establish a
connection between it and the information on professional
matches and its actors. For this to happen, entities needed
to be extracted from the news content as a way to establish a
bridge between the two domais. From this, a new file which
connected news to players and teams would be produced. This
posed two problems: which entities should be extracted? And,
since there are no limitations as to what a player or team may
be called, how will false positives be handled (i.e. a player
or team whose name is generic enough to be detected in an
abnormal amount of news articles)?

To solve the former, unique player and team names were
collected from the dataset on professional CS:GO matches.
This list was then fed to spaCy (a NLP tool developed in
Python [16]), which proceeded to annotate all ocurrencies
of said entities in each news article. The results were then
exported to a CSV file.

No systematic solution was found to tackle the problem of
false positives. For the data analysis, the entries were reviewed
manually; however, that will not be a possibility in the final
implemented system.

A graphical explanation of the data pipeline can be found
in appendix G.

III. DATA CHARACTERIZATION

Having detailed the extraction and refinement processes, the
data will now be characterized to a greater extent. An overview
of the files that compose the datasets will be provided,
including the formats, content structure and number of entries.
Then, the conceptual model will be analysed, and finally, some
exploratory analysis will be conducted.

The datasets span six CSV files: four pertaining to the match
information, and two related to CS:GO-related news. Given the
extensive nature of some of the files in terms of columns, the
specific file structure will be present in appendix D.

A. Conceptual Model

The conceptual model can be found in appendix H. The
focus of the project relies on the player, match team, match and
match map. The distinction between a team and a match team
stems from the desire to avoid a ternary association between
team, player and match. A player plays in a match within
a specific team; however, throughout a player’s career, they
might switch teams, and it is important to preserve a player’s
contractor at the time of a given match. Match teams aim to
accomplish just that; they are a “snapshot” of the composition
of a team around the time of a given match. A match team
is composed of exactly five players and is associated with
a single team. A match has exactly two match teams and,
consequently, exactly ten players. Said match is played in
between one to five match maps (instances of a map within
the context of a given match), has a veto process (in which



teams choose and exclude which maps will be played) and
belongs to a tournament. Each map can be played a variable
number of rounds, up to a maximum of thirty. Finally, a news
article can mention both players and teams.

B. Data Analysis

In order to understand how the data is spread out, and
if the data patterns fit the expectations of someone who is
familiarized with CS:GO, an analysis of the datasets was
in place. The subsequent paragraphs will cover the matches,
players and news, respectively.

First, a bar graph representing the number of rounds played
in each map during 2018 and 2019 was drawn (Figure 2).
A few observations can be made regarding said graph: some
maps had significant drops in the number of rounds played be-
tween years i.e. Cache and Cobblestone); this can be attributed
to the fact that those maps were removed from the professional
map roster sometime in 2019. On the other hand, some maps
(i.e. Vertigo) started registering rounds only in 2019 for the
opposite reason to the one stated above (this map in particular
was introduced to the professional roster only in 2019). As a
final remark in regards to the maps, some (such as Mirage and
Inferno) are considered “safer” picks since most teams train on
them more frequently; the number of times these maps were
picked substantiates that claim.

In regards to the number of matches played on a monthly
basis during 2018 and 2019 (Figure 5), one can conclude
that periods of relative high activity levels are contrasted with
minor slumps in match numbers (e.g July/August of 2018 vs.
September/October of that same year). This can be explained
by the fact that teams usually have a season break (which is
not set to a particular timeframe nor duration; however they
might coincide) [10].

A brief look at the news article’s character distribution box
plot for 2018 and 2019 (Figure 7) indicates that the length
of said articles varies little between the two years. The graph
was scaled logarithmically since 75% of all news fall under
the 2,500 character mark, while the lengthiest articles have
around 42,000 and 39,000 characters (for 2018 and 2019,
respectively). Outliers are uncommon and usually represent
in-depth analysis and overviews of the annual performance
of players and teams. Take the ten articles with the highest
character count: they are either highlights of top 20 players
that year (e.g “Top 20 players of 2018: dupreeh (5)”) or feature
articles on players (e.g “From Asia to the world: the story of
Bleh”), teams (e.g “A year at the summit: how Astralis wrote
history”), and the other CS:GO-related topics e.g “Developing
in isolation: The story of Australian CS:GO”).

The number of entities and their occurences were also
registered in the histogram of Figure 6. During the counting
and ordering process, the concerned mentioned in the Data
Cleaning and Refinement section was made evident. Figure
6 contains the top 10 entities in news article (during 2018
and 2019). As one can observe, the list is comprised of
terms that can easily be misindentified as players or teams
(e.g “in, “will”, “Will”). Since string normalization should not

be applied to the extracted teams and players nouns (e.g “will”
and “Will” may represent different entities), and players with
generic names are nonetheless valid, a manual exclusion of
entries likely to contain a substantial amount of false positives
had to be conducted. Upon the conclusion of this process, the
revised top 10 entities is summarized in Figure 7.

C. Possible Search Tasks

Platforms such as HLTV and Liquipedia allow for the search
of match statistics, teams, players and maps, as well as news
(in the case of HLTV). The proposed search system will
provide similar services, with the addition of the possibility
for searching for entities within the article text. Table 2
summarizes the aforementioned search tasks.

With these tools at the disposal of the user, some examples
of relevant queries include:

• Which player performed better on Inferno in November
2019?

• What is the synopsys of the Astralis vs Liquid match?
• How many times have Astralis and Liquid played each

other in 2019?
• Is Astralis a CT-sided team?
• Who is the best support player from the USA?
• How many times have Astralis played Vertigo before the

StarLadder 2019
Major?

• Who’s the worst player in Astralis?
• How has Team Liquid fared against better opponents in

2019?
• What team has lowest pick win rate in 2019?
• I want to know more about s1mple.

IV. INFORMATION RETRIEVAL

Information retrieval can be described as the process
through which a user seeks information regarding a particular
need, within a particular collection of documents [26]. Let
us say a user wants to know more about the reasons behind
the recent wave of bans in competitive CS:GO [27]. This
information need, as is (i.e. ”What are the reasons behind
the recent wave of bans in competitive CS:GO?”), does not
particularly lend itself to be used directly in search engines. Its
structure is too complex and contains terms which are of little
discriminative power (i.e. stopwords); it would be beneficial
to translate it to a query composed of keywords that describe
said need. While some meaning is lost in translation, search
engines are optimized to deal with combinations of keywords
better than with fully formed sentences. Having determined the
query for which to search, the user can now use it in the search
system; for the sake of this example, the aforementioned
information need will be represented by the query ”csgo
AND coach AND ban”. The system (we will considered it
ranked) will then present a list of potential documents ordered
by relevance according to a specific ranking function, and
it is now up to the user to determine whether or not the
retrieved documents answer their information need. In this
brief description of the information retrieval process, four



distinct phases can be extracted: indexing, querying, ranking
and evaluating.

During the indexing process, the search system builds the
vocabulary against which the query will be processed, and
determines which fields of a document will be indexed. For
example, given a collection whose documents are news articles
composed of a title and text, a search system may only index
the title.

The interrogation of a search system on behalf of the user
is referred to as querying. Queries are composed of terms that
aim to synthesize an information need, as well as of operators
that can specify the role of a term in a query (e.g. an exclusion
operator that tells the system to find documents which do
not contain a certain term). When presented with a query,
the system will look for documents that match it, commonly
ranking them by how close they match the query, as well as
by other ranking signals (e.g. number of in/out-links in web
search engines). Some search engines, such as Solr, allow the
user to increase the relevance of a result should a particular
term match a certain condition or be in a particular field
(e.g. the user can prioritize documents whose title contains
the terms in the query).

Finally, the performance of a information retrieval system is
mostly concerned with the relevance of the retrieved results, as
well as with the order in which they are retrieved (in a ranked
system). While relevance is paramount to the performance
of a search system, its evaluation is not as clear cut as its
importance. By definition, a relevant document is one which
adequately answers a user’s information need [26]. However,
this information need isn’t always evident; in addition, a
query usually cannot represent the nuances of a fully fledged
information need, and just because a document contains all
terms in a query, does not necessarily mean that said document
is relevant. Two important concepts related to quality are
precision and recall. Precision describes the percentage of
retrieved documents which are relevant, and recall describes
percentage of relevant documents retrieved. Based on these
two concepts, three other evaluation measurements can be
listed: the precision at k (i.e. the precision calculated for k
retrived documents), the average precision (i.e. the average of
precision values calculated whenever a new relevant document
is found) and the mean average precision (i.e. “a single
measure of quality across recall levels” [26]).

This section describes the implementation and evaluation of
a search system built upon a collection of CS:GO professional
match statistics and news articles related to its Esports scene.
The underlying information retrieval tool is Solr (another
popular choice for projects of this kind is Elasticsearch; this
option will be briefly discussed and compared with the chosen
tool). In addition to detailing the indexing process, a number
of information needs will be described and the top results
for each will be presented, along with the chosen evaluation
measurements: precision at k, average precision and mean
average precision. Finally, the results will be analyzed in order
to assess the performance of the system.

A. Tool Selection

Given the ubiquity of searching needs across the spectrum of
modern-day applications, a search system that can provide end
users with approachable, and yet comprehensive, search capa-
bilities over their data collection is a necessity. Database-like
queries (e.g. through SQL) are neither intuitive for the end-user
(who, typically, lacks the expertise in database management),
nor designed for full-text search, an equally omnipresent task
in today’s Internet-fueled world.

Solr [28] was chosen as the search engine for this project.
However, a brief comparison between Solr and Elastic-
search [29] was conducted prior to this decision. Due to time
constraints, the systems were analysed somewhat superficially,
and only in theory (no objective tests were made). Given
the nature of the tasks at hands, a few key features were
highlighted as being the most relevant during the selection
process of a search system: ability to perform full text search,
ease of configuration, ease of installation, intuitiveness of its
interface (if there is one), clarity of the documentation and
compatibility with most standards used in dataset collection
(e.g. JSON, XML and CSV). While features related to topics
such as scalability and security are undoubtedly important in
applications which are intended to be released to the public,
this project is of a smaller scale, and very limited in its user
base. As such, metrics related to features of this sort were
discarded for this comparison.

Solr and Elasticsearch are, currently, two of the most popu-
lar search engines [30]. Both are built on Apache Lucene [31],
a text search engine developed in Java. Solr is consider-
ably older and, consequently, better established; despite this,
Elasticsearch has risen in popularity over the last few years.
While Solr seems to be more focused on advanced information
retrieval, Elasticsearch is more geared towards data analyt-
ics [32]. This was one of the main reasons behind the decision
to adopt Solr.

Thanks to their common origin (Apache Lucene), both
systems are capable of full-text search, with an array of
search options available to the user (e.g. wildcard, fuzzy,
proximity and range). Both Solr and Elasticsearch are heavily
documented; however, given Elasticsearch’s novelty factor, it
is expected that more updated guides are available online. The
two systems offer graphical user interfaces; Solr through its
Admin UI, and Elasticsearch through Kibana. At first glance,
both appear to be similarly intuitive. Initial configurations
for the two systems are simple, and, after installation, it is
possible to have an instance of both Elasticsearch and Solr
up in a few minutes. Finally, Solr is capable of ingesting data
from a variety of data sources, including JSON, XML, CSV,
PDF and DOCX. On the other hand, Elasticsearch does not
have native support for formats other than JSON, something
which is easily circumvented through the use of external data
shippers (namely, Beats [33]).

B. Collections and Documents

As mentioned previously, two datasets, comprised of 5 files
in total, were extracted in the context of this project. The



files contain information on the players’ performances during
a match, the economy of a match (the money earned by the
teams during the rounds), the match results, the maps picked
and banned from a match, and news related to the CS:GO
professional scene.

A few key decisions were taken prior to the implementation
of the search system described in the present section. Firstly,
all information regarding the economy of the match was cut.
While the statistics contained in said file are of value in a data
analytics perspective, the focus of the system is more geared
towards information retrieval, and towards full-text search in
particular. The economy data was exclusively numerical, and
thus of reduced relevance to the task at hands.

Secondly, one of the initial challenges during this stage
was the need to convey hierarchical information. A match
is played in several maps (which were subject to a selection
commonly referred to “picking”), by several players. Since
the information on each particular field of interest (i.e. player,
match or picks) was spread out through multiple files, the
aforementioned structure was lost when importing the files to
Solr. In light of this, all files were programmatically grouped
together, along with their hierarchical relationships. The result
of this process was a single JSON file, comprised of an array
of matches, where each match contained general information
(e.g. team names, date, the match winner) along with an array
of child documents related to the maps selected for the match
and the players’ statistics.

Finally, the news articles had no direct connection to the
matches. That is, even if an article mentioned a particular
match, there was no straightforward way to access said it.
Upon further inspection of the news document structure in
HLTV, it was discovered that articles related to a match contain
a section dedicated to a summary of the results, along with
the match ID. On the other hand, the ID’s of the matches in
the dataset corresponded to the ID’s used by HLTV to identify
them across different sections of their website (i.e. if an article
mentioned a particular match ID, the page dedicated to that
particular match in the HLTV website and, consequently, the
match information in the dataset, had that same ID). Based
on these insights, the news were re-scraped to collect the
match ID’s (if they were present) and automatically assigned
to matches if one was mentioned (i.e. an ”article” field was
added to the match if a corresponding news article was found).
News articles which did not directly mention a match were
kept as independent documents. In addition, the time frame
of the collected articles was extended to a period of 5 years,
between March 2015 and March 2020.

Taking this into consideration, the collection now has only
4 different types of documents: news articles, matches, player
statistics and match picks. Player statistics and match picks
are considered children of a match document; however, they
stand as independent documents as well, and can be searched
regardless of the match they belong to.

C. Indexing Process

Following the preparatory steps listed in the previous sub-
section, the data was subsequently imported to Solr. Solr
allows for the creation of a “schemaless” collection, in which
the user simply imports the data, and the system automatically
defines the schema and indexes the data accordingly. This
automatically defined schema proved to be inaccurate; for
example, a significant amount of fields were handled as if they
contained multiple values, when in reality they did not. As
such, the initial schema was manually refined to correct these
inaccuracies. In addition, some fields were removed from the
indexing process, but nonetheless stored. The removed fields
were numerical values for which the user is unlikely to either
search for or sort by in an information retrieval context (e.g.
a player’s number of kills).

A number of default field types were used, namely: ’pint’
and ’pfloat’ (for the numeric fields such as the rating), ’pdate’
for dates, and ’text general’ for text fields. The full list of
fields, as well as information on whether they were indexed
or not, can be found in Table I. Some fields have two types
associated with them; however, only one of the two was active
at any given time. An explanation of the custom field types
mentioned in the table will follow.

TABLE I
INDEXED FIELDS

Document Fields

Match

team 1 (text general;csgo name general),
team 2 (text general;csgo name general),
date (pdate),
article (text general;csgo text general)

Player player name (text general;csgo text general),
rating (pfloat)

Picks N/A

News
title (text general;csgo text general),
text (text general;csgo text general),
date (pdate)

The issue of hierarchical relationships was then tackled. In
order to ensure that Solr could handle nested documents (i.e.
documents that were children of others, such as a player who
played in a match), two modifications have to be performed: a
“root” field must be added, and, if present, the “ nest path ”
field must be removed (since an unlabelled approach was used,
in which all child documents are children of a field named
“ childDocuments ”). While the official documentation does
not offer much information on this topic, some unofficial
resources regarding this were found (namely, in Stack Over-
flow [34]).

The last step of the schema definition pertains to the addition
of filters, during the creation of the index and the analysis of
the queries. These filters help refine the indexing and querying
process by performing common text analysis tasks, such as
stemming and stopword filtering. Solr’s default field type for
what the system infers to be a text field during automatic
indexation (in the ”schemaless” mode) is referred to as the
‘text general‘ filter, which removes stop words and upper



case characters. This was used as a starting point to the
implementation of a more complex filter, that better suited
the needs of the project and the data which it entails. The
improved filter, referred to as ‘csgo text general‘ , performs
the Porter stemmer algorithm for the English language [36],
the removal of singular possessives, and synonym expansion
(in the query analyser), along with the two other operations
mentioned above. The synonym expansion step proved to be
particularly useful, since a considerable number of players and
teams (as well as other entities related to the game) have
different names associated with them. For example, Natus
Vincere, a team from the CIS region, is commonly referred
to as “Na‘Vi”.

It should be noted that the synonym expansion could
have been done at index time, as opposed to at query time.
However, index-time synonym expansion forces the collection
to be re-indexed at every change in the synonym file, and
phrase queries which contain multi-word synonyms can fail.
This is caused by overlapping index terms and synonyms, a
phenomenon commonly referred to as “sausagization” [35].
The introduction of the ‘SynonymGraphFilter‘ has allowed
for query-time synonym expansion, which was the approach
adopted for this project.

In addition to the ‘csgo text general‘ filter, the
‘csgo name general‘ applies synonym expansion (again,
only in the query analyser) and upper case removal to fields
which are simply singular units of semantic interest (e.g.
team and player names). This information is summarized in
Table II.

TABLE II
CUSTOM FIELD TYPES

Field type Index filters Query filters

csgo text general

Stop,
LowerCase,
EnglishPossessive,
PorterStem

Stop,
LowerCase,
EnglishPossessive,
PorterStem,
SynonymGraph

csgo name general LowerCase LowerCase,
SynonymGraph

D. Retrieval Process

In order to test the performance of the search system, as
well as the impact of filters and boosts, five information needs
were drawn, each queried on three distinct systems: system 1,
where the default index was used; system 2, using an improved
index; and system 3, using the improved index of system 2
along with boosts specified at query time. Each information
need is accompanied by a brief description of its aim and any
relevant characteristics of the query, along with the description
of the search parameters and top ten results for the query
(including precision at ten and average precision values). The
query parser used will be eDisMax.

1) Matches played between Astralis and Natus Vincere
(Na’Vi) during BLAST Tournaments: With this information
need, we wish to know more about matches from the BLAST

tournaments in which Astralis played against Natus Vincere.
The use of the boolean operator ”AND” mandates the co-
existence of the three terms in the search results. The search
will be performed on the article, team 1 and team 2 fields of
match documents. One of the distinctive features of this query
is the presence of a term subject to synonym expansion; for
System 1, which does not employ any filter of the sort, the
term ”navi” was replaced by ”natus vincere” (otherwise, no
results would have been registered). For System 3, a bigger
boost was applied to the team 1 and team 2 fields, as the
presence of the keywords in said fields guarantees that the
matches were between the two teams, whereas if they occur
in the article, there is a possibility that the teams just happen
to be mentioned, even if they did not participate. This rationale
applies to all queries which apply this sort of boosting from
here on out. The results obtained for this information need can
be found in Table III.

TABLE III
Q1 PARAMETERS AND RESULTS

Systems 1 and 2 q=astralis AND ”natus vincere” AND blast

System 3 q=astralis AND ”natus vincere” AND blast,
qf=article team 1ˆ5 team 2ˆ5

1 2 3 4 5 6 7 8 9 10 P@10 AP

System 1 R R R R N R N R N N 0.6 0.931

System 2 R R R R N R N R N N 0.6 0.931

System 3 R R R R R R N N N N 0.6 1

2) Grand finals played by Astralis: With this information
need, we want to find matches belonging to the grand finals of
tournaments in which Astralis took part. The terms ”season”
and ”edition” were added given the fact that a considerable
number of articles tend to mention them when announcing the
winner of a tournament. ”Grand” was added to differentiate
from other finals that might be reported (e.g. semi-finals).
The search will be performed on the article, team 1 and
team 2 fields of match documents. The results obtained for
this information need can be found in Table IV.

TABLE IV
Q2 PARAMETERS AND RESULTS

Systems 1 and 2 q=+astralis final grand (”win edition”˜10) champions crown title,

System 3 q=+astralis final grand (”win edition”˜10)ˆ10 champions crown title,
qf=articleˆ5 team 1ˆ10 team 2ˆ10

1 2 3 4 5 6 7 8 9 10 P@10 AP

System 1 R N R R N R N R N R 0.6 0.718

System 2 R N R R N R N R N R 0.6 0.718

System 3 R R R R N N R N R R 0.7 0.869



3) Transfers into/out of Cloud9 during 2018: With this
information need, we want to find out more on Cloud9’s
player movements in 2018. Player transactions are common
in CS:GO’s professional scene; one can think of these trans-
actions as similar to ones occurring in more traditional sports
such as soccer. We’re looking for transactions in both direc-
tions (into and out of the team), and as such, the query reflects
this through the inclusion of both ”exit” and the remaining
terms. The term ”Cloud9” must be included in the fields over
which the search is being conducted, namely the text and title
of independent news articles (i.e. news articles which are not
associated with any match). For System 3, it is more valuable
for terms to appear in the title of an article, and the boosts
encompass this. The results obtained for this information need
can be found in Table V.

TABLE V
Q3 PARAMETERS AND RESULTS

Systems 1 and 2 q=+cloud9 transfer sign add join confirm exit,
fq=date:[2018-01-01T00:00:00Z TO 2018-12-31T00:00:00Z]

System 3
q=+cloud9 transfer sign add join confirm exit,
qf=titleˆ10 textˆ5,
fq=date:[2018-01-01T00:00:00Z TO 2018-12-31T00:00:00Z]

1 2 3 4 5 6 7 8 9 10 P@10 AP

System 1 R R R N N N R R N R 0.6 0.799

System 2 R R R N N N R R R N 0.6 0.811

System 3 R R R R R R R R R N 0.9 1

4) Matches where FURIA were aggressive: FURIA is a
brazilian team that rose to the top of professional Counter-
Strike in 2018. They have a trademark style of play, defined
as “relentless aggression”: their strategies rely on engaging
in gun-fights with their opponents in unexpected situations,
and they have managed to make this unpredictable style work
quite well. Therefore, we want to explore how this notion
translates to the news coverage, by finding matches where such
aggressiveness was highlighted. To do so, we query for articles
were both FURIA and variations of the word ”aggression” are
found. The results obtained for this information need can be
found in Table VI.

TABLE VI
Q4 PARAMETERS AND RESULTS

Systems 1 and 2 q=(furia AND (aggressive OR aggression OR aggressiveness))

System 3 q=(furia AND (aggressive OR aggression OR aggressiveness)),
qf=team 1ˆ10 team 2ˆ10 article

1 2 3 4 5 6 7 8 9 10 P@10 AP

System 1 R R N R R R N R R R 0.8 0.809

System 2 N R R R N R R R R N 0.7 0.613

System 3 N R R R R N R R R N 0.7 0.633

5) Matches won by Natus Vincere (Na’Vi) in 2019: Natus
Vincere is at this time the 3rd best team in the world, and
holds in their ranks one of the all time Counter-Strike greats:
Aleksandr “s1mple” Kostyliev. We want to retrieve matches
won by Na‘Vi in the year 2019. Similarly to previous queries,
we explore Solr’s synonyms filter, and in the third system
employ a boost function in order to make recent matches more
relavant. The results obtained for this information need can be
found in Table VII.

TABLE VII
Q5 PARAMETERS AND RESULTS

Systems 1 and 2 q=natus vincere AND (win OR victory),
qf=article team 1ˆ10 team 2ˆ10,

System 3
q=natus vincere AND (win OR victory),
qf=article team 1ˆ10 team 2ˆ10,
bf=recip(ms(NOW,date),3.16e-11,1,1)

1 2 3 4 5 6 7 8 9 10 P@10 AP

System 1 N R R R N N N R N R 0.5 0.489

System 2 N R R R R N R N N R 0.6 0.588

System 3 R N N R N R N N R N 0.4 0.488

E. Tool Evaluation
While five information needs are not enough to extensively

evaluate the performance of a search engine, the results
provided by the retrieval process described above shed a light
onto how different configurations of the same search engine
might affect the outcome of a search task. Furthermore, they
highlight the importance of an appropriate query, as this was
often the most determining factor in a successful search.

The mean average precision (MAP) for the three systems
is similar, ranging from 0.75 to 0.80. The precision values
between systems for a particular information need are usually
smaller and fluctuate more, registering values between 0.4
and 0.9. The first three information needs are in line with
what was expected: the average precision increased with
each improvement made to the system, culminating in the
performance of System 3. On the other hand, the results of
the final two search tasks were somewhat unexpected: for the
fourth search task (matches where FURIA’s aggressiveness
was highlighted), the perfomance of Systems 2 and 3 was
lower than the performance of System 1; for the fifth task,
only System 3 performed worse than System 1. These results
can be seen in Table VIII.

TABLE VIII
MEAN AVERAGE PRECISION

System 1 System 2 System 3
0.749 0.732 0.798

In regards to the fourth search task, one possible reason
considered initially for the dip in performance was improper



stemming. Given that, with Systems 2 and 3, custom field
types which applied stemming algorithms were used, the query
was reduced to include only one term related to aggressiveness
(as opposed to the multiple terms used in the first system to
increase the chances of finding related documents). However,
tests (in which all related words were searched for individually
to understand the impact stemming might have) later revealed
that the stemming filter was working correctly. As such, the
cause behind the surprising poor performance of the improved
systems remains unknown. As for the fifth and final task,
the boost attributed to recent matches may have left relevant
documents out of the top ten results given their age.

Finally, Solr proved to be a versatile search server, with
a multitude of customizable settings and search options that
allow the user to perform complex queries. However, the
integration of nested documents was overly complicated, with
unclear documentation being one of the main contributors to
this.

While not related to the perfomance of Solr, it should be
noted that this collection of documents proved difficult to work
with from an information retrieval context, as only one source
of unstructured text was available. Additionally, it seems that
the potential of the documents is seized much more clearly
when adopting a data analysis perspective, and less so in the
context of the project at hands.

V. SEMANTIC WEB

Having analysed the data at our disposal through the lens
of an information retrieval system, we will now explore an
alternative way to structure and reason about it: adopting
a semantic web approach. This exploration is particularly
relevant for the domain in question because, as will be later
discussed, not much work has been done in the way of
exploring it using this approach.

According to Berners-Lee et al. [37], the goal of semantic
web is to turn the Web into a more machine-friendly place,
which can allow computers to perform complex tasks without
the need for much human intervention. It is seen as an
extension of the Web, and not a replacement; something to
give it more structure and to help convey semantic meaning
to a computer agent as efficiently as it does to a human one.
It requires “structured collections of information and sets of
inference rules” used to “conduct automated reasoning”. Its
challenge is then to accomodate for data and rules on how to
work and interpret with said data, rules which may already
exist in a knowledge-representation system.

The collections of information it relies upon are called
ontologies; in the computer science field, an ontology is “a
document or file that formally defines the relations among
terms.” Ontologies most commonly seen on the Web are
composed of a taxonomy (i.e. classes of objects and rela-
tions among them) and a set of inference rules. Some of
the advantages of ontologies applied to the web include the
improvement of web searches (by removing ambiguities) and
the added ability to tackle complex questions whose answer
require the exploration of multiple web pages.

Returning to our domain, in the subsequent sections we
will describe the process through which our ontology was
created. Firstly, we will discuss some existing ontologies
which bear some resemblance to the topic at hands, but which
ultimately cannot define it as we would wish them to (leading
us to construct most of our classes and relations). Then, our
ontology will be described in depth, going over the classes,
data and object properties, as well as restrictions. In order to
explore our dataset in a more realistic setting, a few SPARQL
queries were used to exemplify possible data needs a potential
user of an ontology of this sort could have. Finally, we will
conclude this section with a brief evaluation of the tools used
throughout the process, accompanied by a discussion of the
implemented ontology, its shortcomings, and possible future
directions.

A. Existing Ontologies

While we couldn’t find any ontology directly related to
Counter Strike, we can still establish a connection to more
traditional sports in regards to entities such as players, teams
and competitions. Having this in mind, BBC’s sport ontology
seems like an appropriate match [38].

It is “a simple lightweight ontology for publishing data
about competitive sports events”. It originated in 2010, when
BCC realized that conventional content management systems
impose limitations on the flexibility of the web pages they
construct. This limits the richness of the experience they
can offer visitors to their site. As such, they collaborated
with Epimorphics to develop this ontology [39]. Since its
introduction, this ontology was used by BBC during the
coverage of the 2012 Summer Olympics and the 2014 Football
World Cup.

This ontology is primarily used to cover competitions,
providing terms and properties to convey information such as
events, players, teams, awards, etc. These broader concepts
fit the Counter-Strike domain well, and they appear to be
a solid base upon which to build a more specific ontology
geared towards the specificities of the game. We also explored
the video game ontology [42]; however, its focus lies on the
implementation of video game mechanics (such as leader-
board, achievement, item), and not so much in the competitive
panorama of online games such as CS:GO.

While the BBC’s ontology does provide some fundamental
concepts, we have opted to design our ontology from scratch.
On the one hand, this approach somewhat contradicts the
principle of reusibility inherent to the semantic web; we
acknowledge this fact and conclude that the integration of
other ontologies could be an avenue for future work. However,
we also propose that this kind of ground-up tactic allows us
to become more familiarised with the process of ontology
creation.

B. Domain Revision

The domain of CS:GO was extensively described in pre-
vious sections; nonetheless, we believe it necessary to briefly
describe the changes and simplifications made for the creation



of our ontology. In our previous exploration of information
retrieval task, there was a heavy focus on news pertaining to
CS:GO professional competitions. This was necessary given
the lack of unstructured text information in our statistical
dataset, which would result in lackluster experiments in the
evaluation of the information retrieval tool used. Since the
focus of this section does not rely on this type of text-
heavy information, we have opted to focus more on the main
concepts of the competitive scene.

Some simplifications were made, much in line with what
we did in the previous section; the information on map per-
formance was removed and only match performance was kept.
In addition, the economy information was not included either,
as adapting the files to a more comprehensible format that
could allow us to construct a concise yet complete taxonomy
of this sub-topic would be cumbersome and would not bring
anything new.

As main concepts, we have maps and match maps (instances
of maps played in a particular match), players and matchplay-
ers (following the same reasoning, matchPlayers are instances
of players who played in a given match for a given team),
teams, picks and events. Events, in particular, is a section of
the dataset to which we had not paid much attention thus far.

Despite the simplifcations made, we believe the domain
retains enough information to adequately represent the subject
at hands. It keeps its mains characteristics while being man-
ageable, and it has enough information to allow for the study
of the inner workings of building, populating and exploring
an ontology, as well the understanding of its usefulness.

C. Ontology Creation

Fig. 1. Ontology classes

The implemented classes can be seen in Figure 1. They
aim to convey all essential information previously described
in the conceptual models, while allowing for some flexibility in
terms of what can be simplified and what should remain as is.
All classes are commented, and most concepts have already
been detailed in previous sections. As such, we will refrain
from explicitly describing them here. The “events” class
was planned to use the BBC Sport Ontology’s competition
concepts as sub-classes. However, our dataset does not allow
for such distinction, and we have opted to consider all events
mentioned as independent. One possible improvement to this
would be to use NLP tools that would extract the competition,
as well as the edition/year of occurrence, which could then

be used to define a more explicit web of concepts regarding
this topic (e.g. an event could be an overarching competition
such as IEM Katowice which would then be described by data
properties such as the year, as opposed to considering these
elements as a single property).

Fig. 2. Ontology object properties

In regards to the object properties (defined in Figure 2),
similarly to the implemented classes, some have already been
explained and/or are accompanied by comments. Nonetheless,
one topic should be explained more thoroughly: the properties
pertaining to the “picking” process, i.e. those with the prefixes
“teamXRemoved” and “teamXPicked”. Before a match starts,
both teams exclude and pick the maps which will or will not
be played. The order in which the selection/exclusion is made,
along with the team to which it belongs, are relevant from
an analytical perspective. For instance, one of the SPARQL
queries we implemented intends to find which maps a team
bans first the most (which, in essence, means the team is not
comfortable playing on such maps). In addition, the number
of picks has an upper bound (i.e. at most, 6 maps are removed
and 2 are picked). For these reasons, we have opted to
explicitly describe each step in the process through the use
of the aforementioned properties. One alternative approach
would be to include “picked” and “removed” classes, which
would then be described by properties such as the team
to which it belongs, its order in the selection process and
the map which was selected/excluded. This approach would
require an extensive overhaul of the dataset, which we deemed



unnecessary.
All object properties were declared as functional, and the

inverse of most was defined (Table IX presents these property
pairs), with the exception of the classes pertaining to the
picking process. We believe that since those classes are closely
tied to our dataset in particular and not necessarily generic, we
have opted to simplify the process and exclude said properties.

TABLE IX
PROPERTY/INVERSE PAIRS

Property Inverse
event eventMatches
map mapMatches
team1 team1Matches
team2 team2Matches
playerRef playerMatches
team teamPlayers
players playerOnd
matchPicks picksOf
rounds mapOf

Finally, the data properties present in Figure 3 include some
of the concepts more closely tied to the mechanics of the
game (as with the classes and object properties, they are
accompanied by relevant comments which aim to succinctly
clarify them). All except but one data property (name) were
declared as functional.

Fig. 3. Ontology data properties

In terms of restrictions, few were added. The number of
“matchMaps” played in a match should never exceed 5.
Regarding the number of match players, we considered adding
an upper bound of 10 (5 for each team), but eventually realized
that it would not make sense since it has become a recent trend
for teams to use a roster of more than 5 players [40].

D. Ontology Population
Protegé’s installation bundle includes the Cellfie plugin - a

tool for importing spreadsheet data into OWL ontologies [41].
This proved to be an ideal solution for two reasons: there
would be no need to find third-party plugins, and our dataset
is composed of CSV files (meaning it would take very little
additional effort to parse the data into an acceptable format). In
fact, all we had to do was import the files into an Excel work-
book, where each file becomes a worksheet. Then, through
a process of trial-and-error, we remove the least relevant
columns, and select a small number of rows for each sheet.
This is due to the fact that Protegé does not deal well with large
files, often throwing “out of memory” errors. Thus, we ended
up with a workbook containing data for a set of matches that
took place in January 2020. Next, to import this workbook into
Protegé, we need to define a set of transformation rules: these
rules identify how to create individuals and their properties
from each row of the worksheets. These transformation rules
can be found in the source code accompanying this article.

E. Ontology Exploration
In order to test our implementation, several SPARQL

queries were constructed. It should be noted that, given the
poor performance of Protegé when dealing with imports of
large amounts of data, we will only consider some games from
January 2020. This will hinder the potential of some of the
queries, as their relevance is greater when the timeframe in
question is considerably longer. For example, querying about
the competitions played by a certain team would benefit from
data spanning a number of years.

1) How many different competitions were played by
Heroic?: CS:GO can have a difficult schedule for teams, with
many tournament organizers competing for the public interest.
In some situations, teams even find themselves playing in the
group stage of a tournament in the day after playing the final
for another. Thus, it would be interesting to know in how many
tournaments Heroic played in the span of a month. The results
for this query can be seen in Table XIII.
SELECT distinct ?eventname
WHERE
{
?team :name "Heroic".
?match :event ?event.
?event :name ?eventname
{
?match :team1 ?team

}
UNION
{
?match :team2 ?team

}
}

2) Which team picks the most maps they lose on?: In
Counter-Strike, it is important to have a wide map pool,
meaning that the team can have a strong performance in many
situations. It is also important to be confident in the map the
team picks, since it theoretically should be one of their best.
So, what teams should reconsider their pick? The results for
this query can be seen in Table XIV.



SELECT ?team (count(?matchmap) as ?maps)
WHERE
{
?pick :match ?match.
?pick rdf:type :Picks.
?matchmap :match ?match.
?matchmap :map ?map.
{

?match :team1 ?team.
?pick :team1Picked1 ?map.
?matchmap :team1rounds ?rounds.

}
UNION
{

?match :team2 ?team.
?pick :team2Picked1 ?map.
?matchmap :team2rounds ?rounds.

}
FILTER(?rounds < 16)

}
GROUP BY ?team
ORDER BY DESC (?maps)
LIMIT 10

3) Which team had the most wins?: Winning is what every
player or team strives for. One could assume that the teams
that win most games are the best, however, some contextual-
ization is necessary: if a team only plays against lower tiered
teams, then it’s only natural that they win frequently. It’s an
interesting query, nonetheless, and the results can be seen in
Table XV.
SELECT ?team (count(?match) as ?wins)
WHERE
{
?match :date ?date.
{

?match :team1 ?team.
?match :winner 1

}
UNION
{

?match :team2 ?team.
?match :winner 2

}
FILTER (?date > "2020-01-01T00:00:00Z"ˆˆxsd:

dateTime && ?date < "2021-01-01T00:00:00Z"ˆˆxsd
:dateTime)

}
GROUP BY ?team
ORDER BY DESC (?wins)
LIMIT 10

4) Against which team did Heroic lose the most?: Some-
times, even the strongest teams have touch opponents who
they can’t figure out how to beat. The results for this query
can be seen in Table XVI.
SELECT ?opponent (count(?match) as ?losses)
WHERE
{
?team :name "Heroic".
?match :date ?date.
{

?match :team1 ?team.
?match :team2 ?opponent.
?match :winner 2

}
UNION
{

?match :team2 ?team.
?match :team1 ?opponent.

?match :winner 1
}
FILTER (?date > "2020-01-01T00:00:00Z"ˆˆxsd:

dateTime && ?date < "2021-01-01T00:00:00Z"ˆˆxsd
:dateTime)

}
GROUP BY ?opponent
ORDER BY DESC (?losses)
LIMIT 10

5) What map does Heroic ban first the most?: As explained
before, teams should have a wide map pool, however it is very
difficult to be proficient in every map, thus teams decide to
take advantage of the veto process and remove their worst
map straight away. The results for this query can be seen in
Table XVII.

SELECT ?firstban (count(?match) as ?matches)
WHERE
{
?pick :match ?match.
?pick rdf:type :Picks.
?team :name "Heroic".
{
?match :team1 ?team.
?pick :team1Removed1 ?firstban.

}
UNION
{

?match :team2 ?team.
?pick :team2Removed1 ?firstban.

}
}
GROUP BY ?firstban
ORDER BY DESC (?matches)

6) Who is cadiaN’s most difficult opponent?: Sometimes,
players performances decrease significantly when playing
against certain opponents, and such performance is reflected
in the player’s rating: when it is lower than 1, it means that
it is below average. The results for this query can be seen in
Table XVIII.

SELECT ?opponent (count(?match) as ?matches)
WHERE
{
?player :name "cadiaN".
?matchplayer :playerRef ?player.
?matchplayer :team ?team.
?matchplayer :match ?match.
?matchplayer :rating ?rating.
{
?match :team1 ?team.
?match :team2 ?opponent.

}
UNION
{
?match :team2 ?team.
?match :team1 ?opponent.

}
FILTER (?rating < 1.0).

}
GROUP BY ?opponent
ORDER BY DESC (?matches)
LIMIT 10

7) How many times has Heroic won less than 10 rounds in
a match map? : Usually a game is considered close if both
teams achieved more than 10 rounds. The results for this query
can be seen in Table XIX.



SELECT ?map ?opponent ?roundswon ?date
WHERE
{
?team :name "Heroic".
?matchmap :match ?match.
?matchmap :map ?map.
?match :date ?date
{

?match :team1 ?team.
?match :team2 ?opponent.
?matchmap :team1rounds ?roundswon.

}
UNION
{

?match :team2 ?team.
?match :team1 ?opponent.
?matchmap :team2rounds ?roundswon.

}
FILTER(?roundswon < 10)

}

F. Tool Evaluation

Protegé provides a simple interface for the definition of
classes, object properties and data properties. The integrated
environment with the possibility of populating the ontology
and perform SPARQL queries without installing external plu-
gins is also very appreciated. Additionally, while not used at
first, the reasoner provided handy explanations for inconsisten-
cies in the ontology. Later in the development of this project, it
also provided us with inferences, specifically regarding inverse
object properties.

The biggest issue we found with the tool is related to an
increased CPU and memory usage, which limited the number
of individuals we could create in the population process.
This ties into the analysis of the query results. As previously
mentioned, we could only work with a subset of the data
from a very limited period of January 2020. In the world of
Counter-Strike, it is very difficult to draw conclusions from
such a small period, as usually we deal with ranges from 3 to
6 months, or a full year. For instance, the query “How many
times has Heroic won less than 10 rounds in a match map?”
was created because the team Astralis, one of the best in the
world in recent years, is notorious for being a very difficult
team to beat. Therefore, we wanted to study what teams were
able to beat them convincingly. However, Astralis didn’t play a
single match in the considered timeframe, so we had to change
teams.

G. Information Retrieval vs Semantic Web

The biggest differences between Information Retrieval and
Semantic Web tools is the type of data being used, and the
relevance of the results returned from queries. In IR, we mostly
deal with unstructured, textual data and we can’t guarantee that
every document returned for a query is relevant towards the
information need. In Semantic Web, we work with structured
data and the results returned from SPARQL queries are always
relevant (unless there is some mistake in the query).

In the context of Counter-Strike, querying over structured
data is a better way of obtaining results when we are dealing
with concrete terms. Let’s look at the first information need

in section IV-D “Matches played between Astralis and Natus
Vincere during BLAST tournaments”: obtaining the results to
this information need would be much easier and accurate using
semantic web tools, since we only need to relate the team
names and tournament name. Looking at the third query in
section V-E “Which team had the most wins”, we can conclude
that the results with IR tools would be worse, since we already
saw previously that it is hard to determine from textual search
which team won a match.

However, IR tools still provide value when we are dealing
with more abstract information. For example, the informa-
tion need “Matches were FURIA’s aggressiveness was high-
lighted”, which could also be conveyed as “Matches where
FURIA were aggressive” would be difficult to retrieve with
semantic web tools, since this isn’t something we can clearly
reason over with the available statistics.

H. Applications

The CS:GO ontology could be an opportunity for HLTV
(the source of the data) to augment their data, so other
platforms can understand and use it, thus increasing the shared
knowledge in the field. One of the main applications would be
using the ontology to provide news coverage for large events,
similar to how BBC used the Sport Ontology introduced above
to cover the 2010 Football World Cup.

One other possible approach would be to adapt this ontology
to encompass, in a broader sense, games played in the Esports
scene. While some of the mechanics coded in the data and
object properties are quite specific to CS:GO, its overarching
concepts can easily be related to other games (such as League
of Legends and Valorant, two extremely popular titles in the
competitive contexts).

VI. CONCLUSIONS

This paper addressed the collection and characterization of
data related to CS:GO Professional Matches and implemen-
tation of a search system that can provide the user with a
compreensive view of said data in an information retrieval
context. Two datasets were analysed, one for the match statis-
tics and another for the CS:GO-related news. The datasets
were cleaned, refined, and subsequently characterized, both
conceptually and statistically. A search system was then built
upon the document collection and evaluated under different
configurations. Finally, an ontology was built and populated
with a subset of our data and used to perform some relevant
queries.
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APPENDIX A
GLOSSARY

• Eco round - in such round, the team chooses to save
money by not buying weapons / grenades. Usually this
is done with the purpose of having better weapons in the
next round;

• Force buy - round where the team chooses to spend all
of their money despite not having enough money for the
theoretically better weapons;

• Full buy - the team has enough money to buy the best
weapons and grenades;

• Veto - CS:GO has 7 active maps. Most professional
games have a best of 1, 3, or 5 format, and therefore
there needs to be picks and bans, where teams choose
which maps they wish, or not, to play;

• T/CT - CS:GO has two teams playing against each other
on opposite sides. CTs are meant to defend the A and B
bomb sites, while Ts want to plant and explode a C4 on
one of said bomb sites. After 15 rounds, they will swap.
First to 16 rounds wins;



APPENDIX B
TABLES

TABLE X
DATASET FILES

Collection Format Function

Economy CSV Money earned by each team
in all rounds of a given map

News CSV News collected from HLTV.org
News Entities CSV Entities extracted from the scraped news

Picks CSV Maps chosen and excluded by
the teams in a given match

Players CSV Statistics for a given player in a given match
Results CSV Statistics for both teams in a given round

TABLE XI
SEARCH TASKS

Search for Restrict on Order by

Player

Kills
Assists
Deaths
HS
Flash Assists
KAST
KD
ADR
FKDIFF
Rating

Map
Team Against
Date Interval
Side (T/CT)
Team
Nationality

Teams

Wins
Games Played
Round Win %
Force Buy %
Upset Potential
Pick Win Rate

Map
Team Against
Date Interval
Side (T/CT)

Matches Date

Map
Teams
Date Interval
Event

News Date Date Interval

APPENDIX C
GRAPHICS

Fig. 4. Matches played in 2018-2019

Fig. 5. Maps played in 2018 and 2019

Fig. 6. Number of players per country in 2018-2019

Fig. 7. Number of characters in news in 2018-2019



Fig. 8. News distribution in 2018-2019

Fig. 9. Top 10 Entities in 2018 and 2019

Fig. 10. Top 10 (Relevant) Entities in 2018 and 2019

APPENDIX D
DATASET FILE STRUCTURE

APPENDIX E
DESCRIPTION OF COUNTER-STRIKE: GLOBAL OFFENSIVE

MECHANICS

CS:GO is the most popular shooting game in the market,
mainly because of its simple yet hooking mechanics. The
player starts the game as part of a team of 5, and is either

TABLE XII
FILE STRUCTURE

File Name Columns

Economy

date
match id
event id
team 1
team 2
best of
map
t1 start
t2 start

Players

date
player name
team
opponent
country
player id
match id
event id
event name
best of

Picks

date
team 1
team 2
inverted teams
match id
event id
best of
system
t1 removed 1
t1 removed 2

Results

date
team 2
team 2
map
result 1
result 2
map winner
starting ct
ct 1
t 2

a Terrorist or Counter-Terrorist. In each round, the terrorists
must try to plant and explode a bomb in one of two bombsites
or kill the other team, while the counter-terrorists have to stop
their adversaries, by killing them or defusing the bomb. This
goes on for 15 rounds in the first half, then the teams switch
sides: first to 16 rounds win.

In order to kill opponents, players need to buy weapons at
the beginning of the round. They must choose carefully what
to buy since their money is limited, and as expected the better
weapons are more expensive. Apart from this, players can also
purchase equipment such as armour, defuse kits and grenades
(smoke, flashbang, high explosive or incendiary), in order to
gain situational advantages.

The economy is one of the main problems in CS:GO. If
a team doesn’t know how to manage it, they’ll most likely
lose the match. In the first round of the game, each player
starts with a pistol and 800 dollars. This is enough money
to buy light armour, grenades or an upgraded pistol. When a
team wins a round, they’ll receive around 3000 dollars. When
they lose, they still receive a bonus, that increases with each



consecutive round that is lost. However, when a losing streak
is broken, the bonus for losing future rounds decreases as
well. Therefore, depending on the situation, teams may have
to make tough decisions. If they’re winning a lot of rounds
their economy should be great (unless they can’t survive the
rounds with more than 2 players alive, in that case they have to
keep rebuying equipment). When they lose a round, they have
to see how much money they have, and decide whether they
should buy or not. Additionally, they may also need to make
mid-round decisions: if a player is, for example, in a 1 versus
4 situation, he’ll most likely decide to save his equipment into
the next round, while the opposing team may try to hunt him
so that he can’t keep anything.

Finally, each game of Counter-Strike takes place in a map:
a contained world, that normally contains two locations on
opposite sides where the teams spawn in each round, and two
bombsites where the terrorists try to plant a bomb. Once again,
the concept is simple, yet most of the maps have their own
identity, something that separates them from others, be it their
layout, geographical/historical context, sound queues or even
colors.

APPENDIX F
SPARQL QUERIES RESULTS

TABLE XIII
Q1 RESULTS

Name
DreamHack Open Anaheim 2020 Europe Closed Qualifier
DreamHack Open Leipzig 2020
DreamHack Open Leipzig 2020 Europe Closed Qualifier
IEM Katowice 2020 Europe Closed Qualifier

TABLE XIV
Q2 RESULTS

Team Maps
SKADE 7
Heroic 6
ARCY 4
RiotSquad 4
Chaos 3
Brute 3
MADLions 3
NewEnglandWhalers 3
August 3

TABLE XV
Q3 RESULTS

Team Wins
MADLions 10
ex-Genuine 9
Heroic 8
SKADE 7
CopenhagenFlames 7
HAVU 6
INTZ 6
GambitYoungsters 6
GamerLegion 6
BIG 6

TABLE XVI
Q4 RESULTS

Opponent Losses
MADLions 2
forZe 1
AGO 1
BIG 1

TABLE XVII
Q5 RESULTS

Firstban Matches
Vertigo 3
Mirage 2
Train 2
Inferno 2
Overpass 1
Nuke 1
Dust2 1

TABLE XVIII
Q6 RESULTS

Opponent Matches
BIG 1
forZe 1
AGO 1

TABLE XIX
Q7 RESULTS

Map Opponent Roundswon Date
Nuke forZe 4 19/01/2020
Inferno forZe 9 19/01/2020
Vertigo GODSENT 5 19/01/2020
Train AGO 3 9/01/2020
Vertigo AGO 5 9/01/2020
Train MADLions 7 9/01/2020
Overpass BIG 9 26/01/2020



APPENDIX G
DATA PIPELINE

Fig. 11. Data pipeline

APPENDIX H
CONCEPTUAL MODEL



Fig. 12. Conceptual model


