
Goodreads Books and Reviews
Bruno Sousa, Filipa Durão, Miguel Duarte and Rui Alves

MIEIC, FEUP
Porto, Portugal

{up201604145, up201606640, up201606298, up201606746}@fe.up.pt

Abstract—Given the increasing amount of data that is available
online, being able to handle big amounts of information and
process, index, and search it efficiently is evermore a focus
for information systems nowadays. In this paper, the specific
case of books and reviews from Goodreads is studied, along-
side with additional data on authors extracted via Wikidata.
After normalization and intersection, the dataset was ready for
characterization, which showed that it was interesting to study
it, given the extracted statistics that showed its heterogeneity
while also confirming its validity due to having enough data
distributed through most of its entries (with a total of 510
thousand unique documents). After indexing the documents
using Solr, the evaluation of different system configurations
showed that the IR system’s quality highly depends on both the
indexing operations (such as stop words removal and stemming)
and the field weighting configuration (which must be balanced
to ensure the retrieval of documents of all different types),
achieving an 88% mean average precision in the optimal system
configuration for the conceived test set. By modeling the domain
as a web ontology, semantically linking the datasets’ showed that
information can become more understandable at the machine
level, allowing the execution of more complex queries involving
data aggregation.

Keywords—Goodreads, Book, Author, Book Review, Dataset
refining, Data retrieval, Data processing pipelines, Domain mod-
eling, Domain search tasks, Data indexing, IR - Information Re-
trieval, Solr, Semantic Web, Ontology, Protégé, Cellfie, SPARQL

I. INTRODUCTION

Goodreads is an American social cataloging website that
features information about a multitude of books, together with
their reviews from online users.

This project aims to create a proof of concept (PoC) of
an IR system for the information available in the Goodreads
website, with a focus on books and book reviews, and the
authors that published those books. The construction of a web
ontology that models these entities and how they relate to one
another will also be explored.

In this paper, the process relative to characterizing, process-
ing, indexing and querying datasets relative to books, their
reviews, and their respective authors is described.

Firstly, Part II details the used datasets, as well as their col-
lection and refinement processes. Secondly, Part III elaborates
upon the processes used to index and search the information
in the used (and refined) datasets. Then, Part IV details the
process of conceiving, refining and populating a web ontology
for the domain. Finally, Part V elicits some final remarks about
this work.

II. DATASET PREPARATION

A. The Datasets

1) Books: The Books dataset was retrieved from
goodbooks-10k [1]. This repository features a subset of
the existing books on the website (the top 10,000 best-rated
books on September 13th, 2017) and was built by scrapping
the website’s pages.

Regarding the dataset’s refinement, firstly OpenRefine [2]
was used to get a grasp of the data’s nature. This dataset
was in CSV format and contained exactly 10,000 entries.
Initially, since each dataset entry featured information that
wasn’t relevant for the domain, a few attributes were filtered
and all duplicate entries were removed. Then, all null and
empty fields were normalized. Finally, all whitespaces were
trimmed.

To thoroughly analyze the dataset, both pandas [3] and
a set of Python scripts were used. It was concluded that
96% of all books in the dataset were written in the last two
centuries. Of these, most were written in the past two decades
(further information may be found in Figures 17, 18 and 19).
Furthermore, the distribution of books by sagas was analyzed.
It was concluded that about 76% of the books did not belong
to any saga. Furthermore, 14% of the books belong to a saga
that features a single book. The remaining 10% belong to a
saga with 2 or more books (further information may be found
in Figures 20 and 21).

2) Reviews: The Reviews dataset was retrieved from the
UCSD website [4], where the reviews’ information was di-
vided into eight different book genres (such as Romance,
Fantasy, . . . ). This repository features a subset of the existing
book reviews in the Goodreads website (all reviews prior to
2018) and was built by scrapping their review pages.

Regarding the dataset’s refinement, firstly OpenRefine was
used to get a grasp of the data’s nature. Then, langdetect
[5] was used to understand the reviews text properties and
language details. The original dataset featured about 15 million
entries in CSV format. To reduce its size while maximizing
its usefulness, the reviews were filtered to only match books
existent in the books dataset. Then, reviews were filtered
by date, so that only reviews from 2016 onwards remained.
Finally, like in the other datasets, whitespaces were trimmed
and the useful attributes were selected. This reduced the
number of entries from 15 million to about 500 thousand.
In the end, there was a 70% intersection between the books
and reviews datasets



To thoroughly analyze the dataset, both pandas and a set of
Python scripts were used. Moreover, to analyze the reviews’
text content, the langdetect Python tool was used. The first
conclusion is that the vast majority of the books have less than
50 reviews. The number of reviews through time is roughly
linear, even though it is slightly decreasing over time (further
information may be found in Figures 22 and 23). As for
the languages in which the reviews were written, the English
language is the most common (with about 91% of the reviews).
About 8% are written in other languages, while the rest of
them are unintelligible (further information may be found in
Figures 24 and 25). Finally, as for the size of the reviews
(using Twitter’s maximum post size to reference a “small”
review) it was concluded that about half of all reviews are
short (about 47%), around 38% are medium-sized (241 to
999 characters) and only 15% are long (over 1000 characters,
further information may be found in Figures 26 and 27).

3) Authors: The Authors dataset was built in two steps.
Firstly, a list of the authors present in the Books datasets was
extracted, using a set of Python scripts. Then, for each of
those authors the Wikidata [6] information was fetched, using
the wptools [7] Python package.

Regarding the dataset’s refinement, after gathering all the
information about the authors, and similarly to the previous
datasets, all null and empty fields were normalized, all whites-
paces were trimmed and the useful attributes were selected. In
the end, the dataset features bout 3100 entries, and about 76%
of the books in the Books dataset have information regarding
their author.

To thoroughly analyze the dataset, both pandas and a set of
Python scripts were used. It was concluded that the majority
of the authors only wrote one book (about 59%), while 35,5%
wrote between 2 and 9 books, and the remaining authors wrote
10 or more books, as visible in Figure 1 (further information
may be found in Figure 29).

Figure 1: Books per Author.

B. Data Conceptual Model

Figure 2: Data processing pipeline.

To treat the data, the pipeline outlined in Figure 2 was used.
This pipeline can be separated in the following topics:

• Processing the goodbooks-10k dataset
• Processing the UCSD dataset
• Obtaining information about book authors’ present in the

goodbooks-10k dataset from Wikidata
• Merging books data with their reviews and with their

authors
1) Books Dataset: The process began with the download

of a CSV file from the goodbooks-10k repository, which
contained the following book metadata:

• Book IDs
– for Goodreads
– internal to the dataset

• ISBN
• Authors
• Publication Year
• Title (with information on the book’s Saga)
• Original Title (book title only)
• Language
• Rating information

– Average Rating
– Number of Total Ratings
– Number of Ratings per Rating Value (1 - 5)

• Number of Text Reviews
• Image
From this metadata, the used attributes were: the Goodreads

ID, original title, saga (obtained from the title), authors, ISBN,
publication year, language and average rating.



After this step, OpenRefine was used for initial data
visualization. Having acknowledged some problems in the
data, some CLI tools as well as some specifically developed
bash scripts were used to remove invalid entries, eliminate
duplicates and normalize data.

2) Reviews Dataset: For the Reviews, multiple JSON files
were used with information about the reviews, divided by book
genre. For each entry, the following information was available:

• IDs in Goodreads

– for the Reviewer
– for the Book
– for the Review

• Rating
• Review Text
• Creation and Update Date
• Number of votes and comments

From this data, the Goodreads Book ID, rating, review text
and date were used.

Following this information collection and selection stage,
OpenRefine was used for initial data visualization. In parallel,
the langdetect Python package was used to identify the
review language. The multiple JSON files were merged and
the book reviews which were not in the books dataset were
deleted. Once again, some CLI tools as well as some specif-
ically developed bash scripts were used to remove invalid
entries, eliminate duplicates and normalize data.

3) Authors Information: From the books dataset, the names
of the authors of all the books were obtained. The wptools
Python package was used to query Wikidata in order to
obtain the authors’ information. The following information
about the authors was extracted:

• sex or gender
• date of birth
• country of citizenship
• place of birth

Afterwards, some scripts were used to identify and remove
authors with no information or invalid names and to normalize
certain fields that had lists of data instead of individual items.

4) Merging Datasets: Finally, all the datasets were merged
using the Goodreads book ID to merge reviews and books.
Besides that, the authors’ names were used to merge books and
authors. To analyze our data, the pandas Python package
was used to process the data and generate the graphics
presented on the ’The Datasets’ section.

C. Domain Conceptual Model

Figure 3: Domain Conceptual Diagram.

The domain of the project and how different entities relate
with one another is modeled in Figure 3.

The domain’s primary recovery unit is the Books. They
represent a connection point amongst all other entities in the
domain. The system’s recovery units are Books, Reviews and
Authors.

The remaining entities do not represent "direct" recovery
units within the system. A Genre is a concept that gathers
groups according to their topic and writing style and a Saga
is a collection of Books that are interconnected.

D. Possible Search Tasks

In the scope of retrieving information from the stored data,
the following search tasks were considered as Possible Search
Tasks:

1) Search for books rated over R, filtered by genre G
2) Search for books that were co-authored by authors A1

and A2

3) Search for reviews of the most well-rated book in the
saga S

4) Search for reviews between dates D1 and D2 of books
that were authored by A

5) Search for medium-sized reviews in books written by
authored A that are not from genre G

6) Search for authors that published over N books, filtered
by their country of citizenship C

7) Search for authors who have written at least N books
rated over R

8) Search for entities that have a section of text T in one of
their fields (possibly giving different weights to different
fields)

These Search Tasks were considered in order to belong to
one (or more) of the following "categories":

• Filter by attributes in the entity
• Filter by relationships between entities
• Filter by attributes of other entities
• Filter by text searching in several attributes at once



III. INFORMATION RETRIEVAL

Having completed the dataset preparation step, the following
step consists of making its information accessible, so that
it may satisfy users’ information needs. Thus, this chapter
features the developed work in the information retrieval system
configuration, preparation, usage and refinement, discussing
the taken approach, and the advantages and drawbacks of the
implemented solution.

A. Tool Selection

The selected tool was Solr [8]. In terms of features, it is
able to index data in several different formats, apply filters to
different fields in order to make querying and indexing more
efficient, and easily query data using several filters, varying
weights, etc.

However, it also has a few limitations, as its documenta-
tion is highly dependant on the used version, which makes
searching for further details bothersome. Additionally, this
documentation faces a severe lack of practical examples which
would greatly improve the usage experience.

It is worth mentioning that some ad hoc exploratory work
was made using Elasticsearch [9]. However, the bulk of the
work and investigation on tooling was made with Solr.

B. Collections and Documents

After completing the dataset preparation phase, the infor-
mation was organized into three different datasets: Books,
Authors and Reviews, which are thoroughly detailed in Section
II-B.

To prepare the datasets to be imported into Solr, these were
merged into a single JSON file, where each entry features a
single document of any of the three types. Then, the collection
was imported into Solr using the post tool:

post
-c goodreads
-format solr
goodreads.json

This collection (with the 3 types of documents) is indexed in
a single core. In order to do this, the created schema does not
have any required attributes (all are optional) so that different
entities simply have different non-null attributes. As such, this
allows the retrieving of all of the dataset’s entities using only
one core.

C. The Indexing Process

The indexed fields in the three types of documents are listed
in Tables I, II and III.

Table I: Book document fields.
Field Type Indexed
title text_general Y
id string N
isbn string Y
language_code string Y
publication_year plongs Y
book_rating pfloat Y
authors string Y

Table II: Author document fields.
Field Type Indexed
author_name text_general Y
sex_or_gender string Y
date_of_birth string Y
place_of_birth text_general Y
country_of_citizenship plongs Y

Table III: Review document fields.
Field Type Indexed
review_text text_general Y
id string N
date string Y
review_rating pfloat Y
book_id string N
book_name string Y

The initial task consisted of deciding which fields were to
be searched upon. After experimentation, it was concluded that
all fields should be indexed, except the identifier fields (such
as the Book document type id field and Review document
type id and book_id fields) - these fields are merely
internal identifiers used by Goodreads and feature no semantic
meaning.

Among the indexed fields, some were deemed worthy to
be further processed. Although Solr features a set of default
field types, they were considered to be either too specific or
too broad for the required use case. Thus, a field type named
text_general was created. When indexed, fields of this type
are tokenized and processed according to a set of filters [10]:

• Stop words removal - using a list of common English
connectors and prepositions that do not add discriminative
power to user queries;

• Lower case conversion - converting all letters to the same
case results in matching more results that may satisfy the
user’s needs;

• English possessive removal - removing trailing singular
possessives from words;

• Stemming - Using Porter’s stemming algorithm for En-
glish;

• Hyphenated words reconstructing - reconstructing hy-
phenated words that have been tokenized as two tokens
because of a line break or other intervening whitespace.

An analysis on the results of using the aforementioned filters
will be discussed in Sections III-E and III-F.

It is worth mentioning that, although it would be possible to
use only a subset of these filters in different fields, this proved
to slightly deteriorate the quality of the results. Moreover, the
addition of these filters did not negatively impact the indexing
process duration.

D. Retrieval Process

After completing the indexing of the documents, the next
step was to decide how the documents should be retrieved.
The retrieval process involved two major phases: selecting a
query parser, and selecting and optimizing the parameters of
the selected parser.



Among the many query parsers [11] offered by Solr, the
explored ones were:

• The Standard query parser;
• The DisMax (Maximum Disjunction) query parser [12];
• The Extended DisMax query parser.

An ad hoc evaluation of the advantages and drawbacks of
each option led to the choice of focusing research on the
DisMax query parser since it is able to process simple queries
and supports weighting each field of the indexed documents.

Regarding the available DisMax parameters, the ones used
were:

• q - the query to search for in the documents
• qf - the list of document’s fields, each including a weight

to represent the importance of the field, to be searched
for the query. The fields chosen for the query were
review_text, book’s title, author_name, and author’s
place_of_birth as these were the fields that a common
user in this domain would mostly search for.

After analysing the results with default qf weights, three
different field weight configurations were conceived, as seen
in Table IV.

Table IV: Field weight configurations.
Config. review_text title author_name place_of_birth

FW1 1.100 0.900 0.900 0.900
FW2 0.750 2.000 2.000 1.000
FW3 0.825 2.750 2.450 1.375

The FW1 configuration aims to prioritize results from
reviews documents. This configuration was implemented due
to the fact that a large portion of the typical user queries is
related to a certain topic they were interested to read about,
and the text from other users’ reviews provides most of the
information about topics present in the book.

This configuration, however, didn’t feature optimal results
when users wanted to search for either a specific book or a
specific author. Typically, reviews’ text does not include the
name of the book nor the authors’ full name, so most of the
retrieved results included these terms when the reviewer stated
a resemblance with other books or authors (e.g. "the story
is very similar to [book_title]", "the book is influenced
by [author_name]’s work"), which resulted in the system
returning a set of non-relevant results.

To mitigate this problem, two other field weight config-
urations were conceived. FW2 aims to prioritize results of
the Book or Author types (by applying a bigger weight to
their book_title and author_name fields, respectively),
leading to better results where the user’s information needs
should be fulfilled by documents of these types. To further
enhance the results, the FW3 configuration was conceived,
where the same fields were adjusted based on the results
obtained for the information needs of the developed test set.
This led to an ideal balance among the different weighted
fields, achieving a weighting configuration that aims to allow
the retrieval of relevant documents of the three distinct types.

E. Evaluation Methodology

In order to evaluate the achieved information retrieval sys-
tem in a systematic manner, the three different configurations
showcased in Table V were conceived.

Table V: System configurations.
Configuration Tokenization Filtering Stop Words removing

IR1 Y N N
IR2 Y Y N
IR3 Y Y Y

Firstly, configuration IR1 aims to study the behavior of the
system with only basic tokenization. Secondly, configuration
IR2 aims to understand the impact of applying the filters
described in Section III-C (except for the stop words removal).
Finally, configuration IR3 aims to analyze the results of using
a set of stop words.

To evaluate each system configuration, for each field weight
configuration described in Section III-D, eight information
needs were conceived. These were then expressed and queries
and submitted to the system. For evaluation purposes, the
first 20 results were taken into account, being deemed either
relevant or non-relevant.

The results will, then, be evaluated according to the follow-
ing metrics:

• Precision at K (from 1 to 20)
• Recall at K (from 1 to 20)
• Interpolated precision-recall (at 11 recall points, from 0%

to 100%, with increments of 10%)
• Average precision (AvP)
• Mean average precision (MaP), for each system / field

weight configuration pair (as shown in Equation 1, where
Q is the total number of queries)∑Q

q=1 AvP (q)

Q
(1)

F. Results

The following three examples illustrate the nature of the
information needs used to test the system.

Information Need (IN1): Understanding people’s opinions
on religion / faith-related books
Query (Q1): Religion OR Faith

The average precision (AvP) results for IN1 obtained for
each system / field weight configuration pair are visible in
Table VI.

Table VI: Average precision results for information need IN1.
AvP FW1 FW2 FW3
IR1 24% 65% 64%
IR2 85% 55% 57%
IR3 93% 64% 64%

For this information need, FW1 showed as particularly
low AvP value in IR1. However, the results significantly
improved ib IR2 (with the addition of filters). The quality



of the results peaked in IR3 (with the addition of the stop
words list). It is worth mentioning that, for this information
need, the best results were obtained using the field weights
configuration FW1, due to the fact that this configuration
targets mostly reviews text content (which is the main goal
of this information need).

Information Need (IN2): Finding historical books about the
roman empire era
Query (Q2): (Rome or Roman) Empire

The average precision (AvP) results for IN2 obtained for
each system / field weight configuration pair are visible in
Table VII.

Table VII: Average precision results for information need IN2.
AvP FW1 FW2 FW3
IR1 87% 57% 65%
IR2 94% 75% 65%
IR3 99% 91% 85%

For this information need, an improvement pattern similar
to IN1 was observed, achieving significant improvements
by adding analyzer filters and a stop words list. However,
there was a significant improvement when using weight fields
configuration FW2 and FW3, due to the fact that these two
configurations target mostly book titles and author names
(which is the main goal of this information need).

Information Need (IN3): Finding historical books about the
USA civil war and their authors
Query (Q3): (USA civil war) OR (Union AND Confederate)

The average precision (AvP) results for IN3 obtained for
each system / field weight configuration pair are visible in
Table VIII.

Table VIII: Average precision results for information need IN3.
AvP FW1 FW2 FW3
IR1 73% 37% 37%
IR2 88% 64% 43%
IR3 86% 58% 48%

The obtained results were quite similar to the ones obtained
for IN2. However, the precision values were lower, since
the collection features a fewer amount of documents on the
American civil war domain.

Based on the aforementioned examples, it is possible to
conclude that better results were achieved when using system
configuration IR3, especially when using field weight configu-
ration FW1, since this weight configuration targets documents
of all types, with emphases on reviews (useful for most typical
information needs).

The mean average precision (MaP), however, is a better
metric to understand the quality of the system, since it takes
into account the results obtained in all the queries of a given
query set (as visible in Equation 1). The MaP results obtained

for each system / field weight configuration pair using the
conceived eight information needs are visible in Table IX.

Table IX: Mean average precision results for each IR/FW configura-
tion pair.

MaP FW1 FW2 FW3
IR1 60% 53% 53%
IR2 87% 65% 59%
IR3 88% 59% 56%

The obtained MaP results corroborate the conclusions ob-
tained by analysing the IN1, IN2 and IN3 information needs -
the system configuration that achieved the overall better results
was IR3, using field weight configuration FW1.

All the results obtained from the analysis of the different
configurations may be found in Annex VII.

G. Tool Evaluation

As Solr was the only tool used, there is no objective,
empirical way to evaluate the tool and compare it with other
information retrieval libraries or frameworks. However, it
is possible to draw a few conclusions from the experience
obtained when using it to implement this IR system:

• The documentation is very limited, making it hard to
learn how to perform certain tasks since there are very
few practical examples

• The configuration and customization of the tool was not
straightforward nor user-friendly (especially during the
indexing process)

• Nevertheless, once the learning curve is overcome, Solr
offers many different options for all the needed IR
tasks, including multiple ways to both index and query
documents

• It allows the definition of complex queries and a very fast
query response time

Overall, while Solr does have its disadvantages, it still
allows the implementation of a good information retrieval sys-
tem. The previously discussed results show that it is possible to
achieve positive results using this tool (given that the indexing
and querying processes are properly configured).

IV. SEMANTIC WEB

In the past few decades, the World Wide Web [13] has
been adopted as the primary information source around the
world. The semantic web [14] provides a way to develop a
data store (built on a given vocabulary and a set of rules for
data handling) on the Web. It aims to address and solve the
lack of structuring of documents (that poses a problem for
machine-interpretation) by semantically correlating documents
and their entities.

This chapter features the developed work on conceiving an
ontology that models the Goodreads domain using Protégé
[15], with focus on the conceiving and configuration processes,
as well as the populating and querying tasks.



A. Domain semantics

Although the conceptual domain has already been modeled
and refined (as seen in Figure 3), it does not fully capture
how entities relate to one another. Thus, a second version
was developed, in order to facilitate building the ontology,
showcased in Figure 4.

Figure 4: Domain Conceptual Diagram (iteration 2).

The added semantic relations provide a meaningful descrip-
tion on how these entities are related. Moreover, it is worth
mentioning that a set of attributes were extracted to specific
entity classes (such as Date, Location and ID), since
this approach allows more flexibility in the ontology is to be
integrated with other ones.

B. Existing Ontologies and Standards

There are multiple ontologies that model book stores and/or
collections. However, due to the specificity of the domain,
there is no ontology that includes the concepts of books, their
authors and their reviews.

Thus, it was deemed that it would be more relevant to search
for an ontology that was both more flexible and more generic
than the aforementioned ontology-types.

Dublin Core [16] is a standard closely related to the
domain of this project and consist of a lightweight RDFS [17]
vocabulary for describing generic metadata. It is used mainly
to describe digital resources (such as videos, images and web
pages), as well as physical resources (such as books and CDs).
It is widely used in libraries, universities and document-heavy
fields such as law.

Of the fifteen featured metadata fields, the following were
deemed relevant for the domain [18]:

• Creator - "An entity primarily responsible for making the
resource.”

• Date - “A point or period of time associated with an event
in the lifecycle of the resource.”

• Description - “An account of the resource.”
• Language - “A language of the resource.”
• Subject - “The topic of the resource.”
• Title - “A name given to the resource.”
It is worth mentioning that each Dublin Core element is

optional and may be repeated. Although the aforementioned
metadata fields are appropriate to describe both a book and a
book review, they are inadequate to describe an author entity.
These metadata fields have the prefix dc, and the following

were selected and used when populating the ontology (further
detailed in Section IV-D):

• Book

– dc:title
– dc:date
– dc:identifier
– dc:language
– dc:creator

• Review

– dc:date
– dc:identifier

C. Building the ontology

1) Classes: The class schema in Figure 5 was defined to
structure the ontology, representing the different entities of the
domain.

Figure 5: Ontology Classes.

Even though the Person class has only one subclass (the
Author class), this approach improves the ontology’s future
extensibility by allowing the creation of other Person-type
subclasses (for example, a Reviewer class).

It is worth mentioning that both Date and Location were
assigned a class, which may be extended and integrated with
specific ontologies in the future.

2) Object and Data Properties: To introduce associations
between the multiple classes, the Object Properties presented
in Figure 6 were created. These properties represent the
semantics of how classes relate to one another.



Figure 6: Ontology Object Properties.

The data properties presented in Figure 7 are used to char-
acterize the attributes of the different entities in the domain,
such as a person’s name or gender.

Figure 7: Ontology Data Properties.

3) Property Restrictions: All object properties are Asym-
metric, meaning that these properties can be used to con-
nect an individual to another, but those individuals cannot
be connected the other way around by the same property.
Moreover, all object properties are Irreflexive, which means
that no individuals can be connected to themselves via any of
the properties.

The wasWrittenBy and the authored object properties
are inverse of each other. This means that, if an individual B
was written by A, then A authored B. The same can be said
about the reviews and hasReview object properties: If an
individual R reviews B, then B has a review R.

Finally, all data properties are functional.

D. Populating the Ontology

The dataset preparation step resulted, as detailed in Part II,
in three JSON datasets (books.json, authors.json and
reviews.json). However, Protégé does not feature a way
of populating an ontology from files in this format. Thus, a
set of parsing scripts were implemented to produce a version
of the datasets in CSV format.

Protégé includes the Cellfie plugin [19], which allows the
creation of axioms [20] to populate the ontology from an Excel
workbook.

Thus, after iteratively updating the format of the produced
CSV datasets, they were merged into a single XLSX file,
containing one sheet for each of the three entity datasets, as
shown in Figure 8.

Figure 8: Milestone 3 dataset transformations.

Then, a set of transformation rules were defined to produce
the axioms and required transformations that generate the
individuals, their type constraints, and other facts (such as the
data and object properties of each individual). The set of rules
is shown in Figure 9.

Figure 9: Cellfie transformation rules.

The application of the listed rules resulted in the creation of
about 1,200 axioms (consisting of creating individuals, type
assertions, format assertions, and others), which resulted in
populating the ontology with about 200 individuals. Figure 10
displays an example of the axioms generated when creating
the "The Hunger Games" book-type individual.



Figure 10: Generated axioms for a book-type individual.

It is worth mentioning that, since Protégé is quite resource-
heavy, the axiom generation step may take up to 10 seconds
(even though the number of generated axioms is in the order
of a few hundred).

E. Implemented Queries and Results

Before implementing the queries per se, a list of querying
goals was conceived. Of the list of candidates, the following
ones were selected to be expressed as SPARQL [21] queries:

1) Obtain a list of books and their number of reviews
(a metric that shows how discussed they are in the
community), in descending order (most popular first)

2) Obtain authors alongside with the books they wrote
3) Find the top 3 most reviewed authors of all time
4) Find the top 5 best-rated books of all time
5) For each book, find its best and worse reviews (rating-

wise)
6) Find the best-rated authors of all time (based on the

average rating of the books they authored)
7) Find the 5 books that were most recently reviewed

(trending books)
8) Find all the reviews on books written by American

female authors

The following three examples illustrate a few of the
developed SPARQL queries.

Goal (OWL_G3): Find the top 3 most reviewed authors of all
time
Query (OWL_Q3): Figure 11
Result (OWL_R3): Figure 12

Figure 11: OWL_Q3 SPARQL Query.

Figure 12: OWL_R3 SPARQL Query result.

Goal (OWL_G5): For each book, find its best and worse review
(rating-wise)
Query (OWL_Q5): Figure 13
Result (OWL_R5): Figure 14

Figure 13: OWL_Q5 SPARQL Query.

Figure 14: OWL_R5 SPARQL Query result (Datatypes omitted).

Goal (OWL_G6): Find the best-rated authors of all time (based
on the average rating of the books they authored)
Query (OWL_Q6): Figure 15
Result (OWL_R6): Figure 16

Figure 15: OWL_Q6 SPARQL Query.



Figure 16: OWL_R6 SPARQL Query result.

A full list of the developed SPARQL queries may be found
in Annex VIII.

F. Tool Evaluation

Protégé allows quick and thorough creation of an ontology
out of the box, without the need for installing other pieces
of software or plugins. Its user interface is also quite easy to
navigate.

However, from a programmatic standpoint, it lacks ways
of populating an ontology from different file formats, as well
as mechanisms that make this process more automatic - The
only mechanism provided by Protégé is the Cellfie plugin,
that lacks documentation and support, while at the same time
being very resource-heavy.

Moreover, the Protégé documentation is often outdated
(most documentation refers to older versions than the sup-
ported one) and lacks practical examples and tutorials.

Thus, the easiest task to complete was, even though requir-
ing a number of refinement iterations, the ontology schema
definition (that is, the classes, object and data properties
definition). The hardest task was the ontology populating,
since the lack of documentation resulted in a slow ad hoc
trial and error approach to define the Cellfie transformation
rules.

Nevertheless, this tool is still the best option to quickly build
a web ontology since it has a small learning curve and works
well out of the box.

G. Ontology Applications

This ontology was built with the intent to represent the
Goodreads domain (together with information about the
books’ authors). Thus, it could be applied to the Goodreads
website, together with authors information from WikiData.

However, with minor refactoring, most of the classes, object
and data properties could be applied to similar domains, such
as (a) music CDs, their reviews and musicians, (b) movies,
their reviews and screenwriters, (c) plays, their reviews, and
play-writers, among others.

It is worth mentioning that the ontology was conceived
with the intent for future expansibility, that is, it allows
the addition of new entities, classes and properties without
the need for major changes in the current version of the
schema. For example, it would be straightforward to add a
new ReviewAuthor class, as a subclass of the Person class,
further extending the domain of the ontology to a new concept.
Thus, it is important to maintain a degree of flexibility when

conceiving an ontology in order to enable future expansion
and allow possible integrations.

V. CONCLUSIONS

In this paper, the chosen datasets and how they were
processed is described, as well as the system conceptualization
designed for the project. Then, the steps taken to configure
the IR system itself is detailed, with emphasis on the indexing
process and the querying results.

Regarding the datasets preparation phase, the datasets were
downloaded and processed. The refinements included whites-
pace trimming, duplicate entries removal and missing/null
fields normalization. Then, the datasets’ intersection percent-
age was analyzed, obtaining results above 70%. Furthermore,
the information contained in the datasets was studied, and
from that, charts were traced to better visualize the data.
From there, it was concluded that both the books and the
reviews have a favorable distribution over time and a balanced
number of reviews per book. In this report, the Domain and
Data Conceptual Models may also be found. The Domain
Conceptual model describes how the different entities relate to
each other. The Data Conceptual Model describes the pipeline
used to extract and treat the datasets.

Regarding the IR system configuration phase, firstly a ad-
hoc comparison between the Solr and Elasticsearch technolo-
gies was made. Although both technologies offered similar
features, the developed work was focused on the former. Then,
the datasets were merged and imported to Solr, indexing
each imported document. In this process, a set of fields was
subjected to a list of additional operations, which consisted
of the removal of stop words, stemming, capitalization nor-
malization, among others. Regarding the retrieval process,
a set of field weighting configurations were studied, where
each proved to achieve better results in specific information
need cases. Regarding the system’s evaluation, a set of three
system configurations were conceived. The configuration that
achieved the best results was the one which applied a set of
operations to the document’s fields of interest, while using a
stop words list, with a mean average precision of 88%.

Finally, regarding the conceived semantic web ontology,
the original conceptual model was adapted to better fit the
needs to build the ontology. Research made on domain-related
ontologies showed that, given the specificity of the domain, no
ontologies exist that reflect exactly the context of this work.
However, a set of the Dublin Core standard metadata fields
was applicable, although not fully adopted. Afterward, the
ontology itself was built using Protégé allowed to quickly and
easily create the domain’s classes, object and data properties,
although this schema was reiterated multiple times. After
migrating the dataset to an Excel workbook XLSX format, the
Cellfie plugin was used to populate the ontology by defining
a set of transformation rules that generated axioms to create
individuals, properties and assert constraints. Finally, a set of
querying goals were formulated as SPARQL queries, which
due to the meaningful naming of the schema’s classes and



object properties, allowed to expressively describe and satisfy
these user needs.

It is worth mentioning that Information Retrieval (IR) and
Semantic Web (SW) serve different purposes: While IR is
intended to suffice textual-bases user information needs on a
given domain, SW aims to make information more accessible
and understandable to computers by semantically linking enti-
ties, thus allowing higher complexity queries that may involve
data aggregation or joining.

As future work, the further expansion of the developed
web ontology would be of interest by adding the concepts
of review authors, book publishers, and book stores. It would
also benefit from integrating other web ontologies, such as
W3C Geospatial Ontologies [22] (to describe locations) and
ontologies used to accurately describe people.

REFERENCES

[1] Z. Zając, “Goodbooks 10k,” 13th Sep 2017, version 1. Data retrieved
from goodbooks-10k GitHub repository, https://github.com/zygmuntz/
goodbooks-10k.

[2] D. Huynh, “Open Refine,” 23rd Oct 2020. [Online]. Available:
https://openrefine.org/

[3] W. McKinney, “pandas - Python Data Analysis Library,” 22nd Oct
2020. [Online]. Available: https://pandas.pydata.org/

[4] M. Wan, “UCSD Book Graph - Reviews,” 2017, data retrieved from
https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/reviews.

[5] N. Shuyo, “langdetect,” 24th Oct 2020. [Online]. Available: https:
//pypi.org/project/langdetect/

[6] W. Foundation, “Wikidata,” 26th Oct 2020. [Online]. Available:
https://www.wikidata.org/wiki/Wikidata:Main_Page

[7] S. Siznax, “wptools,” 25th Oct 2020. [Online]. Available: https:
//pypi.org/project/wptools/

[8] Apache, “Apache Solr,” 14th Nov 2020. [Online]. Available: https:
//lucene.apache.org/solr/

[9] Elastic, “Elasticsearch,” 15th Nov 2020. [Online]. Available: https:
//www.elastic.co/what-is/elasticsearch

[10] Apache, “Apache Solr Filter Descriptions,” 18th Nov 2020. [Online].
Available: https://lucene.apache.org/solr/guide/6_6/filter-descriptions.
html

[11] A. S. Foundation, “Query Syntax and Parsing,” 15th Nov
2020. [Online]. Available: https://lucene.apache.org/solr/guide/6_6/
query-syntax-and-parsing.html

[12] Apache, “Apache Solr DixMax query parser,” 21th Nov
2020. [Online]. Available: https://lucene.apache.org/solr/guide/8_6/
the-dismax-query-parser.html

[13] w3, “World Wide Web History,” 10th Dec 2020. [Online]. Available:
https://www.w3.org/History.html

[14] w3, “Semantic Web,” 11th Dec 2020. [Online]. Available: https:
//www.w3.org/standards/semanticweb/

[15] Stanford, “Protégé,” 20th Dec 2020. [Online]. Available: https:
//protege.stanford.edu/

[16] DublinCore, “Dublin Core,” 7th Dec 2020. [Online]. Available:
https://dublincore.org/

[17] w3, “W3 - RDFs,” 19th Dec 2020. [Online]. Available: https:
//www.w3.org/2001/sw/wiki/RDFS

[18] Wikipedia, “Dublin Core,” 7th Dec 2020. [Online]. Available:
https://en.wikipedia.org/wiki/Dublin_Core

[19] J. Hardi, “cellfie plugin,” 22nd Dec 2020. [Online]. Available:
https://github.com/protegeproject/cellfie-plugin

[20] Stanford, “Protégé Axioms,” 23rd Dec 2020. [Online]. Available:
https://protegewiki.stanford.edu/wiki/Protege4AxiomAnnotations

[21] W3C, “SPARQL Query Language for RDF,” 30th Dec 2020. [Online].
Available: https://www.w3.org/TR/rdf-sparql-query/

[22] W3C, “W3C Geospatial Ontologies,” 29th Dec 2020. [Online]. Avail-
able: https://www.w3.org/2005/Incubator/geo/XGR-geo-ont-20071023/

VI. ANNEX A - DATASETS ANALYSIS

A. Books Dataset Analysis

Figure 17: Books by Century.

Figure 18: Books by Decade.

Figure 19: Books by Year.

Figure 20: Books by Saga.

https://github.com/zygmuntz/goodbooks-10k
https://github.com/zygmuntz/goodbooks-10k
https://openrefine.org/
https://pandas.pydata.org/
https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/reviews
https://pypi.org/project/langdetect/
https://pypi.org/project/langdetect/
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://pypi.org/project/wptools/
https://pypi.org/project/wptools/
https://lucene.apache.org/solr/
https://lucene.apache.org/solr/
https://www.elastic.co/what-is/elasticsearch
https://www.elastic.co/what-is/elasticsearch
https://lucene.apache.org/solr/guide/6_6/filter-descriptions.html
https://lucene.apache.org/solr/guide/6_6/filter-descriptions.html
https://lucene.apache.org/solr/guide/6_6/query-syntax-and-parsing.html
https://lucene.apache.org/solr/guide/6_6/query-syntax-and-parsing.html
https://lucene.apache.org/solr/guide/8_6/the-dismax-query-parser.html
https://lucene.apache.org/solr/guide/8_6/the-dismax-query-parser.html
https://www.w3.org/History.html
https://www.w3.org/standards/semanticweb/
https://www.w3.org/standards/semanticweb/
https://protege.stanford.edu/
https://protege.stanford.edu/
https://dublincore.org/
https://www.w3.org/2001/sw/wiki/RDFS
https://www.w3.org/2001/sw/wiki/RDFS
https://en.wikipedia.org/wiki/Dublin_Core
https://github.com/protegeproject/cellfie-plugin
https://protegewiki.stanford.edu/wiki/Protege4AxiomAnnotations
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/2005/Incubator/geo/XGR-geo-ont-20071023/


Figure 21: Books by Saga.

B. Reviews Dataset Analysis

Figure 22: Reviews per Book.

Figure 23: Reviews per Month.

Figure 24: Reviews per Language.

Figure 25: Reviews per Language.

Figure 26: Reviews’ size distribution.

Figure 27: Reviews’ size distribution.



C. Authors Dataset Analysis

Figure 28: Books per Author.

Figure 29: Books per Author.

VII. ANNEX B - IR SYSTEM CONFIGURATIONS ANALYSIS

A. System configuration IR1

Figure 30: IR1 average precision at K.

Figure 31: IR1 average recall at K.

Figure 32: IR1 average interpolated precision-recall.

B. System configuration IR2

Figure 33: IR2 average precision at K.



Figure 34: IR2 average recall at K.

Figure 35: IR2 average interpolated precision-recall.

C. System configuration IR3

Figure 36: IR3 average precision at K.

Figure 37: IR3 average recall at K.

Figure 38: IR3 average interpolated precision-recall.

VIII. ANNEX C - WEB ONTOLOGY

A. Cellfie Input Excel workbook

Figure 39: Excel workbook - books page.

Figure 40: Excel workbook - authors page.

Figure 41: Excel workbook - reviews page.



B. SPARQL Queries

Figure 42: OWL_Q1 SPARQL Query and result.

Figure 43: OWL_Q2 SPARQL Query and result.

Figure 44: OWL_Q3 SPARQL Query and result.

Figure 45: OWL_Q4 SPARQL Query and result.

Figure 46: OWL_Q5 SPARQL Query and result.

Figure 47: OWL_Q6 SPARQL Query and result.

Figure 48: OWL_Q7 SPARQL Query and result.



Figure 49: OWL_Q8 SPARQL Query and result.


	Introduction
	Dataset Preparation
	The Datasets
	Books
	Reviews
	Authors

	Data Conceptual Model
	Books Dataset
	Reviews Dataset
	Authors Information
	Merging Datasets

	Domain Conceptual Model
	Possible Search Tasks

	Information Retrieval
	Tool Selection
	Collections and Documents
	The Indexing Process
	Retrieval Process
	Evaluation Methodology
	Results
	Tool Evaluation

	Semantic Web
	Domain semantics
	Existing Ontologies and Standards
	Building the ontology
	Classes
	Object and Data Properties
	Property Restrictions

	Populating the Ontology
	Implemented Queries and Results
	Tool Evaluation
	Ontology Applications

	Conclusions
	References
	Annex A - Datasets Analysis
	Books Dataset Analysis
	Reviews Dataset Analysis
	Authors Dataset Analysis

	Annex B - IR System Configurations Analysis
	System configuration IR1
	System configuration IR2
	System configuration IR3

	Annex C - Web Ontology
	Cellfie Input Excel workbook
	SPARQL Queries


