
Popular Movies and Streaming
Carlos Gomes, Eduardo Silva, Joana Silva and Joana Ramos

MIEIC, FEUP, U.Porto
Porto, Portugal

Abstract—Information retrieval technologies have had a
tremendous growth over the past decades, driven primarily by
the large document collections that are constantly becoming
available through the Internet. On the other hand, Semantic
Web provides a common framework that enables data to be
shared and used in various types of applications. Inspired by
these systems, it was proposed to develop both an information
retrieval platform and an ontology centered on the movie and
acting universe, built on top of several document collections
and data sets, aiming to fulfill a user’s information needs on
related topics. The information retrieval system, although with
some limitations due to the bottleneck strategy used to reduced
the datasets, allowed to fulfill information needs with acceptable
precision levels. On the other hand, Protegé, which was used
to develop an appropriate ontology, had considerable limitations
that did not allow the use of a significant number of examples. For
that reason, the developed system is more of a proof of concept,
deeming the ontology as effective and expressive enough for the
proposed domain.

I. INTRODUCTION

In recent decades, the Web has made available vast amounts
of information to the common user. Search Engines like Bing,
DuckDuckGo and Google allow the intuitive search of these
document collections with an incredible speed and accuracy.
Inspired by these developments, this paper describes the cre-
ation of an information retrieval (IR) system for movies, its
details, crew and current streaming platforms. Other essentials
tasks for similar systems are the description, organization and
the establishment of relations between data artifacts. RDF
and OWL are formal ways to do these tasks, allowing to
connect web data and standardise structures for it. As such, this
document also describes a movie-related ontology created for
these purposes. The present document is structured as follows:
in chapter II the dataset used is presented as well as the pre-
processing operations performed on it. Part III describes the
IR system built. Part IV analyses the creation of an ontology
capable of describing our domain and possibly others, with the
detailed description of each performed step. The results and
technology evaluation of both the IR system and the ontology
are described in the respective sections.

II. THE DATASET

A. Obtaining and Preparing the Datasets

The data that will be used is gathered from 4 different
datasets. Further details about them are presented below.

1) IMDb Official Dataset: The IMDb official dataset [1] is
a structured dataset in TSV format that contains all of the
information regarding movies and TV series that can be found
on IMDb’s website. The dataset is composed of 7 different

files which together add up to a volume of 4.6 GB, a size
that increases daily as the files are updated. All of the 7 files
present a very similar structure but contain different relevant
information:

• title.akas.tsv.gz file - contains important information
concerning titles, such as a movie’s region, title and
language;

• title.basics.tsv.gz file - has relevant information such as
the release year of a movie, its run-time in minutes, the
genres associated with the film and its original title;

• title.crew.tsv.gz file - this file contains the details about
a movie’s writers and directors;

• title.principals.tsv.gz file - contains a movie’s main cast
and crew details, such as the category of the job being
executed, the specific job title and the characters played
in case of being an actor;

• title.ratings.tsv.gz file - has IMDb’s votes and rating
information for titles, containing the number of votes and
the average rating;

• name.basics.tsv.gz file - significant information about
each person, for instance the name for which the person
is most credited, birth year and death year (when appli-
cable), its top three professions and the titles for which
is most known;

• title.episode.tsv.gz file - this file will not be used, as it
consists of information related to TV series.

In what concerns the licence of the dataset, IMDb, as the
source authority, provides a limited non-commercial use
of their data if all of the stipulated conditions [2] are met.
Additionally, a commercial use licence can also be obtained
[3] , if the need arises.

2) IMDb Scraped Dataset: This dataset [4] is a structured
dataset with movie information retrieved through scraping of
IMBb’s website [5]. The dataset comprises all the movies
with more than 100 votes as of 01/01/2020, amounting to
85,855 movies. The information is represented in 4 CSV
(Comma Separated Values) files in UTF-8 encoding, which
total 230 MB. This dataset is obtained from Kaggle [6]
under the CC0: Public Domain license. Since the authority
of this data repository might be questionable, this dataset is
complementary and it’s correctness can be assessed. It contains
the following information:

• IMDb movies.csv file - contains movie related informa-
tion like the title, genre, language, budget, director and
actors. This file contains the movie’s IMDb ID;

• IMDb names.csv file - has information regarding people

1

involved in movies (directors, writers, actors etc), namely
their name, bio, birth date and other personal details;

• IMDb ratings.csv file - a collection of ratings for each
movie, including demographic information (e.g. percent-
age of female voters);

• IMDb title principals.csv file - associations between the
movies and the names files

3) Streaming Dataset: The Streaming Dataset [7] contains
information about 16744 movies from 4 different platforms:
Netflix, PrimeVideo, Hulu and Disney+. The data was last
updated on May 2020. This dataset is structured and extracted
from Kaggle [6] under the license CC0: Public Domain. The
principal characteristics of the dataset are:

• Title (string): Title of the movie;
• Year (int): Year when movie was released;
• Netflix (int): 1 if the movie is available in Netflix, 0

otherwise;
• Hulu (int): 1 if the movie is available in Hulu, 0

otherwise;
• PrimeVideo (int): 1 if the movie is available in Prime

Video, 0 otherwise;
• Disney+ (int): 1 if the movie is available in Disney+, 0

otherwise;

However, due to inconsistencies in certain attributes, in
relation to the other datasets, and the lack of an IMDb ID,
only 15531 of the available titles are used in the following
stages.

4) IMDb Movie Pages: The information regarding the
synopses of the movies is directly scraped from the respective
IMDb [5] pages. This data is composed of free text and is
unstructured by nature, with the total volume being limited
by that of the other datasets.

5) Data Pipeline Process: The data pipeline is illustrated
in Figure 9. The matching between all the datasets is done
through a common IMDb IDs. All of the datasets posses
this attribute except for the streaming one. In this case, a
new column imdb_id is added with this value. The ID’s
are obtained through a match between titles, year of release
and the IMDb classification (short, movie, tvmovie,
tvshort or video). It is also worth noting that due to the
smaller volume of this particular dataset, it acts as a bottleneck
for the other 3.

After all the data is matched and aggregated, cleaning
operations are performed, namely duplicate value removal and
title and date normalization.

Finally, the data is then stored in an SQL relational database,
ready for further exploration.

B. Datasets Characterization

The number of movies per streaming platform is represented
in Figure 1. Clearly, Prime Video dominates the dataset, with
Netflix coming in second while Hulu and Disney+ are more
or less equivalent.

Fig. 1. Number of Movies per Streaming Platform

Figure 10 illustrates the distribution of movies on streaming
platforms, with relation to the movie’s release year. It’s inter-
esting to notice that while Prime Video [8] has a bigger movie
collection overall, Netflix [9] hosts more recently released
movies. In spite of this, we should keep in mind that this
is a sample, and might not be representative of the whole set.

The average movie rating by year can be seen in figure 11,
with the ratings from IMDb [5] and Rotten Tomatoes [10]
represented. We can verify that in Rotten Tomatoes the rating
is almost always lower.

Regarding the textual information, the average word count
of synopses and biographies can be seen in Figure 12. It seems
that biographies tend to be bigger than synopses.

C. Domain Conceptual Model

The conceptual model of the domain is illustrated in Figure
13 and presents the main entities of the domain, which are
movies and people involved in them, such as actors, directors,
writers, among others.

A movie can have as attributes its title, release date, run-
time in minutes and synopsis. Moreover, a movie can also
be from a certain country and have many different languages
associated with it, as well as ratings from different sources
like IMDb [5], Rotten Tomatoes [10] and even Metacritic [11]
(metascore). Furthermore, a movie can also be in different
streaming platforms such as Hulu [12], Disney+ [13], Netflix
[9] and PrimeVideo [8].

A person has as attributes its name, date of birth, gender
and biography. In addition, a person can also have one or more
job titles in a movie, being for example an actor, a writer or
director, and, in the case of being an actor, the character or
list of characters that it plays in the movie.

D. Data and Information Retrieval Tasks

The focus of the data retrieval tasks are movies and the
people involved in them. Some possible queries are:

1) Retrieve all movies in which an actor appears;
2) Retrieve all movies by director;
3) Retrieve high rated movies for each genre;
4) Retrieve high rated movies for each year;
5) Retrieve high rated movies for each language;

2

6) Retrieve movies that fit into a text description (e.g.
“second world war movies”);

7) Retrieve people that fit into a text description (e.g.
“young puerto rican actor”).

8) Retrieve movies set in a given time period.
9) Retrieve actors who have won some kind of award.

10) Retrieve controversial or polarizing movies.
Some of these can already be performed in other tools or

applications, however, currently, there is no single solution
that offers all of the possibilities. For example, queries 1, 2, 3
and 4 can be performed in the IMDb official website [5], but
with only their own rating being considered, and not those of
other platforms. For query 6, similar results can be obtained in
WhatIsMyMovie [14] through the use of Machine Learning.

III. INFORMATION RETRIEVAL SYSTEM

In order to establish the base for the information retrieval
process and evaluate the results produced, Apache Solr [15]
was chosen as the indexing and retrieval tool. The main
reasons for this are that Solr is an industry standard in infor-
mation retrieval, having extensive documentation available as
well as good performance, both while indexing and retrieving
results. In addition to this, it also features an administrator
user interface, something welcomed by new users. Despite
this, there are some drawbacks as well, most notably a steep
learning curve when it comes to the initial configuration of
the tool.

A. Document Collection

The collection used for indexing is comprised of 4 different
datasets, as mentioned in Section II-A: the IMDb Official
Dataset, the IMDb Scraped Dataset, the Streaming Dataset
and IMDb Movie Pages. With the joint information of all
of the datasets, two documents were defined: a document for
Movies and another for People who work and are related to
these movies. In total, 105,975 documents were indexed, being
15,531 of them Movies (14.7%) and 90,444 People (85.3%).

Fig. 2. Number of Indexed Documents

B. Document Indexing

Both documents (Movies and People) were indexed in the
same core, with a schema being created containing the fields

that can be seen in Tables I and II. All fields present in the
original datasets were indexed.

For the movies, all relevant information from the previ-
ously mentioned datasets was combined in a single CSV file,
movies.csv, using Python’s library Pandas [16]. The same
was done for the people information, in a single CSV file,
people.csv. The relation between these two files is as
follows:

• Each row in the movies file can have multiple correspond-
ing rows in the people file (one for each person involved
in that movie);

• Each row in the people file has exactly one corresponding
row in the movies file.

To index these files, the following commands were used:

b i n / p o s t −c movies −params ” f . g e n r e s .
s p l i t = t r u e&f . g e n r e s . s e p a r a t o r = , ”
movies . c sv

b i n / p o s t −c movies p e o p l e . csv

Another indexing strategy was also tried: indexing the two
different types of documents in two cores. This made it
possible to retrieve the different type of documents in a query
without mentioning fields from both of them explicitly. For
instance, when searching for a movie (e.g.: Inception) the
results list included the actors that played a role in this movie
(e.g.: Leonardo DiCaprio).

Looking at these strategies, both are acceptable approaches.
The difference between them consists in the schema. Since
there is only one core, the fields of the schema cannot be set
to required, to allow the indexing of both types of documents.
For the two cores approach, it is easier to join the common
fields between the documents. However, to search for just one
type of document the user needs to be aware that each core
corresponds to a single type. For the one core approach, there
is no need to change between cores. So to retrieve different
documents the query has to mention the specific field(s) of the
document that the user wants to retrieve. To join documents
the idea is the same. In order to keep it simple, we decided
to go for the one core approach: we do not need to create
another core, having the same results in either solution.

1) Movies: Movie documents contain certain details about
a movie like its title, release date and synopsis. Each movie
is identified by an unique ID, attributed by IMDb. The most
relevant fields can be seen in Table I.

Field Description
imdb id ID of the movie within the IMDb

database
popularTitle Title for which the movie is best known

as
synopsis Brief summary of the movie
runtimeMinutes Duration of a movie in minutes
genres Various genres of a movie (e.g.: action)
netflix,
primevideo,
disney, hulu

Streaming platforms in which the movie
is available at

TABLE I
MOST RELEVANT FIELDS FOR MOVIE DOCUMENTS

3

Other fields present in Movie documents are: startYear,
originalTitle, isAdult.

2) People: Similarly to movies, People type documents
have some descriptive fields. These documents are identified
by a pair of IDs (both attributed by IMDb), one for the person
and one for the associated movie. The most relevant fields can
be seen in Table II.

Field Description
imdb id ID of the movie within the IMDb

database
imdb name id ID of the person within the IMDb

database
category Type of job carried out (e.g.: actor,

composer, etc.)
characters Character(s) played out by the actor/ac-

tress in the movie (if applicable)
name The person’s name
bio The person’s biography

TABLE II
MOST RELEVANT FIELDS FOR PEOPLE DOCUMENTS

Other fields present in People documents are: date of birth,
date of death, birth name, reason of death, death details,
birth details, children, height, divorces, place of birth,
place of death, spouses and so on.

C. Filter Types
Besides the already existing Solr filter types, two new filter

types were created in order to better accommodate the specific
needs of this system. The first filter type, named text title,
was used in movie titles and movie character names, while
the second, custom text, was created for both movie synopsis
and people’s bios. Tables III and IV show the filters used in
each of the new filter types.

Movie Title & Character
Names

Index Query

White Space Tokenizer 3 3
Standard Tokenizer 5 5
Lowercase Filter 3 3
Porter Stemming 3 3
Synonym Graph Filter 5 3
Duplicate Removal 3 5
English Possessive Filter 5 5
Stop Word Filter 5 5

TABLE III
FILTERS USED IN MOVIE TITLE & CHARACTER NAMES FILTER TYPE

Synopsis & Bio Index Query
White Space Tokenizer 5 5
Standard Tokenizer 3 3
Lowercase Filter 3 3
Porter Stemming 3 3
Synonym Graph Filter 5 3
Duplicate Removal 3 3
English Possessive Filter 3 3
Stop Word Filter 3 3

TABLE IV
FILTERS USED IN SYNOPSIS & BIO FILTER TYPE

Regarding the stop word and synonym graph filters, the lists
used for these were provided by Solr and manually assembled,
respectively.

D. Retrieval Process

At this point, we have a Solr Schema defined with all the
documents we need (subsection III-A and subsection III-B)
to start the retrieval process. From the Solr interface we
used the Standard Query Parser [17] together with Common
Query Parameters [18] and explored the scope of the eDisMax
(Extended DisMax) module [19].

E. Standard Query Parser

The Standard Query Parser is the basis of Solr search. It
allows to insert the query that we want to search with as well
as some operators to make the search more flexible.

Using only this item we can create some simple queries,
using the query field, just by looking for something in a field:

synopsis : murder

This simple query returns documents that contain the field
synopsis, which includes the token murder (consult the results
in the Figure 14) and corresponds to the information need:
Movies about murders. To join different fields or to look for
similar words, the parser has some operators that help the user,
such as AND (&&), OR (||), NOT (!), + and -.

• AND or && - Boolean operator that requires the presence
of both terms

• OR or || - Boolean operator that requires either term (or
both terms) to be present

• NOT or ! - Operator that doesn’t let the term be present
• − (minus sign) - Operator that has the same function as

the NOT operator
• + (plus sign) - Operator that requires the presence of a

term
Joining these operators with wildcards searches (∗ and ?),

similar to regex expressions, we are able to represent the
information need with more precision or, at least, with a wider
range, in order to try to obtain the best results.

For the information need above we can develop a better
query, for example:

popularT itle : (assassin murder kill∗) genres : action

With this query we are able to have not only matches on the
field popularTitle with the token murder, but also matches that
contain related words such as assassin, kill and other words
that have this last term as their root.

You can consult the results in Figure 15.
1) Common Query Parameters: From this functionality we

used the following parameters:
• start - Offset into where to begin displaying results. The

value used in this field was always ”0”, as we wanted to
retrieve the first results

• rows - Number of results returned. Default number used
was 10. The value was only changed sometimes to
provide a greater context for tests

• fq - Filter where a query that can be used to restrict the
super set of documents returned can be defined , without
influencing the score.

4

The most important functionality to mention is the Filter
Query (fq). This was used in the instance where we tested the
use of two different cores, where one had the movies collection
and the other the people collection. Here we are able to return,
for instance, the results corresponding to the information need:
actors who play a role in the movie Inception. To obtain the
results for this information need, we can search for:

category : act∗

and use the following filter query:

{!join from = imdb id fromIndex = movies

to = imdb id} popularT itle : Inception

It is important to keep act∗ in order to include actresses as
well. As it was intended to know which of the actors were in a
certain movie, this query was conducted in the people’s core.
This solution performed quite well, returning all the respective
actors and actresses present in the dataset (Figure 16).

2) Extended DisMax: eDisMax means Extended DisMax
Query Parser and it is an improved version of the DisMax
query parser, being more powerful. In order to make our search
more robust, we used the parameter stopwords (only available
on eDisMax) and the parameter qf (Query Field, already in
DisMax). Moreover, as expected, the q (Query) parameter is
also used.

• stopwords - Boolean parameter indicating if the Stop-
FilterFactory configured in the query analyzer should be
respected when parsing the query.

• qf - List of fields, each of which is assigned a boost factor
to increase or decrease that particular field’s importance
in the query.

• q - The essence of the search. The parameter supports raw
input strings provided by users with no special escaping.

To observe the power of this query parser, let’s analyse the
following query:

netflix : true AND (world war 2)

It is important to mention that this query could be also
written as:

netflix : true AND

((world war 2) OR WW2 OR WWII)

Although, those terms are already considered by Solr due
to the existence of the synonyms graph filter (see subsec-
tion III-C).

In both queries the information need is explicit: movies
about World War 2 that are available on the Netflix platform.
The qf was filled with:

synopsis3 popularT itle2

With this, Solr retrieves most of the movies about World
War 2 or at least movies that are in some manner related to it
(results in Figure 17).

3) Raw Query Parameters: Solr has many features that are
not available in the user interface. When someone wants to use
one of those features, they can use the Raw Query Parameters
field.

This field was used to find the British actors that have been
nominated or won an Oscar award. Each People document has
the information of someone and their role in a movie. So, if
there’s information on the dataset of an actor performing in 10
movies, there will be 10 retrieved documents. With the purpose
of not getting all of these documents being retrieved from only
an individual, we used the Raw Query Parameters to group
the results by individual, using an unique id - imdb name id.

Thus, to translate the information need to the query format
we used:

category : act ∗ AND oscar AND

place of birth : engl ∗ AND (winning nomina∗)

And to group the results we just inserted the following
command in the mentioned field:

group.field = imdb name id&group = true

Therefore, each document retrieved regards a different per-
son that supposedly matches the information need.

It is relevant to mention as well that the query parser used
for the search was eDisMax with the string:

bio2

Part of the results corresponding to this search are in
Figure 18.

F. Platform Evaluation

1) Results: To perform a formal evaluation of the final
system, two queries were executed, each one pertaining to
a different type of document: Movies and People. The details
of both are displayed below:

• Query #1
– Information Need: Retrieve the British actors that

have been nominated for or won an Oscar award.
– Query: [category:act* AND oscar AND

place of birth:engl* AND (winning nomina*)]
– Field weights used: bio2

• Query #2
– Information Need: Retrieve the movies that are set

during World War 2.
– Query: [world war 2 nazi holocaust]
– Field weights used: synopsis3 popularTitle2 genres

Regarding query #1, the reason why only the bio field was
considered (and not the set of weights indicated in Section
III-E2) is because in this case the other fields (excluding the
ones indicated in the query itself) would only bring irrelevant
information. For example, the system would return actors or
characters named ”Oscar”, which doesn’t fit the information
need.

5

The top 10 results of both queries can be seen in Table V,
as well as the respective precision-recall graph in Figure 3.

Result
no.

1 2 3 4 5 6 7 8 9 10

Query
#1

R N N R N N R N N R

Query
#2

R N R R R N R R N R

TABLE V
RESULT RELEVANCE (R - RELEVANT; N - NON-RELEVANT)

Fig. 3. Precision-Recall graph for the evaluation queries

The calculated average precision for query #1 and #2 are
0.582 and 0.769, respectively.

As we can observe, query #2 maintained a greater precision
than #1 over all recall levels. This can be attributed to the
nature of the queries themselves: it is more common for a
movie which contains “world war 2” or a synonym in its
synopsis or title to be set during that time period and not
just tangentially related to the concept.

Nevertheless, the system obtained a mean average precision
of 0.675 over both queries, which can be deemed acceptable.

2) Information Retrieval Software: In what comes to Solr
as an information retrieval tool, there are some things to note.
Firstly, while it exists a great deal of documentation available,
this proved insufficient many times, slowing down develop-
ment. More specifically, there was an almost complete lack
of concrete examples for the implementation and usage of the
various modules. In addition to this, while the administrator
user interface is a helpful feature, it isn’t the most intuitive and
it could benefit from more documentation as well. Finally, a
dedicated mechanism for re-indexing is also missing, meaning
that this process had to be done manually or through the use
of self-developed scripts.

IV. SEMANTIC WEB

Semantic Web is referred to as a Web of Data, enabling
people to create data stores, build vocabularies, and write
rules for the data on the Web. It is an extension of the World
Wide Web that has as its main purpose to provide a common
framework to share and reuse data across various applications,

using multiple technologies to ensure this such as RDF, OWL,
and SPARQL.

RDF (Resource Description Framework) is a framework
that expresses the details about resources, being these docu-
ments, physical objects, people, and even abstract concepts.
It is related to the concept of Linked Data, which is the
collection of interrelated datasets on the Web. RDF is used
when the information within the Web needs to be processed
by applications, making the information machine-readable and
able to be used by different types of applications.

In Semantic Web is also very important to organize data and
build vocabularies.For this, OWL (Web Ontology Language)
is used, allowing to enrich the meaning of data. OWL is
a Semantic Web language that is able to represent complex
knowledge about information and its relations with other
types of information, being an ontology a set of specific and
descriptive statements about a certain domain of interest.

As Semantic Web can be seen as a global database, it is
needed to have a query language that enables retrieving infor-
mation from the data itself. SPARQL is the query language
used in Semantic Web and is used to convey queries in diverse
data sources, supporting aggregation, negation, subqueries,
among other features, as well as displaying its results on sets
or RDF graphs.

The next step in this project was to develop an ontology
for the project’s domain, creating all of the needed entities,
such as classes, object and data type properties, along with
their relations and restrictions. Furthermore, the ontology was
populated and queries were created using SPARQL to re-
trieve information. The ontology was developed using Protégé
[20], a free and open-source ontology editor framework that
provides a graphic interface and several plugins to define
ontologies and manage a knowledge system.

A. Related Ontologies

During the research for related ontologies, in order to better
understand the work that already had been implemented in the
film industry domain, two ontologies were found. The first
ontology named MO - The Movie Ontology [21] was created
by the Department of Informatics of the University of Zurich
and intended to provide a user-friendly presentation of movie
descriptions with a vast vocabulary. The second ontology,
”A Creative Works Ontology for the Film and Television
Industry” [22], was created by MovieLabs [23], an indepen-
dent non-profit organization founded by several well-known
companies like Disney, Paramount, Twentieth Century Fox,
Sony Pictures, Universal, and Warner Bros. studios, with the
goal of advancing the research and development in motion
picture distribution and protection.

When comparing both ontologies, the second one was more
interesting to explore as it is more related to this project
and its entities seemed to be better organized and described.
Regarding the entities present in the ontology, they are the
following:

• Creative Works - films or television series;

6

• People - Contributors in creative works (e.g., producers,
actors, directors);

• Locations - Real or fictional location (e.g., filming lo-
cations, production country, setting, the birthplace of a
person);

• Groups - a collection of creative works, where creative
works are grouped by a number of things (e.g., franchise,
universe, character);

• Awards - Information related to movie and television
awards and nominations.

This ontology appears to be general enough to cover most
of the scenarios in this area yet detailed enough to represent
this type of domain. Moreover, some entities and attributes of
this ontology relate to our project, particularly the Creative
Works and People entities, which can represent various at-
tributes present in our schema. Despite of all of these positive
characteristics, this ontology is not currently being used in
any application or project, and its documentation, although
not bad, it is not the best as it is only available a pdf with its
details and not the actual ontology. Therefore, it was decided
to build an ontology from the beginning, only taking some
inspiration from the previous ontologies mentioned.

B. Web Ontology

In this section, the most important entities of the created
ontology are described.

1) Classes: The following classes were created in order to
model the domain:

• Movie: to represent movies;
• Person: people involved in the movie industry;

– PersonInMovie: to capture the association between
a person in a particular movie (e.g., their role in that
movie);

• Genre: film genres;
• Location: geographic locations;
• Character: movie characters.

2) Object Properties: The object properties in Table VI
were created to best model the associations between the
different classes. These associations can also be seen in Figure
4.

Object Properties Domain Range
playsAs PersonInMovie Character
hasParticipated PersonInMovie Movie
appearsIn Character Movie
wasBornIn Person Location
hasGenre Movie Genre
isPerson PersonInMovie Person

TABLE VI
OBJECT PROPERTIES

Fig. 4. Diagram modeling the object properties

3) Data Properties: To be able to store various information
about the different classes, data properties were created, which
can be seen in Table VII.

Domain Data Property Range

Movie

isStreamedOnNetflix xsd:boolean
isStreamedOnHulu xsd:boolean
isStreamedOnPrime xsd:boolean
isStreamedOnDisney xsd:boolean
Adult xsd:boolean
Synopsis xsd:string
RunTime xsd:integer

Person

IMDbPersonID xsd:string
Bio xsd:string
BirthDetails xsd:string
Children xsd:integer
Divorces xsd:integer
Height xsd:double
Spouses xsd:integer

PersonInMovie Role xsd:string
- Name xsd:string
Movie, PersonInMovie IMDbMovieID xsd:string
Movie, Person Date xsd:string

TABLE VII
DATA PROPERTIES

C. Ontology Population

To populate the ontology the Cellfie plugin [25] was used
since it already comes bundled with Protégé by default. To that
purpose, the CSV files containing the data were agregated in
a single XLSX workbook split in two different spreadsheets
(movies and people). However, only a few hundred rows
per sheet were kept in the final document because Protégé
doesn’t handle large amounts of data particularly well. This
data reduction was first applied to the movies file, keeping only
the first 400 rows. As for the People information, a Python [26]
script was created so as to keep only the rows with information
connected with the movies that were kept after the reduction.

In addition to this, an extra column was created in the People
file containing the person’s name followed by the association’s
IMDb movie ID. This was done so as to act as an identifier
for the individuals of the PersonInMovie class.

The transformation rules used to import the data can be seen
in Figure 19. Something worth noting is that the identifier for
the Movie individuals isn’t the movie’s title but their IMDb
ID due to the presence of some characters in this field which
aren’t accepted in Protégé in identifier names.

7

D. SPARQL Queries and Result Discussion

The SPARQL queries performed can be seen in figures 5
to 8, with the respective results displayed in figures 20 to 23.
These queries were performed using the SnapQL [27] plugin
instead of Protégé’s default SPARQL mechanism due to the
better performance and responsiveness of the application in
the first case.

In the first query, the movies with a director associated are
listed, ordered by the latter’s name. It can be observed that
only 43 results were returned despite the 400 movies present
the data. This is because the remaining movies don’t have a
director associated or their role is described in some other way.

Fig. 5. Query 1

A more realistic example is illustrated in query number 2,
where all the movies with a run time under two hours currently
streaming on Amazon Prime Video are listed. The number of
results here are already much higher than in the previous query.

Fig. 6. Query 2

Query number 3 resembles one of queries performed to test
the information retrieval system previously presented, with the
information need of the latter being ”movies set during World
War II”. However, since there are several ways to describe this
period, it becomes somewhat unfeasible to list them all in a
SPARQL query, unlike in Solr, where the multitude of filters
available make this process much easier. As such, it was opted
to only list movies about war in general, however, not all of
the results returned are as strongly connected to this theme as
one would hope.

Fig. 7. Query 3

Finally, query number 4 represents the most popular actors,
in this case, the actors which have participated in the most
number of movies, something which could be used in a trivia
website, for example. Initially, the total number of characters
portrayed by the actor was also displayed, but it was soon
realized that most actors only play one character in each
movie, which meant that these values would be the same. Due
to this, it was decided to remove this variable from the query.

Fig. 8. Query 4

E. Protégé vs Solr

Protégé is a free, open-source platform that provides a
growing user community with a suite of tools to construct
domain models and knowledge-based applications with on-
tologies [20]. Protege-OWL is an extension to Protégé that
supports the Web Ontology Language (OWL) [24] and with
it help, we would able to create our ontology in a interactive
way with a very useful interface.

In addiction, Protégé and Web Semantic tools allow:
• Easy retrieval of related knowledge;
• Use of reasoners to infer unspecified knowledge;
• Use of a wide array of helpful plugins.
However, SparQL is the protocol used to query this type

of data means the user must have technical knowledge and
knows somewhat precisely what to look for. Other problems
regarding Protégé were detected:

• It consumes lots of memory and cpu;
• Unknown crashes during the development;
• Impossible to load a large set of data to populate the

ontology.
In the other hand, Information Retrieval Tools is better when

the objective is search in unstructured data. It allows a use
of a powerful set of filters and weighting system retrieving
a ranking of results related to the search easing the found of
relevant results. Solr has the possibility of performing informal

8

queries, i.e, queries without technical expertise, what is a huge
advantage to not expertise users. Yet, Solr needs a schema to
work, a schema that will allow the indexing of data and it is
not trivial to build a schema with the best solution to this type
of system.

Using the search about war in both system 7, 22 and 17,
we can check that the results retrieved by the IR System
are ordered by a value that tries to specify the relevance of
the document, giving us movies about war, and not only for
one occurrence of the word ”war”. However, the results from
Protégé, despite having a synopsis that contains war, theres is
no different relevance between them. For example, a synopsis
that talks about a war inside a family will appear in our search,
however this do not satisfies the search for movies about war.

F. Applications

The created ontology could potentially be useful for en-
hancing databases related to the movie industry, as it provides
a simple and efficient way of representing this domain and
allows an easy integration with other systems. Additionally,
this ontology also combines the information present in movie
databases, for example IMDb, with streaming platform details,
which could be interesting for a future consumer application.

Regarding other topics apart from movie world, our on-
tology can be useful for the other topics such us book. The
classes defined can be matched and used in another ontology
using the command owl:sameAs.

V. CONCLUSIONS

With the information retrieval platform presented, a slightly
experienced user can have most of their (theme related)
information needs fulfilled with moderate precision levels.

However, the results returned are only as good as the
collection available. Since in total around 100,000 documents
are used for this purpose, there are of course limitations for the
total amount retrieved. Furthermore, because the bottlenecking
strategy doesn’t take into account any specific attributes, it
might lead to some odd situations such as, for example, when
movies from almost 100 years ago are being shown to the user
while other more recent ones are absent.

In the future, these situations could be mitigated, making it
easier for less experienced users to make use of the platform
by further optimizing the system’s configurations.

In what concerns the ontology developed in the final stage
of the project, although the number of examples had to be
reduced due to Protégé’s incapability of handling big datasets,
and even with the information retrieval platform providing
more useful filters and enabling result ranking and weighting,
the results obtained were good. The created ontology is simple
and easy to understand, having a well-defined structure that
facilitates the querying process.

REFERENCES

[1] IMDb Official Dataset. https://datasets.imdbws.com.Accessed in October,
2020.

[2] IMDb Software Integration Help Page. https://help.imdb.com/
article/imdb/general-information/can-i-use-imdb-data-in-my-software/
G5JTRESSHJBBHTGX#. Accessed in October, 2020.

[3] IMDb’s Developer Page. https://developer.imdb.com/?ref =helpms ih
gi developer. Accessed in October, 2020.

[4] Stefano Leone. IMDb Scraped Dataset.https://www.kaggle.com/
stefanoleone992/imdb-extensive-dataset. Accessed in October, 2020.

[5] IMDb’s Official Website.https://www.imdb.com/.Accessed in October,
2020.

[6] Kaggle. www.kaggle.com. Accessed in October, 2020.

[7] Ruchi Bhatia. Streaming Dataset. https://www.kaggle.com/ruchi798/
movies-on-netflix-prime-video-hulu-and-disney. Accessed in October,
2020.

[8] Prime Video. https://www.primevideo.com/. Accessed in October, 2020.

[9] Netflix. https://www.netflix.com/. Accessed in October, 2020.

[10] Rotten Tomatoes. https://www.rottentomatoes.com/. Accessed in
October, 2020.

[11] Metacritic. https://www.metacritic.com/. Accessed in October, 2020.

[12] Hulu. https://www.hulu.com. Accessed in October, 2020.

[13] Disney+. https://www.disneyplus.com Accessed in October, 2020.

[14] What is My Movie. https://www.whatismymovie.com/. Accessed in
October, 2020.

[15] Apache Solr. https://lucene.apache.org/solr/. Accessed in December,
2020

[16] Pandas. https://pandas.pydata.org/. Accessed in November, 2020.

[17] The Standard Query Parser. https://lucene.apache.org/solr/guide/6 6/
the-standard-query-parser.html. Accessed in December, 2020

[18] Common Query Parameters. https://lucene.apache.org/solr/guide/6 6/
common-query-parameters.html. Accessed in December, 2020

[19] The Extended DisMax Query Parser. https://lucene.apache.org/
solr/guide/6 6/the-extended-dismax-query-parser.html. Accessed in
December, 2020

[20] Protege Wiki. https://protegewiki.stanford.edu/wiki/Protege. Accessed
January, 2021.

[21] MO - the Movie Ontology. http://www.movieontology.org/. Accessed
January, 2021.

[22] A Creative Works Ontology for the Film and
Television Industry. https://movielabs.com/cwontology/
A-Creative-Works-Ontology-for-the-Film-and-Television-Industry-Final-2018-9-24.
pdf. Accessed January, 2021.

[23] MovieLabs. https://movielabs.com/who-we-are/. Accessed January,
2021.

[24] Protege-OWL Wiki. https://protegewiki.stanford.edu/wiki/
Protege-OWL. Accessed January, 2021.

[25] Cellfie. https://github.com/protegeproject/cellfie-plugin. Accessed
January, 2021.

[26] Python. https://www.python.org/. Accessed January, 2021.

[27] Snap-SPARQL: A Java Framework for Working with
SPARQL and OWL. Matthew Horridge, Mark Alan Musen.

9

https://datasets.imdbws.com
https://help.imdb.com/article/imdb/general-information/can-i-use-imdb-data-in-my-software/G5JTRESSHJBBHTGX#
https://help.imdb.com/article/imdb/general-information/can-i-use-imdb-data-in-my-software/G5JTRESSHJBBHTGX#
https://help.imdb.com/article/imdb/general-information/can-i-use-imdb-data-in-my-software/G5JTRESSHJBBHTGX#
https://developer.imdb.com/?ref_=helpms_ih_gi_developer
https://developer.imdb.com/?ref_=helpms_ih_gi_developer
https://www.kaggle.com/stefanoleone992/imdb-extensive-dataset
https://www.kaggle.com/stefanoleone992/imdb-extensive-dataset
https://www.imdb.com/
www.kaggle.com
https://www.kaggle.com/ruchi798/movies-on-netflix-prime-video-hulu-and-disney
https://www.kaggle.com/ruchi798/movies-on-netflix-prime-video-hulu-and-disney
https://www.primevideo.com/
https://www.netflix.com/
https://www.rottentomatoes.com/
https://www.metacritic.com/
https://www.hulu.com
https://www.disneyplus.com
https://www.whatismymovie.com/
https://lucene.apache.org/solr/
https://pandas.pydata.org/
https://lucene.apache.org/solr/guide/6_6/the-standard-query-parser.html
https://lucene.apache.org/solr/guide/6_6/the-standard-query-parser.html
https://lucene.apache.org/solr/guide/6_6/common-query-parameters.html
https://lucene.apache.org/solr/guide/6_6/common-query-parameters.html
https://lucene.apache.org/solr/guide/6_6/the-extended-dismax-query-parser.html
https://lucene.apache.org/solr/guide/6_6/the-extended-dismax-query-parser.html
https://protegewiki.stanford.edu/wiki/Protege
http://www.movieontology.org/
https://movielabs.com/cwontology/A-Creative-Works-Ontology-for-the-Film-and-Television-Industry-Final-2018-9-24.pdf
https://movielabs.com/cwontology/A-Creative-Works-Ontology-for-the-Film-and-Television-Industry-Final-2018-9-24.pdf
https://movielabs.com/cwontology/A-Creative-Works-Ontology-for-the-Film-and-Television-Industry-Final-2018-9-24.pdf
https://movielabs.com/who-we-are/
https://protegewiki.stanford.edu/wiki/Protege-OWL
https://protegewiki.stanford.edu/wiki/Protege-OWL
https://github.com/protegeproject/cellfie-plugin
https://www.python.org/

https://www.researchgate.net/publication/301539966 Snap-SPARQL
A Java Framework for Working with SPARQL and OWL. Accessed
January, 2021.

10

https://www.researchgate.net/publication/301539966_Snap-SPARQL_A_Java_Framework_for_Working_with_SPARQL_and_OWL
https://www.researchgate.net/publication/301539966_Snap-SPARQL_A_Java_Framework_for_Working_with_SPARQL_and_OWL

VI. ANNEX

Fig. 9. Data Pipeline Diagram

Fig. 10. Distribution of Movies on Streaming Platforms

11

Fig. 11. Average Movie Rating by Year

Fig. 12. Average Word Count of Synopses and Biographies

12

Fig. 13. Conceptual Model of the Domain

13

Fig. 14. Results of the Query popularTitle:murder

14

Fig. 15. Results for IR : Movies about Murders

15

Fig. 16. Results From Using Two Different Cores

16

Fig. 17. Results of a Search with Field Weights

17

Fig. 18. Results from Search with Group Command

18

Fig. 19. Transformation Rules

Fig. 20. Results of query 1

Fig. 21. Results of query 2

19

Fig. 22. Results of query 3

Fig. 23. Results of query 4

20

	Introduction
	The Dataset
	Obtaining and Preparing the Datasets
	IMDb Official Dataset
	IMDb Scraped Dataset
	Streaming Dataset
	IMDb Movie Pages
	Data Pipeline Process

	Datasets Characterization
	Domain Conceptual Model
	Data and Information Retrieval Tasks

	Information Retrieval System
	Document Collection
	Document Indexing
	Movies
	People

	Filter Types
	Retrieval Process
	Standard Query Parser
	Common Query Parameters
	Extended DisMax
	Raw Query Parameters

	Platform Evaluation
	Results
	Information Retrieval Software

	Semantic Web
	Related Ontologies
	Web Ontology
	Classes
	Object Properties
	Data Properties

	Ontology Population
	SPARQL Queries and Result Discussion
	Protégé vs Solr
	Applications

	Conclusions
	References
	Annex

