
Search Mechanism focused on Diseases, Symptoms
and Treatments

André Esteves, Francisco Filipe, Helena Montenegro, Juliana Marques
Information Description, Storage and Retrieval DAPI

Master in Informatics and Computing Engineering MIEIC
Faculty of Engineering, University of Porto FEUP

Porto, Portugal
{up201606673, up201604601, up201604184, up201605568}@fe.up.pt

Abstract—Nowadays, there are several search engines publicly
available for people to use in a global scale, containing informa-
tion about almost anything we can think about. However, when
it comes to health matters, these search engines might not be
the best choice. Very frequently there will be documents from
unreliable sources containing misleading information that might
needlessly worry the average user. To tackle this problem, we
have implemented and tested information retrieval systems and
an ontology based on semantic web, which we built based on
a dataset centered on diseases, symptoms and treatments. The
preparation of the dataset involved the selection of data sources,
data retrieval, cleaning and enrichment and data characteriza-
tion. Afterwards, we developed and compared three information
retrieval systems: a simple system, a system with improvements
to the indexing process and a system with improvements to both
the indexing and querying processes, which led us to conclude
that the quality of the respective results is limited by the capacity
of the query to express an information need and that both the
indexing and querying processes need to be carefully developed
in order to achieve a system of quality. Finally, we developed an
ontology to represent the knowledge gathered in the dataset.

Index Terms—Information Retrieval, Diseases, Treatments,
Symptoms

I. INTRODUCTION

Search engines such as Google are used by billions of
people on a daily basis to retrieve information about various
subjects, including health matters. When a person is worried
about a symptom and searches for it on the web, many doc-
uments are retrieved, including some from unreliable sources,
such as Yahoo answers where someone asks a question and
any person can answer, for example. The average person
does not have the knowledge to discern between reliable
and unreliable sources of information, easily believing any
information that comes up even when the sources are not
specified, just because the content seems legitimate. When it
comes to health, unreliable and exaggerated information can
lead to anxiety and panic in patients.

There are search engines that specialize in obtaining health
information, such as MedWorm [1], however, these engines
focus on retrieving biomedical texts and articles published in
the health scientific community, which are useful for health
specialists, but not for the average user, due to difficulties in
understanding the content of the documents and unfamiliarity
with the technical terms used in these. A normal user needs

a simple and straightforward mechanism that, rather than
focusing on advances in the medical community or overly
specific documents, shows information about diseases and
respective symptoms and treatments.

As there is currently no search mechanism that allows
a person to easily obtain reliable information about health
matters, the goal of this project is to develop one, focusing
on diseases, treatments and symptoms.

This article serves to describe the first steps in this project,
which regards the preparation of the data set and the develop-
ment of an information retrieval system. Section II describes
the pipeline implemented for the process of preparing and
characterizing the data. Section III is focused on the system
results and retrieval tasks. Section IV describes the process of
development and comparison between the information retrieval
systems that we created. Section V describes the development
of an ontology, in the context of semantic web, culminating
in a comparison between relational databases, information
retrieval and semantic web. Finally, we have Section VI which
summarizes the main findings in this work.

II. DATA PREPARATION

For the process of preparing the data, we developed a
pipeline Fig. 1 divided in 5 processes: data collection, storage,
cleaning, enrichment and characterization.

A. Data Collection

The data set was obtained from two sources: Wikidata [2]
and Wikipedia [3].

1) Wikidata: Wikidata is a large database with structured
data, containing information of various subjects, including
diseases. This data can be copied, modified, and distributed,
even for commercial purposes, without needing permission,
under the license “Creative Commons Public Domain Dedi-
cation 1.0” [4]. However, information from Wikidata can be
modified by anyone, without needing to be verifiable against
authoritative sources and is, therefore, unreliable. Furthermore,
after analyzing the obtained data we arrived at the conclusion
that it is severely lacking, with many diseases that do not have
information about symptoms or even health specialties.



Fig. 1. Data pipeline diagram.

2) Wikipedia: Wikipedia is an encyclopedia that contains
unstructured textual data which is free to be shared and
adapted for any purpose, including commercial purposes, as
long as appropriate credit is given, under the license “Cre-
ative Commons Attribution-ShareAlike 3.0 Unported” [5], [6].
Although anyone can edit Wikipedia pages, Wikipedia has
a policy that states that any alterations or additions must
be verifiable against an authoritative source, which makes it
reliable as a data source [7].

Data from Wikidata was obtained in JSON format through
its API. To retrieve diseases, we fetched objects that were
instances of the class ”disease” on Wikidata. While doing this
we realized that there were several duplicated diseases, for
example, Alzheimer’s disease had more than 10 entries on
Wikidata, each of them numbered and that were instances of
”Alzheimer’s disease”. We noticed that only the original dis-
eases, which are not instances of other diseases, had Wikipedia
pages, which led us to only fetch diseases that were associated
to Wikipedia pages. Along with information about the diseases
and respective characteristics, we also obtained the URL for
the respective Wikipedia page, which allowed us to obtain
overviews of diseases, symptoms, treatments and of the other
classes, through crawling and scraping, using the tool Scrapy
[8].

The use of Wikidata, which possesses unreliable and incom-
plete data, is a limitation that risks the reliability of the search
mechanism being developed.

B. Retrieved Data

With the previous data sources, we retrieved data about dis-
eases and many other concepts associated to the disease, such
as their medical specialties, symptoms, possible treatments,
causes and drugs used in their treatment. The conceptual
model (Fig. 2) represents the entities of interest and the
relations between them.

The Disease class is the core of our data set and is related
to all the other classes of the domain. This class stores all the
relevant information about a disease and it’s attributes are:

• code - a unique attribute that identifies a disease.
• name - the disease’s name.
• description - a small text that describes the disease.

Fig. 2. Conceptual Model.

• overview - a detailed text about the disease extracted
from Wikipedia.

Furthermore, our domain has 5 more classes, all related to
the Disease class.

• Cause - Class that represents all the causes that can lead
to disease.

• Speciality - Class that represents all the specialities
associated with a disease. All the diseases have at least
one speciality.

• Treatment- Class that represents all the treatments that
can be used to treat a disease.

• Symptom - Class that represents all the symptoms a
disease can have.

• Drug- Class that represents all the drugs that can be used
to cure a disease.

All these classes have 3 attributes, which are:
• code - a unique attribute that identifies the instance.
• name - the instance’s name.
• overview - a detailed text about the instance extracted

from Wikipedia.

C. Data Storage

We stored the data collected in a local SQL database, using
Microsoft’s Azure SQL Database [9].



D. Data Cleaning
The data extracted from Wikidata contained a lot of diseases

without any connections to other classes, such as symptoms,
treatments, and so on. We made the decision to remove
all diseases that contain less than two connections to other
classes. After that, we removed all symptoms, treatments,
health specialties, causes and drugs that were not connected
to any remaining disease. This was achieved by performing
DELETE statements on the database in Azure Data Studio
[10]. We also capitalized the first letter of the name of diseases,
symptoms, treatments, causes, health specialties and drugs,
using UPDATE statements on the database. By making the
code of the diseases retrieved from Wikidata unique, we
ensured that there were no duplicate values in the database.

The scraped data obtained from Wikipedia was in HTML
format. The data was parsed using the tool BeautifulSoup
[11] to extract the text. We then proceeded to remove special
characters and references, using Python.

E. Data Enrichment
The data from Wikidata was enriched with data from

Wikipedia. During the data collection process, we made sure
that all the diseases collected in Wikidata had a Wikipedia
page. The data was easily joined, using the code of diseases
and of the other classes, with UPDATE statements on the SQL
database.

F. Data Characterization

Fig. 3. Bar graph with data set distribution.

The data set distribution (Fig. 3) shows that the largest
classes present are Drugs (approximately 40%) and Diseases
(approximately 30%). The smallest class is the one that
concerns Specialities (approximately 0,02%).

Fig. 4. Bar graph with average number of classes associated to disease.

The average number of classes associated with a Disease
graph Fig. 4 shows that there are less causes and treatments
associated to diseases than the remaining classes. There is
more information about drugs on diseases, since a disease has,
on average, around 3.7 drugs.

Fig. 5. Bar graph with number of diseases per specialty.

When it comes to the number of diseases organized by
specialty (Fig. 5), it’s possible to see that the specialty as-
sociated with the most diseases is infectious diseases (243
diseases), and the specialty with the least number of diseases
is psychology (26 diseases).

Fig. 6. Histogram with overview text size.

When it comes to the size of the overview texts (Fig. 6)
of the documents, most of the overviews have about 600-
1,200 characters (0,56 %). About 10% of the overviews have
more than 1,400 characters and only 0,3% have less than 200
characters.

III. INFORMATION NEEDS

A. System Results

There are 1,648 documents in the system, distributed in
three classes: Disease, Treatment and Symptom, as shown in
Fig. 7.



1) Disease: The document Disease contains a small
overview of two paragraphs about the disease and a list of
symptoms, treatments, causes, drugs and health specialties
associated with the disease, if these exist. The user will be
able to search for the disease by keywords associated with it,
present in the overview, and by symptoms, treatments, causes
and health specialties.

2) Treatment: The document Treatment contains an
overview of the treatment and a list of diseases that can be
cured by the treatment. A user will be able to search for the
treatment by the name of a disease or by a keyword present
in the name or overview of the treatment. Not all treatments
in the system will be a document, only the ones that contain
overviews.

3) Symptom: The document Symptom contains an
overview of the symptom and a list of diseases that can
have the symptom. This document, similarly to the treatments,
should appear when a user searches by a disease or a keyword
present in the name or overview of the symptom. Not all
symptoms in the system will be a document, only the ones
that contain overviews.

Fig. 7. Pie chart with document distribution

B. Retrieval Tasks

The expected return value of the retrieval tasks are doc-
uments which represent diseases, treatments and symptoms
as these are the focus of the project. These documents will
be retrieved based on the title’s content and in the respective
overview’s content.

Some possible search tasks include:
• Retrieve diseases that fall under a specific medical spe-

cialty.
• Retrieve diseases that contain a certain symptom.
• Retrieve symptoms associated with a certain disease.
• Retrieve treatments associated with a disease.
Examples of queries in this system may include:
• Which medical specialty should I visit when I feel eye

irritation?
• What disease may I have if I have cough?
• Which treatments are used for cancer?
• What medication should I take for headaches?

IV. INFORMATION RETRIEVAL

We developed three information retrieval (IR) systems using
Apache Solr [12]. System A is a simple version, System B
contains improvements to the indexing process and System C
contains improvements to the querying process. Using Apache

Solr, we have defined 3 cores, one for each system, where
each core contains the three types of documents mentioned in
the previous section. As the first step of the indexing process,
relative to data acquisition, we indexed these documents as
JSON files, which were obtained by extracting them from the
SQL database that we had previously defined.

To evaluate and compare the three systems we developed
two information needs, following the TREC [13] structure:

• Title: Drugs used for symptoms
Description: What drugs are used to cure cough?
Narrative: Relevant documents describe diseases that
contain the symptom, in this case, cough, and that men-
tion drugs used. Documents about the symptom are only
relevant if there is a mention of types of drugs that are
used to tackle the symptom.
Queries: [drugs treat cough] and [drugs cough]

• Title: Symptoms associated with a medical specialty
Description: What medical specialty should I visit when
I have cough?
Narrative: Relevant documents describe diseases that
contain the symptom, in this case, cough, each of these
documents has a medical specialty associated.
Queries: [medical specialties related cough] and [medical
specialties cough]

We developed a schema (Fig. 15), that contains the follow-
ing fields, common to all three systems:

• Fields that belong to the document Disease:
– disease description: small textual description of the

disease.
– disease name: the disease’s name.
– disease overview: large textual description of the

disease.
– drug: list of drugs that are used to treat the patient.
– cause: list of causes that can cause the disease.
– specialty: list of medical specialties associated with

the disease.
– symptom: list of symptoms associated with the

disease.
– treatment: list of treatments used to treat the patient.

• Fields that belong to the document Symptom:
– symptom name: the symptom’s name.
– symptom overview: large textual description of the

symptom.
– symptom disease: list of diseases that are associated

to the symptom.
• Fields that belong to the document Treatment:

– treatment name: the treatment’s name.
– treatment overview: large textual description of the

treatment.
– treatment disease: list of diseases that are treated

by the treatment.
None of the fields were marked as required to enable the

indexing of the three different documents in the same core.
One example of results obtained from in these information



retrieval systems, where the three types of documents indexed
were retrieved, can be found in Fig. 14.

A. System A

In system A, no changes were made to the indexing or
querying processes. All of the fields in the documents used
Solr’s field type text general, which, during the indexing
process, obtains the indexes by separating the tokens using
white spaces and punctuation as delimiters and turning each
token into lowercase. Stop words were ignored. By analyzing
the first 20 results for each query mentioned in the information
needs, we obtained the results presented in Table I. The mean
average precision values calculated for each information need
are:

• MAP(Drugs used for symptoms) = 0.40
• MAP(Symptom associated with medical specialty) = 0.42
The mean average precision for the overall system, taking

into consideration both information needs is:
• MAP(System A) = 0.41

TABLE I
RESULTS FOR SYSTEM A

Query Documents
Retrieved

Relevant Docs
Retrieved

Average
Precision

[drugs treat cough] 146 5 0.26
[drugs cough] 118 10 0.54
[medical specialties
related cough] 365 7 0.23

[medical specialties
cough] 279 15 0.61

Looking at these results, we can conclude that the query
[drugs cough] is better at retrieving relevant documents than
the query [drugs treat cough], since it retrieved more relevant
documents and it has a higher value of average precision.
The presence of the word “treat” in the first query resulted in
the retrieval of more documents about treatments, which were
completely unrelated to the topic, worsening the results of
this query. For the second information need, the query [med-
ical specialties cough] obtained better results than [medical
specialties related cough], with a higher average precision and
higher number of relevant documents that were retrieved.

We can conclude from these results that the query used to
express the information need influences the results. The results
provided by the information retrieval system are limited by the
capacity of the query of expressing the information need. To
create better queries, we should remove tokens that do not
provide useful information about the information needs, like
”related” or ”treat”.

The graph on Fig. 8 presents the interpolated precision-
recall curve obtained from the results of each query in this
system. For the recall, we considered the number of relevant
documents on the whole collection to be the maximum number
of relevant documents that were retrieved for each information
need on all systems. In this graph we can see that, in
the query [drugs cough], corresponding to the red line, the

relevant documents were ranked higher, since precision is
1 for lower levels of recall. The query [medical specialties
cough], represented by the green line, was able to retrieve a
higher percentage of relevant documents, since its precision
only drops to 0 on very high recall values, around 90%.

Fig. 8. Interpolated Precision-Recall Graph for System A’s results.

B. System B: Indexing Process

In system B, we developed improvements to the indexing
process with the implementation of a customized field type
(Fig. 16) which was applied to the previous schema in all of
the fields that were previously defined as text general. With
the new field type, the indexes are obtained through a process
of tokenization, which separates tokens using white spaces and
punctuation as delimiters, followed by the operations:

• Ignore stop words, which are words with no discrim-
inating power, that appear in every document of the
collection;

• Turn tokens into lowercase;
• Remove possessive (‘s);
• Stemming using the Porter Stemming Algorithm.
By analyzing the first 20 results for each query mentioned

in the information needs, we obtained the results presented
in Table II. The mean average precision values calculated for
each of the information needs are:

• MAP(Drugs used for symptoms) = 0.56
• MAP(Symptom associated with medical specialty) = 0.31
• MAP(System B) = 0.435
The mean average precision for the overall system, taking

into consideration both information needs is:
• MAP(System B) = 0.435

TABLE II
RESULTS FOR SYSTEM B

Query Documents
Retrieved

Relevant Docs
Retrieved

Average
Precision

[drugs treat cough] 253 7 0.44
[drugs cough] 163 8 0.67
[medical specialties
related cough] 473 6 0.20

[medical specialties
cough] 392 13 0.43



Regarding the first information need, compared with the
previous system, this system was capable of obtaining more
relevant results with a higher ranking, as can be seen by the
higher average precision values for both queries, as well as
the mean average precision value. In the second information
need, however, the results worsened, with lower mean average
precision value. This may be explained by the fact that the
word ”medical”, after passing through the stemming step,
becomes ”medic”, which is not necessarily associated with
medical specialties. We observed that this word alone retrieves
329 documents in this system. These results support the idea
that the quality of the information system is limited by the
quality of the query.

In both information needs, as expected, the system retrieved
a higher number of documents.

The graph on Fig. 9, clearly shows that the queries for the
first information need, represented as the red and blue lines,
resulted in a higher ranking of relevant documents, starting
with precision at 1 for recall values of 0, which means that
the first result obtained on both these queries was relevant.
The queries for the second information need, which are the
green and yellow lines, had relevant documents more evenly
distributed in the results list.

Fig. 9. Interpolated Precision-Recall Graph for System B’s results.

Overall, although this system obtained a slightly higher
mean average precision value (0.435) than the previous system
(0.41), the difference is not very significant. As such, it’s not
possible to assert with certainty which system is better.

C. System C: Querying Process

In system C, we developed improvements to the querying
process by adding weights to boost some of the fields. These
improvements were added on top of the system B, which
means that, in comparison to system A, system C has im-
provements to both the indexing and the querying processes.

To achieve this purpose of improving the querying process,
we used the eDismax query parser [14]. We applied two
different sets of weights to the fields, to compare and see
which set provides better results. The weights are expressed
in Table III. The remaining fields that do not appear on this
table were given weight values of 1.

TABLE III
WEIGHTS APPLIED TO FIELDS FOR QUERY ”DRUGS USED FOR SYMPTOMS”

Field Weight 1 Weight 2
disease name 5 5
symptom name 3 3
treatment name 3 1
treatment disease 2 1
symptom disease 2 1
specialty 2 1
symptom 4 3
treatment 4 1

In the first set of weights, we gave more importance to
the diseases’ name and equal importance to both symptoms’
and treatments’ names. In the second set, we gave more
importance to symptoms than to treatments, expecting to
achieve better results since both the information needs we
developed are related to symptoms. We obtained the results
present in Table IV. Note that the number of documents
retrieved is not present in this table since it is the same as the
number of documents retrieved for these queries on System
B. System C changes the weights of the fields, which only
changes the ranking of the retrieved documents.

TABLE IV
RESULTS FOR SYSTEM C

Query Set of
weights

Relevant Docs
Retrieved

Average
Precision

[drugs treat cough] 1 12 0.56
[drugs cough] 1 12 0.54
[drugs treat cough] 2 14 0.67
[drugs cough] 2 17 0.63
[medical specialties
related cough] 1 11 0.41

[medical specialties
cough] 1 13 0.54

[medical specialties
related cough] 2 12 0.59

[medical specialties
cough] 2 16 0.63

The mean average precision values obtained for each of the
set of weights is:

• MAP(Set of weights 1) = 0.51
• MAP(Set of weights 2) = 0.63
As we can see, the second set of weights, which gave more

importance to symptoms rather than treatments, obtained better
results, with a higher number of relevant documents retrieved
and a higher mean average precision. As such, we will use this
set of weights to compare this system with the other systems.
In both information needs, system C was able to obtain more
relevant documents when compared to the previous systems,
and achieved higher average precision values.

The graph on Fig. 10 shows the interpolated precision-
recall values obtained for the queries, using the second set of
weights. For the queries [drugs cough], in red, and [medical



specialties cough], in green, the curve is a straight line, where
precision never drops to 0, which means that in this system,
these queries were able to obtain the maximum of relevant
documents of all the systems. Even in the other queries,
we can see that the precision only drops to 0 on very high
values of recall, surpassing 75%. These results lead to the
conclusion that system C has a higher capacity to retrieve
relevant documents than the other systems.

Fig. 10. Interpolated Precision-Recall Graph for System C’s results.

D. Comparison between systems

To compare between the systems, we calculated the average
of the precision-recall curves for each information need and
system, to evaluate the capacity of each system to obtain
relevant documents.

Fig. 11, represents the interpolated precision-recall curves
for each system in regards to the first information need. In
this graph, we can see that System A provided the worse
results, with lower values of precision for each level of recall.
System B, which has an improved indexing process, shows
an improvement in results when compared with the previous
system, which can be seen by the larger area under the curve
for this system. System B possesses an higher capacity to rank
relevant documents higher than System A. System C, which
contains an improved querying process on top of the improved
indexing process seen on System B, has the highest capacity
to retrieve more relevant documents, since its curve only drops
to zero once the recall is higher than 0.8. Therefore, System
C provided the best results out of all the systems.

Fig. 11. Average Interpolated Precision-Recall Graph for information need
1.

Fig. 12 represents the interpolated precision-recall curves
for each system in regards to the second information need. In
this graph, we can see that System A provided better results
than System B, since it possesses higher values of precision
for all levels of recall. System C provided the best results,
with even higher precision values.

Fig. 12. Average Interpolated Precision-Recall Graph for information need
2.

We can conclude from both these graphs that the system
which had improvements to both the indexing and querying
processes, system C, obtained the best results. As such, to
develop an information retrieval system with quality, there is
a need to develop the indexing process, in order to retrieve
as many documents that may be relevant as possible, as well
as the querying process, in order to obtain the most relevant
documents of the ones retrieved higher in the ranking.

V. SEMANTIC WEB

Semantic Web aims to create a shared space of data, with
meaningful information, that can be navigated and understood
by both humans and machines, as opposed to relational
databases, which focus more on the structure of the data rather
than its meaning. It relies on the concept of Linked Data,
which relies on the use of Uniform Resource Identifiers (URI)
to identify and link resources, allowing to find new information
when we look up a resource.

In this context, ontologies can be used to represent knowl-
edge. In this section we will review existing ontologies in the
health domain as well as present the ontology that we have
developed.

A. Review of Existing Ontologies

Since this work’s theme revolves around medical terms,
our research for ontologies of interest was based in an open
repository for biomedical ontologies called Bioportal [15]. We
found a few ontologies that are related to diseases, such as
the Human Disease Ontology [16], or symptoms, such as the
Symptom Ontology [17]. Out of all the ontologies we found,
the one that is the most complete is the MedlinePlus Health
Topics ontology [18].

MedlinePlus is a service provided by the National Library
of Medicine, which belongs to the National Institutes of Health



(NIH), in the United States of America, developed with the
goal of providing reliable information for public access. This
service provides an ontology called Health Topics, which
contains information about symptoms, treatments, diseases and
any other topic related to health.

This ontology is kept up to date, having been updated very
recently, on December 7th, 2020. It’s also very inclusive,
containing all information that is relevant regarding health,
from diseases to symptoms and causes, to all the various types
of treatments, including drug treatment, therapy, and surgeries.
Overall, the ontology is very well organized, with the diseases
grouped according to the body parts they affect, which makes
it easy to search for information.

The MedlinePlus ontology is currently being used in the
project “SIFR: Semantic Indexing of French Biomedical Data
Resources” [19], which investigates the scientific and technical
challenges in building ontology-based services to facilitate
indexing, mining, and retrieval of French biomedical data.

B. Our Ontology

We have built our ontology using Protégé [20]. In this
ontology we have declared the following classes:

• Disease
• Treatment
• Symptom
• Specialty
• Drug
• Cause
To describe all the possible relationships between objects,

we created this set of Object Properties:
• hasSymptoms

– Domain: Disease
– Range: Symptom

• hasTreatment
– Domain: Disease
– Range: Treatment

• hasDrug
– Domain: Disease
– Range: Drug

• hasCause
– Domain: Disease
– Range: Cause

• hasSpecialty
– Domain: Disease
– Range: Specialty

To describe attributes that belong to individuals, we created
this set of Data Properties:

• Description
– Domain: Disease
– Range: xsd:string

• Overview
– Domain: All the declared classes (Cause, Disease,

Drug, Specialty, Symptom and Treatment)

– Range: xsd:string
We have also applied existential restrictions to the class

Disease, which state that an individual of this class has at
least one symptom and one medical specialty, through the
keyword “some”, as defined in Figure 13. We have also
included these restrictions expressed in RDF/XML syntax in
Figure 17. We define these existential restrictions as equivalent
classes, to declare that not only all diseases have symptoms,
but also anything that has symptoms is a disease, which could
potentially infer that an individual that is a cause and that
has symptoms is also a disease. To exemplify, COVID-19 is
a cause of pneumonia and can be introduced into the system
as part of the class Cause associated to symptoms such as
cough. In this case, the system could infer that, since it has
symptoms, COVID-19 is a disease. Note that this example is
not present in our dataset.

Fig. 13. Restrictions applied to Disease class.

A visual overview of the ontology can be seen in Fig-
ure 18. This visual overview was obtained with the VOWL
plugin [21].

C. Populating the Ontology

To populate the ontology, we have used Cellfie [22], a plugin
for Protégé, to create OWL ontologies from spreadsheets. To
do so, we exported the dataset from the SQL database as
excel files, so that we could import the different objects as
individuals to the ontology. Additionally, we have altered the
excel file about diseases to capture all relationships between
classes in the data, so that we could import them as object
property axioms in the ontology.

The process of importing the data using the Cellfie plugin
was very slow, leading the program to crash after some time,
since there was a high amount of over 20,000 axioms being
created. As such, we decided to shorten the amount of data we
would import into our ontology. In this process, we chose a set
of symptoms (“cough”, “diarrhea” and “fever”) and imported
only the diseases that contained a connection to at least one
of these symptoms. We have also removed all the data from
treatments, causes, drugs and health specialties that were not
associated to the imported diseases.

After populating the ontology, we have used the reasoner
HermiT [23] to determine whether the ontology is consistent
and to infer further information about the ontology. We have
found that the ontology was already consistent, as no errors
were presented by the reasoner, and the reasoner did not
present any inferences.

D. Queries

In order to evaluate the usability of the ontology, we devel-
oped a set of queries, based on the retrieval tasks previously



defined for this domain, using SPARQL [24] as the query
language. We started by defining the prefixes present in 6,
that we would need to execute queries on the ontology. We
decided to name the prefix to the developed ontology as “dis”.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-
syntax-ns#>\\

PREFIX owl: <http://www.w3.org/2002/07/owl#>\\
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-

schema#>\\
PREFIX xsd: <http://www.w3.org/2001/XMLSchema

#>\\
PREFIX dis: <http://www.semanticweb.org/

helenamontenegro/ontologies/2020/11/
disease-ontology#>

Listing 1. Query Prefixes

In the following sections we will describe in detail each of
the queries developed.

1) Query 1: Retrieve diseases by symptom: One of the most
basic user needs that the ontology can fulfill is to retrieve
the diseases that a patient might have if he feels a certain
symptom. To exemplify this query, we have decided to use
“Cough” as a symptom and we ordered the results by the
number of symptoms that a disease has, in order to assign a
degree of severity to the disease, assuming that the quantity
of symptoms is correlated to the severity of the disease.

SELECT (STR(?dis_name) as ?disease_name) (STR(
COUNT(?symptoms)) AS ?number_symptoms)

WHERE {
?disease dis:hasSymptoms ?symptom .
?disease rdfs:label ?dis_name .
?symptom rdfs:label "Cough"ˆˆxsd:string

.
?disease dis:hasSymptoms ?symptoms

}
GROUP BY ?dis_name
ORDER BY ?number_symptoms

Listing 2. Query 1 - Retrieve diseases by symptom

This query achieved results present on Table V.
2) Query 2: Retrieve drugs used to treat a symptom: This

information need has been used in this paper, in the context
of evaluating the information retrieval systems developed in
Section IV. The goal is that, given a symptom, retrieve all the
drugs that can be used to cure diseases that are associated to
the symptom. To exemplify this information need, we used
“Headache” as the symptom. In order to not overload the user
with information, we have only retrieved the first 6 results.

SELECT (STR(?drugs_name) AS ?drug)
WHERE {

?disease dis:hasSymptoms ?symptom .
?disease dis:hasDrugs ?drugs .
?symptom rdfs:label "Headache"ˆˆxsd:

string .
?drugs rdfs:label ?drugs_name

}
LIMIT 6

Listing 3. Query 2 - Retrieve drugs used to treat a symptom

TABLE V
RESULTS FOR QUERY 1

Disease Number of Symptoms
Asthma 1
Croup 1
Dirofilariasis 2
Hantavirus pulmonary syndrome 2
Pneumocystis pneumonia 2
Lung cancer 3
Tuberculosis 3
Measles 3
Legionnaires disease 3
Mercury poisoning 4
Pertussis 4
Plague 4
Ornithosis 5
Ehrlichiosis 5
Lassa fever 5
Behçets disease 5

This query resulted in the a list of drugs, as can be seen
in Table VI. In these results we can see one advantage when
compared to the results obtained in the information retrieval
systems: we can retrieve meaningful information, instead of
retrieving full documents where we still need to read the
whole document to find the pieces of information that we’re
interested in.

TABLE VI
RESULTS FOR QUERY 2

Drug
Chloramphenicol

Doxycycline

Tetracycline

D-penicillamine

Troleandomycin

Levofloxacin

3) Query 3: Fetch symptoms associated with a disease:
This query presents the symptoms derived from a disease. In
this example the disease used was “Lassa fever”.

SELECT (STR(?symptom_name) AS ?symptoms)
WHERE {

?disease dis:hasSymptoms ?symptom .
?disease rdfs:label "Lassa fever"ˆˆxsd:

string .
?symptom rdfs:label ?symptom_name .

}

Listing 4. Query 3 - Fetch symptoms associated with a disease

Table VII presents the symptoms associated with the disease
“Lassa fever”. In our ontology this disease has 6 symptoms.



TABLE VII
RESULTS FOR QUERY 3

Symptom
Fever

Vomiting

Nausea

Cough

Diarrhea

Fever

4) Query 4: Fetch diseases under a specific medical spe-
cialty: The goal of this query is to retrieve all diseases that are
associated with a specific medical speciality. Along with each
disease, it also presents the number of treatments that it has.
In this example, we used “Infectious disease” as the medical
speciality. To limit the number of information, only 8 results
were retrieved.

SELECT (STR(?dis_name) AS ?diseases) (STR(
COUNT(?treatment)) AS ?number_treatments)

WHERE {
?disease dis:hasSpecialty ?specialty .
?disease rdfs:label ?dis_name .
?specialty rdfs:label "Infectious

disease"ˆˆxsd:string .
OPTIONAL {?disease dis:hasTreatment ?

treatment}
}
GROUP BY ?dis_name
ORDER BY DESC (?number_treatments)
LIMIT 8

Listing 5. Query 4 - Fetch diseases under a specific medical specialty

Table VIII presents the results of this query, which consist in
a column of diseases, displaying the name of the disease, and
a column with the number of treatments present in descending
order.

TABLE VIII
RESULTS FOR QUERY 4

Disease Number of Treatments
Amebiasis 3
Dirofilariasis 2
Diphtheria 2
HIV/AIDS 1
Rubella 1
Measles 1
Japanese
encephalitis 1

Measles 1
Dracunculiasis 0

5) Query 5: Fetch treatments by disease with symptom ‘X’:
The aim of this query is to retrieve only the treatments of
diseases that contain a certain symptom. As an example, the
symptom used in this query is “Fever”.

SELECT (STR(?dis_name) as ?disease_name) (STR
(?treat_name) as ?treatments)

WHERE {
?disease dis:hasSymptoms ?symptom .
?disease rdfs:label ?dis_name .
?symptom rdfs:label "Fever"ˆˆxsd:string

.
?disease dis:hasTreatment ?treatment.
?treatment rdfs:label ?treat_name

}
ORDER BY ?dis_name

Listing 6. Query 5 - Retch treatments by disease with symptom ‘X’

The results displayed on table IX consist of two columns
that detail all the treatments found for diseases containing
“fever” as a symptom in our ontology. The first column
contains the disease’s name while the second presents the
treatments, as they are the goal of this query. To better group
the results, they were ordered by disease name.

TABLE IX
RESULTS FOR QUERY 5

Disease Treatment
Acute lymphocytic leukemia Immunotherapy

Acute lymphocytic leukemia
Hematopoietic stem cell

transplantation
Acute lymphocytic leukemia Blood transfusion
Behçets disease Corticosteroid
Behçets disease TNF inhibitor
Behçets disease Interferon alpha 2
Diphtheria Tracheotomy
Diphtheria Antibiotics
Dirofilariasis Tetracycline antibiotic
Dirofilariasis Surgery

HIV/AIDS
Management of

HIV/AIDS
Japanese encephalitis Supportive care
Measles Supportive care
Poliomyelitis Supportive care

Polymyositis Intravenous
Immunoglobulin

Polymyositis Corticosteroid
Rubella Supportive care

6) Query 6: Fetch top 10 most used drugs to treat diseases:
This query shows the top 10 most used drugs in our ontology.
To obtain such measure, the usage of a drug was defined as the
number of times it appears throughout the different diseases
that our ontology contains.

SELECT (STR(?drug_name) as ?drugs) (STR(COUNT
(*)) as ?times_used)

WHERE {
?disease dis:hasDrugs ?drug .
?drug rdfs:label ?drug_name

}
GROUP BY ?drug_name
ORDER BY DESC(?times_used)



LIMIT 10

Listing 7. Query 6 - Fetch top 10 most used drugs to treat diseases

Table X presents the top 10 most used drugs in our ontology
by descending order. They’re divided into two columns, with
the first being the name of the drug, and the second the number
of times it is used (number of diseases containing the drug).
The least used drug present in the top 10, Tinidazole, is used
to treat 2 different diseases, while Azithromycin, the table
leader, appears as a drug capable of aiding in the treatment of
5 different diseases.

TABLE X
RESULTS FOR QUERY 6

Disease Treatment
Azithromycin 5
Metronidazole 4
Erythromycin 3
Doxycycline 3
Atovaquone 2
Ivermectin 2
Troleandomycin 2
Paromomycin 2
Ciprofloxacin 2
Tinidazole 2

7) Query 7: Fetch symptoms and overviews of a disease
derived from a specific cause: This query retrieves the symp-
toms of diseases that derive from a specific cause. Along with
the symptom, an overview is also presented. As an example,
the cause used in this query is “Babesia”.

SELECT (STR(?symp_name) as ?symptoms) (STR(?
symp_overview) as ?overviews)

WHERE {
?disease dis:hasCauses ?cause .
?cause rdfs:label "Babesia"ˆˆxsd:string

.
?disease dis:hasSymptoms ?symptom .
?symptom rdfs:label ?symp_name .
OPTIONAL { ?symptom dis:overview ?

symp_overview}
}

Listing 8. Query 7 - Fetch symptoms and overviews of a disease derived
from a specific cause

Table results on table XI consist of a column of symptoms
and other with the respective overview. All symptoms dis-
played are connected to diseases that have “Babesia” as cause,
according to our ontology.

8) Query 8: Fetch treatments from diseases with more than
’X’ drugs: This query retrieves the treatments of diseases with
more or equal to a specific number of drugs associated. In this
query, the number of drugs used is 2.

SELECT (STR(?treat_name) as ?treatments) (STR
(?dis_name) as ?diseases) (STR(COUNT(?drug
)) as ?num_drugs)

WHERE {

TABLE XI
RESULTS FOR QUERY 7

Symptom Overview

Fatigue

Fatigue is a feeling of tiredness.It may be sudden or
gradual in onset. It is a normal phenomenon if it follows

prolonged physical or mental activity, and resolves
completely with rest. However, it may be a symptom...

Nausea

Nausea is a diffuse sensation of unease and discomfort,
often perceived as an urge to vomit. While not painful, it
can be a debilitating symptom if prolonged, and has been

described as placing discomfort on the chest, ...

Headache

Headache is the symptom of pain in the face, head,
orneck. It can occur as a migraine, tension-type

headache, or cluster headache.Frequent headaches can
affect relationships and employment.There is also an

increased risk ...

Vomiting

Vomiting(also known as puking,throwing up, barfing,
emesis, among other names) is the involuntary, forceful
expulsion of the contents of one’s stomach through the

mouth and sometimes the nose ...

Fever

Fever, also referred to as pyrexia, is defined as having a
temperature above the normal range due to an increase in

the body’s temperature set point.There is not a single
agreed-upon upper limit for normal temperature ...

?disease dis:hasDrugs ?drug .
?disease rdfs:label ?dis_name .
?disease dis:hasTreatment ?treatment .
?treatment rdfs:label ?treat_name

}
GROUP BY ?dis_name ?treat_name
HAVING(COUNT(?drug) >= 2)
ORDER BY DESC(?num_drugs)

Listing 9. Query 8 - Fetch treatments from diseases with more than 2 drugs

Table XII presents 11 treatments of our ontology. The results
are divided into three columns, with the first being the name
of the treatment, followed by the associated disease name, and
the last column presents the number of drugs used. The results
are displayed in descending order by the number of drugs.

TABLE XII
RESULTS FOR QUERY 8

Treatment Disease Number of Drugs
Management of HIV/AIDS HIV/AIDS 3
Tracheotomy Diphtheria 3
Medication Amebiasis 3
Intravenous Immunoglobu-
lin Polymyositis 3

Corticosteroid Polymyositis 3
Blood transfusion Amebiasis 3
Surgical operation Amebiasis 3
Antibiotics Diphtheria 3
Corticosteroid Behçets disease 2
TNF inhibitor Behçets disease 2
Interferon alpha 2 Behçets disease 2



E. Discussion

The ontology developed, when compared with the relational
database that we had previously defined, possesses many
advantages:

• Data integration: The standard form that organizes data
in triplets makes it easy to integrate data from different
domains.

• Inference: The use of a declarative language such as
OWL allows to extract inferences from the data, based on
the ontology’s restrictions, and check for inconsistencies
through the use of reasoners, such as the HermiT reasoner
[23] used in our ontology.

The main disadvantage in the tools used to build the ontol-
ogy, Protégé [20], when compared to the ones used to build
the information system, Apache Solr [12] and the ones used to
build the initial relational database, Azure SQL Database [9],
is that Protégé is limited in regards to the volume of data
that it can handle efficiently, leading us to shorten the dataset
that was used. Apache Solr is much more efficient, with quick
indexing and querying processes.

When comparing the ontology developed with the infor-
mation retrieval system developed, we need to take into
consideration that Information Retrieval (IR) and Semantic
Web have different purposes: IR uses keywords to retrieve
documents that might be relevant to answer an information
need, and semantic web aims to represent useful data that can
be processed by machines.

Some advantages of the querying process of ontologies
when compared to IR systems are:

• Querying ontologies using SPARQL allows to capture
relations between different resources, providing results
that contain useful information from different sources,
while in IR systems the results of the querying process
are documents that are somehow related with the query.

• In ontologies, the results of a query are fields that directly
contain the information that the user needs, while in
IR systems, the results are documents that need to be
processed, or read, to find the pieces of information that
the user really needs, as can be seen in the queries to
retrieve drugs used to treat symptoms developed for both
systems.

The disadvantage in ontologies when compared to IR sys-
tems is that querying requires to know languages such as
SPARQL [24], in order to obtain the pieces of information
that we want, which, for a regular user is not intuitive at
all. This means that there is a need to develop an interface
with predefined queries for the average user to have access
to information in the semantic web. In IR systems, the user
can simply type words that are related to a topic and obtain
results.

Ideally, to achieve the purpose of having information that
can be processed by machines and that can be obtained by
humans in an intuitive way, information retrieval systems
should be built on top of the semantic web.

Regarding the applications of this ontology in the health
domain, it can be used for an app that allows a normal user
to look up basic information about diseases, symptoms and
treatments.

VI. CONCLUSION

The purpose of this project was to create a search mecha-
nism that allows a person to easily obtain reliable information
about health matters, focusing on diseases, treatments and
symptoms.

In the first stage we successfully populated an Azure SQL
database by combining information retrieved from both the
Wikidata and Wikipedia. This information was later cleaned
and enriched resulting in a total of 1,648 documents distributed
amongst Diseases, Treatments and Symptoms.

In the second stage, we developed and compared three
information retrieval systems that operated over the documents
that we have previously defined. In this stage, we arrived at the
conclusions that the quality of the results of an information
retrieval system is limited by the capacity of the query to
express the information need and that to develop an infor-
mation retrieval system with quality it’s needed to develop
improvements to both the indexing and querying processes.

In the third and final state of the project, we developed
an ontology to represent the knowledge in the dataset, delv-
ing into the domain of Semantic Web. We arrived at the
conclusions that ontologies have a lot of potential when it
comes to the inference of knowledge from data and to verify
the consistency of a dataset and that they allow to easily
integrate information between different domains, thanks to the
standardized way in which the data is represented.

To provide information that can be processed by machines
and that can be obtained intuitively by humans, the research
in Semantic Web should work towards integrating information
retrieval with Semantic Web.

REFERENCES

[1] J. Hanan, “Medworm: Medical search engine and rss news,” 2016, last
accessed 22 November 2020. [Online]. Available: https://medworm.com

[2] “Wikidata. wikidata: Introduction,” last accessed 22 November
2020. [Online]. Available: https://www.wikidata.org/wiki/Wikidata:
Introduction

[3] “Wikipedia,” 2001, last accessed 22 November 2020. [Online].
Available: https://en.wikipedia.org/wiki/Main Page

[4] “Creative commons - cc0 1.0 universal (cc0 1.0) public domain
dedication,” last accessed 22 November 2020. [Online]. Available:
https://creativecommons.org/publicdomain/zero/1.0/

[5] “Wikipedia. wikipedia: Text of creative commons attribution
sharealike 3.0 unported license,” last accessed 22 November 2020.
[Online]. Available: https://en.wikipedia.org/wiki/Wikipedia:Text of
Creative Commons Attribution-ShareAlike 3.0 Unported License

[6] “Creative commons - attribution sharealike 3.0 unported license,”
last accessed 22 November 2020. [Online]. Available: https://
creativecommons.org/licenses/by-sa/3.0/

[7] “Wikipedia. wikipedia: Verifiability,” last accessed 22 November 2020.
[Online]. Available: https://en.wikipedia.org/wiki/Wikipedia:Verifiability

[8] “Scrapy,” last accessed 22 November 2020. [Online]. Available:
https://scrapy.org/

[9] “Azure sql database,” last accessed 22 November 2020. [Online].
Available: https://azure.microsoft.com/en-us/services/sql-database/

[10] “Microsoft. azure data studio,” last accessed 22 November
2020. [Online]. Available: https://docs.microsoft.com/en-us/sql/
azure-data-studio/what-is-azure-data-studio?view=sql-server-ver15

https://medworm.com
https://www.wikidata.org/wiki/Wikidata:Introduction
https://www.wikidata.org/wiki/Wikidata:Introduction
https://en.wikipedia.org/wiki/Main_Page
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikipedia.org/wiki/Wikipedia:Verifiability
https://scrapy.org/
https://azure.microsoft.com/en-us/services/sql-database/
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is-azure-data-studio?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is-azure-data-studio?view=sql-server-ver15


[11] L. Richardson, “Beautiful soup,” 2004, last accessed 22 November 2020.
[Online]. Available: https://www.crummy.com/software/BeautifulSoup/

[12] “Apache solr,” last accessed 22 November 2020. [Online]. Available:
https://lucene.apache.org/solr/

[13] “Text retrieval conference (trec),” last accessed 22 November 2020.
[Online]. Available: https://trec.nist.gov/

[14] “Apache solr. the extended dismax (edismax) query parser,” last
accessed 25 November 2020. [Online]. Available: https://lucene.apache.
org/solr/guide/8 7/the-extended-dismax-query-parser.html

[15] P. L. Whetzel, N. F. Noy, N. H. Shah, P. R. Alexander,
C. Nyulas, T. Tudorache, and M. A. Musen, “Bioportal: enhanced
functionality via new web services from the national center for
biomedical ontology to access and use ontologies in software
applications,” 2011, last accessed 10 December 2020. [Online].
Available: https://bioportal.bioontology.org/

[16] L. Schriml, “Disease ontology,” last accessed 31 December 2020.
[Online]. Available: https://disease-ontology.org/

[17] W. Kibbe, S. Fuentes, and S. Arabandi, “Symptom
ontology,” last accessed 31 December 2020. [Online]. Avail-
able: http://symptomontologywiki.igs.umaryland.edu/mediawiki/index.
php/Main Page

[18] “Medlineplus: Health topics,” last accessed 10 December 2020.
[Online]. Available: https://medlineplus.gov/healthtopics.html

[19] “Sifr project,” last accessed 10 December 2020. [Online]. Available:
https://sifr.mystrikingly.com/

[20] M. A. Musen, “The protégé project: A look back and a look forward,”
AI Matters, vol. 1, no. 4, p. 4–12, Jun. 2015. [Online]. Available:
https://doi.org/10.1145/2757001.2757003

[21] S. Lohmann, S. Negru, and D. Bold, “Vowl plugin for protégé,”
2014, last accessed 4 January 2020. [Online]. Available: http:
//vowl.visualdataweb.org/protegevowl.html

[22] J. Hardi, M. O’Connor, C. Nyulas, and T. Tudorache, “Protégé plugin
for creating owl ontologies from spreadsheets,” 2018, last accessed 31
December 2020. [Online]. Available: https://github.com/protegeproject/
cellfie-plugin

[23] B. Motik, R. Shearer, B. Glimm, G. Stoilos, and I. Horrocks, “Hermit
owl reasoner,” last accessed 6 January 2021. [Online]. Available:
http://www.hermit-reasoner.com/

[24] “Sparql query language for rdf,” last accessed 4 January 2020. [Online].
Available: https://www.w3.org/TR/rdf-sparql-query/

APPENDIX

INFORMATION RETRIEVAL FIGURES

Fig. 14. Example of results of information retrieval systems.

https://www.crummy.com/software/BeautifulSoup/
https://lucene.apache.org/solr/
https://trec.nist.gov/
https://lucene.apache.org/solr/guide/8_7/the-extended-dismax-query-parser.html
https://lucene.apache.org/solr/guide/8_7/the-extended-dismax-query-parser.html
https://bioportal.bioontology.org/
https://disease-ontology.org/
http://symptomontologywiki.igs.umaryland.edu/mediawiki/index.php/Main_Page
http://symptomontologywiki.igs.umaryland.edu/mediawiki/index.php/Main_Page
https://medlineplus.gov/healthtopics.html
https://sifr.mystrikingly.com/
https://doi.org/10.1145/2757001.2757003
http://vowl.visualdataweb.org/protegevowl.html
http://vowl.visualdataweb.org/protegevowl.html
https://github.com/protegeproject/cellfie-plugin
https://github.com/protegeproject/cellfie-plugin
http://www.hermit-reasoner.com/
https://www.w3.org/TR/rdf-sparql-query/


Fig. 15. System A schema.

Fig. 16. System B custom field type.



Fig. 17. Restrictions applied to Disease class in RDF/XML syntax.

Fig. 18. Ontology Visualization.


	Introduction
	Data Preparation
	Data Collection
	Wikidata
	Wikipedia

	Retrieved Data
	Data Storage
	Data Cleaning
	Data Enrichment
	Data Characterization

	Information Needs
	System Results
	Disease
	Treatment
	Symptom

	Retrieval Tasks

	Information Retrieval
	System A
	System B: Indexing Process
	System C: Querying Process
	Comparison between systems

	Semantic Web
	Review of Existing Ontologies
	Our Ontology
	Populating the Ontology
	Queries
	Query 1: Retrieve diseases by symptom
	Query 2: Retrieve drugs used to treat a symptom
	Query 3: Fetch symptoms associated with a disease
	Query 4: Fetch diseases under a specific medical specialty
	Query 5: Fetch treatments by disease with symptom ‘X’
	Query 6: Fetch top 10 most used drugs to treat diseases
	Query 7: Fetch symptoms and overviews of a disease derived from a specific cause
	Query 8: Fetch treatments from diseases with more than 'X' drugs

	Discussion

	Conclusion
	References
	Appendix

