
Steam Games and Reviews
Ângelo Teixeira, Duarte Frazão, Mariana Aguiar and Pedro Costa

Faculty of Engineering, University of Porto
{up201606516, up2016005658, up201605904, up201605339}@fe.up.pt

Abstract—Through the evolution of the internet, the quantity
of information has grown to an unimaginable level, reinforcing
the importance for developers to create mechanisms capable of
connecting available information. Such is the case for searching
video-games, where big companies control the most relevant
online stores not utilizing any information outside of their
domain, leaving behind much possible information on the table.
In this paper, we present a broader search system than the one
found on Steam. To do so, we use two datasets available on
Kaggle containing information about all the current games in
Steam and the reviews of a subset of them. This information is
then refined and enriched with information from Wikipedia and
conceptually described. Exploratory data analysis is conducted
to understand possible patterns, list possible retrieval tasks and
prepare it for the retrieval phase. We utilized the Solr search
platform to implement the information retrieval system, defining
the collection and the respective documents, while describing the
indexing process. A set of information needs is created from
the previously defined retrieval tasks to explore the selected
tool’s capabilities and evaluate the retrieval system. Results are
satisfactory and provide further insights into the importance of
specific fields; specifically, the reviews are essential in obtaining
correct results when the information need portrays a general
negative aspect of games. Finally, in the Semantic Web domain,
we explore existing ontologies applicable to our domain and,
with the Protege tool, define and populate our own ontology
— answering the remaining retrieval tasks through SPARQL
queries. The obtained results were satisfactory but limited given
the tool’s constraint on the dataset size.

Index Terms—Data Extraction, Data Refinement, Data Anal-
ysis, Search Engine, Steam, Video games

I. INTRODUCTION

The current landscape of gaming search systems is still
lagging in the information that it can offer users, using only
what is already available inside the stores. At the moment,
Steam [11], the most popular store for desktop games, only
allows users to search for games’ titles with a limited filtering
and ordering section. The motivation for tackling this problem
is to present a broader search system for users looking to
buy a new game, with more and better text search capabilities
that provide relevant information about the games and their
reviews. The paper is divided into two three parts. The first
details the process of data retrieval and preparation. Initially,
pre-collected datasets with information relevant to the problem
at hand were selected and analyzed. The data then went
through various refinement tasks and was enriched with data
extracted from Wikidata [19], and Wikipedia [20] APIs. After
that, the data was analyzed and characterized to understand
its values and distributions better, resulting in a conceptual
model. Finally, possible retrieval tasks are presented to identify
the possibilities the final product can have. The second part

presents and analyzes the implementation of the information
retrieval system for our data focused on ad hoc search. We
start by defining the three different versions of the system
that will be used for evaluation and comparison, along with
a justification for the tool used to create these systems. From
the previously defined possible retrieval tasks, we create six
Information Needs (IN) to evaluate the systems. Finally, we
present the results and a discussion for each IN followed by
an analysis of the previously selected tool. The third and last
part explores the dataset from a Semantic Web perspective,
creating an ontology for our domain. We start by describing the
Semantic Web’s origins and motivation and existing ontologies
applicable to our domain. Then, we describe the process be-
hind our ontology’s creation and population in the Protégé [16]
tool and answer the remaining retrieval tasks with SPARQL
queries. Finally, we evaluate both the queries results and the
tool itself, followed by a comparison between the Information
Retrieval and Semantic Web paradigms.

II. DATA EXTRACTION

To select the most appropriate datasets for the chosen
domain and the problem at hand, various open data platforms
were consulted. With the goal of finding a dataset rich in
structural data and another one rich in textual data, Kaggle [5]
and Zenodo [22] proved to be the best solution. Kaggle is a
platform for data scientists and machine learning practitioners
to publish data sets and explore and build models. Zenodo is a
plataform that allows researchers to deposit data sets, research
software and other research digital artifacts.

For the structural data, the Steam Store Games dataset [3],
found on Kaggle, was selected. The dataset provides informa-
tion about various aspects of the games on the Steam Store,
such as its developer, categories, genre, price and the estimated
number of owners. The data was pre-collected from the Steam
Store [11], owned by Valve, and SteamSpy [12] APIs, owned
by Sergey Galyonkin, and only represents a subset of the
whole domain, more specifically, prior to May 2019. It is a
dataset composed of 6 csv files, of around 50 MB and with
27k rows per file.

For the textual data, the Steam Review dataset [7], found on
Zenodo, was selected. The dataset provides reviews of some
selected Steam games with a review sentiment and the number
of users who marked the review as helpful. The data was
pre-collected from the Steam reviews portion [10] of Steam
store and only represents a subset of the whole domain. It is a
dataset composed of 1 csv file, of around 2 GB and with 6.4M
rows, resulting in 33% of games having at least one review.

In order to add another data source to the whole set of
collected data, detailed description about some of the games’
publishers and developers was gathered using the Wikidata
SPARQL API [19] and the Wikipedia API [20]. This process
was considered an enrichment task and is described in detail
in Section III-B.

III. DATASET PREPARATION

In order to make sure the collected data is ready for an infor-
mation retrieval phase and as accurate and correct as possible,
some refinement and enrichment tasks were performed on both
datasets.

Prior to starting the data preparation, the selected datasets
were studied in terms of the information they offer, so that,
only, the attributes relevant for the possible search tasks and
domain would be selected. This exercise was especially im-
portant for the Steam Store dataset given that it was, initially,
consisted of 6 different files and resulted in a single file with
attributes aggregated from 3 files.

An overview of the workflow pipeline executed to prepare
the datasets can be consulted in Figure 1.

A. Refinement

The tasks performed for the data refinement of the chosen
datasets involve the selection of attributes, transformation of
attributes’ data types, transformation of attribute values and
are described in more detail below.

The data refinement was accomplished using OpenRe-
fine [15], a free, open source tool for cleaning and transform-
ing data.

1) Attribute Selection: As mentioned previously, the most
relevant attributes were selected to create the final dataset and
OpenRefine [15] was used to delete the extras and join others
from the different files. The Steam store file was composed,
initially, of 18 attributes, from which only 2 were deleted,
steam tags and achievements. The first due to containing, in
its majority, duplicated information present in the categories
and genres attributes; and the second because it was considered
not relevant to the domain. Additionally, 2 attributes, website
and detailed description were joined from other files.

2) Attribute type transformation: To normalize the formats
of the attributes of the same type, the following transforma-
tions were performed. For the binary attributes (0 and 1),
such as english, the values were mapped to boolean values,
True and False. Finally, the owners attribute, originally in a
bucket interval format was transformed into numeric values
by considering the maximum limit of the interval.

3) Attribute cleaning: Upon further inspection of the pub-
lisher, developer and name attributes, characters and expres-
sions considered not necessary were discovered and removed.
These expressions could also make the search for the attribute
values in other data sources impossible. Some examples are
characters like ™ and © and expressions like “Lda.”, “LLC”
and “.inc”. Whenever possible, the capitalization of the pre-
viously mentioned attributes was normalized between objects
with the same values.

B. Enrichment

In order to better relate publishers and developers – which
we will refer to as organizations – and to present more
information about them, besides the title, we used both the
Wikipedia and Wikidata API to obtain a general description
of the companies. The querying was done through two Node.js
packages [21] [18].

The process is divided into two phases and each phase has
two steps. Each game entry on the csv file contains the name
of both organizations. However, we noticed that the name is
not always correct, or sufficiently accurate to get a match from
Wikipedia. The name of the game is, usually, more reliable.

The first phase begins with the name of the game. Given
the previous issue, we start by querying, with SPARQL, the
Wikidata API with the name of the game to obtain the correct
names of the organizations (first step). After that, we use
those names to directly query Wikipedia and get a text extract
(second step).

Nonetheless, we also noticed that some games do not have
an entry on the Wikidata knowledge base but their organiza-
tions do. In the second phase, for these missing matches we
use the organizations names present on the csv and executed
the same steps as mentioned above, only instead of querying
games, we query publishers or video-game developers.

Considering that the name obtained by the API can be
slightly different that the ones already present on the file, we
update each row accordingly, thus maintaining the relation. In
the end, 15% of games have a publisher and developer with a
description. The output of this process is stored in a csv file.

IV. CONCEPTUAL MODEL

After all the data preparation tasks, especially, the attribute
selection in the refinement phase and the enrichment of
the original datasets with information from Wikipedia and
Wikidata, the conceptual model of the data is represented in
Figure 2.

1

*

publisher

1

*

developer

* *

* *

* *

 name in {windows, linux, mac}

Game

appid: string

name: string

release_date: string

english: bool

required_age: int

detailed_description: string

website: string

positive_ratings: int

negative_ratings: int

median_playtime: int

average_playtime: int

owners: int

price: int

Category

name: string

Organization

name: string

description: string

* 1

Review

review: string

positive_rating: bool

number_helpful: int

Platform

name: string

Genre

name: string

Fig. 2: Conceptual Model.

2

steam.csv

steam_description_data.csv

steam_support_info.csv

steam_reviews.csv

OpenRefine

RE
FIN

ED

Wikipedia	API

WikiData	API

Get	Publisher	and
Developer	for	each	game

steam.csv

steam_description_data.csv

steam_requirements_data.csv

steam_support_info.csv

OpenRefine

steam_reviews.csv
RE
FIN

ED

Parsing
Take	the	first
paragraph	from	the
wikipage

Cleanup	tags	(duplicates	of	categories)

Transform	numeric	booleans	(0,1)	into
(true,	false)

Dataset	with
Structured	Data

Transform	bucket	intervals	into	enums
(i.e	10-20	into	20)

Remove	irrelevant	columns

Transform	non-boolean	columns	into
true,	false

NLP	with	spaCy

NLP	with	spaCy

organizations.csv

Fig. 1: Workflow Pipeline.

There are 3 main classes: Game, Review and Organization.
The Game class has attributes that describe the game objects
and attributes that will be useful for the users, in a later phase,
to understand if the game is in general well rated and popular.
This class also has associations with other classes, Category,
Genre and Platform, that help to characterize the game. The
Review represents a review of a certain game and the class
Organization represents the entities that publish and develop
the games.

V. DATA CHARACTERIZATION

In this section we explore the distribution and characteriza-
tion of the collected data.

A. Games distribution

As expected by the boom in the gaming industry from the
past fifteen years most of the games we have in our dataset are
from that time frame, as we can see from Figure 3. We’re also
able to analyse that we have games dating back to as much as
the year 1997, with a significant increase starting at the year
2005, which coincides with the year Steam started negotiating
contracts with other publishers to release their games on the
Steam store.

In Figure 4 we’re able to see the genre distribution, Indie
being the most predominant, which could make the addition
of the publisher and developer information even more relevant
for our search system.

Fig. 3: Number of games per year.

Fig. 4: Number of games per genre.

3

B. Text Analysis

There are three main textual fields in the system: organiza-
tions descriptions, reviews and game descriptions. The length
of each one was analysed and the results can be seen in Table I.

Additionally, we used spaCy [8] in order to analyse the
entities contained in each fields. We found that both in the
reviews and in the game descriptions, there wasn’t a relevant
(and consistent) number of entities that would be useful for
us (e.g. entities that could link different games or reviews).
However, with the descriptions of organizations, there was
a significant mean number of entities extracted – mostly
people and other organizations – that can prove to be useful
in connecting different games. The results can be seen in
Figure 5.

Fig. 5: Average number of entities per organization descrip-
tion.

TABLE I: Text attributes characterization.

Organization
Descriptions

Reviews Game
Descriptions

Total number 1,011 6,417,105 27,334

Average length 729 304 1634

Length p151 308 30 837

Length p50 526 104 1,303

Length p75 983 310 2,026

Length p95 1,975 1,237 3,907

VI. RETRIEVAL TASKS

The retrieval tasks possible with the collected data are
focused on 2 documents: Games and Organizations. Some of
the established retrieval tasks are:

• Search for games
• Search for organizations (games’ publishers and develop-

ers)
• Search for reviews
• Search for games’ categories
• Search for games’ genres
• Filter games by year, publisher, developer, price, number

of owners, platform, ...

1pX is shorthand for Xth percentile

• Filter reviews by sentiment and number of helpful votes
• Order games by price, playtime, positive and negative

ratings, number of reviews, release date and number of
owners

• Order reviews by number of helpful votes
• Top reviews of a game
• Related games based on categories/genres/publisher/de-

veloper
Currently, Steam offers its users the ability to search for

games and to filter them by tag, type, number of players,
features, platforms, language and price. In addition to this,
with the data collected, it will be possible to search for
organizations and filter the games per publisher, developer,
number of owners, required age, playtime and positive and
negative ratings.

VII. INFORMATION RETRIEVAL

An Information Retrieval System primary goal is to retrieve
the documents of a collection that are relevant to a user infor-
mation need while retrieving as few non-relevant documents
as possible. This study will be focused on the most common
retrieval task, ad hoc search. Ad hoc search is a task where the
user specifies their information needs through a textual query
that is performed on all documents of the collection and where
the obtained results are ordered according to how relevant they
are.

In order to study and to evaluate the results of possible re-
trieval tasks on the Steam Games domain, specified previously,
we will use three different systems: (1) a baseline system
where basic matching on key fields is performed, (2) a system
where the main textual fields were indexed with the use of
filters (presented in Section X) and (3) a system with weights
where relevant fields are boosted in the retrieval process.

A set of information needs, defined in Section XI, will be
translated to a textual query and tested in each system. Due to
the high number of documents, each query will be evaluated
on their Precision @ 10 (P@10) and Average Precision (AvP)
values. P@10 measures the precision, the fraction of retrieved
documents that are relevant, at fixed low levels of retrieved
results and AvP is the average of the precision values obtained
for the set of the top k documents existing after each relevant
document is retrieved. To compare the global performance of
the three systems we will use the Mean Average Precision
(MAP), obtained by averaging the AvP values of all the
information systems.

VIII. INFORMATION RETRIEVAL TOOL SELECTION

The two main tools considered to be used for the infor-
mation retrieval tasks were Apache Solr [13] and Elastic-
search [14]. Both tools are open-source, built on top of Lucene
nodes and offer a variety of features, such as, distributed
full-text search, near real-time indexing, high availability and
support for NoSQL data. Solr is an older tool and so, it is a
more mature product with a broad user community. It offers
features like faceting, integration with big data tools, support
for rich-text documents and complex search queries that are

4

unavailable in Elasticsearch. Even though Elasticsearch is
more recent than Solr, it is the most popular search engine
since 2016 [4]. It only supports JSON, has a powerful index-
ing and searching functionalities and offers more scalability
features than Solr.

However, the main reason for our final choice was the use
cases of each tool. While, Elasticsearch is focused on scaling,
data analytics and processing time series data, in order to,
extract meaningful insights and patterns; Solr is best suited
for search applications that use significant amounts of static
data. The problem at hand, described in the previous sections,
falls in Solr’s use case: a search application on Steam games
data to perform advanced information retrieval tasks.

One disadvantage of Solr, that we came to discover while
using the search tool, is its poor documentation and lack of
good technical examples and tutorials. Elasticsearch, on the
other hand, is known for its well organized and high quality
documentation.

IX. COLLECTIONS AND DOCUMENTS

There are two different types of documents in our system:
games that represent the best-selling Steam games and corre-
spond to about 27,000 of the documents and reviews of the
best-selling Steam games that are considered children of the
game documents with about 6,400,000 objects.

Initially, all the data was in CSV files and while Solr
allows indexing of documents from files in csv format, it
does not support that these documents are processed as child
documents. In order to index the reviews as nested documents
the games and reviews data were converted to the JSON format
and aggregated in a single file with an array of JSON objects.

With a single JSON file containing the two types of
documents, we were able to index all the documents in a
single collection where all the information needs will be
queried upon. The association between the games and reviews
documents is assured by Solr’s nested document feature and
can the queried using the child of and parent which
keywords.

X. INDEXING PROCESS

Before starting the indexing process, we studied which
fields from each document should be indexed. We decided
to only index the fields necessary to fulfill the previously
defined information needs, by serving as a query parameter.
The final indexed fields of the game documents are: name,
detailed description, categories and genres. The indexed field
of the review documents is only the review text. The final
schema can be consulted in Table II. The documents were
indexed using Solr’s Post tool.

The indexed and stored fields with numeric values were
defined using the default Solr field type pint, most of the
textual fields using the string or strings (when multi valued)
field type and the dates with Solr’s pdate field type. The
most important textual fields, such as the games’ name and
description and the reviews’ text were subjected to a analyzer
pipeline, that includes a tokenizer and optional filters for

TABLE II: Schema fields.

Field Type Indexed
average playtime plong No
categories tag text Yes
detailed description custom text Yes
developer name text No
genres tag text Yes
is english boolean No
median playtime pfloat No
name name text Yes
negative ratings pint No
owners pint No
platforms strings No
positive ratings pint No
price pfloat No
publisher name text No
release date pdate No
required age pint No
website string No
review custom text Yes
number helpful pint No
sentiment pint No

further processing each generated token. To achieve this we
created three custom field types for each category of textual
attribute: names, tags and small paragraphs.

The three custom field types, name text, tag text and cus-
tom text, use Solr’s standard tokenizer but differ in the filters
that each one applies. The field type name text used in the
game documents’ categories and genres fields applies a lower
case filter that converts all tokens to lower case. This filter
helps combat possible relevant documents not matching due
to case mismatch. The field type name text intended to be
used in the games’ names, in addition to the lower case filter
it also applies a synonym filter. The configured synonyms are
mostly common acronyms for popular games, that are usually
searched for instead of the full game title. The custom text
field type defined for longer blocks of text, such as the games’
description and the reviews’ text also applies the lower case
and synonyms filter. On top of them, custom text applies a
filter to remove English stop words, one to remove possessives
and a stemming filter to reduce the vocabulary size and
increase matching. A summary of the custom field types can
be seen in TableIII.

TABLE III: Custom Field Types.

Field Types Filter Index Query

name text
LowerCaseFilterFactory X X

SynonymGraphFilterFactory X

tag text LowerCaseFilterFactory X X

custom text

StopFilterFactory X X

LowerCaseFilterFactory X X

EnglishPossessiveFilterFactory X X

PorterStemFilterFactory X X

5

Although we couldn’t find any list of games abbreviations
we created a script that followed the general pattern of abbre-
viation for games that returned the valid acronyms, i.e. extract
the first letter of each word in the game title, excluding games
from the same game series. As we’ll explore in Section XI
this synonym list added the possibility to search for games
using their abbreviations (e.g., cs - Counter Strike, tf2 - Team
Fortress 2). A preview of the file can be seen in Listing 1 .

Listing 1: Synonyms file.

cs => counter strike, cave story, castle
story

tfc => team fortress classic, train
frontier classic

...

XI. RETRIEVAL PROCESS

To evaluate the different systems, we defined 6 different
information needs (IN) based on the possible retrieval tasks,
previously defined in Section VI. For each information need,
we provide a simple description and the relevance judgment
to decide if a document is relevant or not. To evaluate each
system performance for each information need, we analyzed
the top 10 results, their relevance and calculated the P@10
and AvP, as mentioned previously.

The query fields used were the indexed ones, i.e. de-
tailed description, review, categories and genres. The name
field was only used in the information need present in Sec-
tion XI-F.

In the weighted system, we followed an ad hoc approach to
determine the weights of each field. The result can be found
on Table IV.

TABLE IV: System 3 - Weights Distribution.

Field Weight

detailed description 1.5

review 0.5

categories 0.1

genres 0.1

As seen in Section IX, the number of reviews is two orders
of magnitude higher than the number of games. This difference
is even more noticeable when querying Solr without weights,
the top results are usually only reviews documents. Thus, we
decided to reduce the importance of reviews in the weighted
system to assess the importance of this type of documents in
the defined INs.

A. Family Games

Information Need: Games suited for families that are
multiplayer, have a low required age and do not have violent
or sexual content.

Relevance Judgment: Here we intend to retrieve games
that are suitable to play with your family. They should be rated

for ages < 12, have a multiplayer mode, and the description
should mention things like “family”, “fun for all” or “couch
play”. We can find this information on the game categories
but also on reviews from players that let the others know that
they had a great time (or not) with their kids while playing
the game.

Query: (family OR "fun for all" OR kid)
AND multiplayer

Conclusion: The first two systems had a better performance
on average than the third, as it can be seen in Table V.
System 2 is slightly better and has the best R-Precision
value (83%), meaning that its relevant results appear sooner
than in the other systems. This is due to the fact that some
games might mention “kidding” or words like “familiar” which
can deem the document relevant to this Information Need
without actually mentioning the exact query terms. In the third
system, since we value the games’ descriptions way more, it’s
“ignoring” some of the reviews that more relevant games have,
that show up on system 1, making this last system worse in
terms of precision and also recall.

TABLE V: Family Games Information Need Results.

Rank System 1 System 2 System 3

1 N R N

2 R N R

3 R R N

4 R R N

5 R R R

6 N R R

7 N N R

8 R N N

9 N N R

10 R R N

P@10 0.60 0.60 0.5

AvP 0.657 0.775 0.505

B. Online games with server problems

Relevance Judgment: Here we intend to retrieve games
that are suitable to play online, but have lag or server issues.
They should be online games and mention connection or lag
issues in the reviews to be considered relevant. We cannot look
at the games description, since the developers won’t mention
it there.

Query: (lag OR "server down") AND online
Conclusion: The first two systems had a way better per-

formance than the third, as it can be seen in Table VI.
Due to the fact that System 3 has a higher weight on the
games’ descriptions, and when they have “lag” references is
to mention that they are “lag-free”, it will often consider games
as relevant when they are not, which reflects on its precision
of 0.

6

TABLE VI: Online games with server problems Information
Need Results.

Rank System 1 System 2 System 3

1 R R N

2 R R N

3 R N N

4 R R N

5 R N N

6 N N N

7 R N N

8 R R N

9 R R N

10 N N N

P@10 0.80 0.5 0.00

AvP 0.953 0.76 0.000

C. Free games with in-app purchases

Information Need: Free to play games that contain in-app
purchases.

Relevance Judgment: Here we intend to retrieve games
that are technically free to play but have in-app purchases
that might give you advantages in the game. We can find this
information on the game categories but also on reviews from
players that show their frustration from “pay-to-win” games,
where the in-app purchases give you a clear advantage on the
other players, making the game effectively not free.

Query: ("pay to win" OR "in-app purchase"
∼10) AND free

Conclusion: The first two systems had a much better
performance than the third, as it can be seen in Table VII. In
system 3 we assigned a bigger weight to the game description
with the expectation that the publishers would specify that the
game had in-app purchases, which turned out to not be the
case, making the system less reliable. This query can make
it hard to obtain relevant results as some reviews mention
in various ways that the game is not pay-to-win, leading the
system to return a non relevant document.

D. Games with a toxic community

Information Need: Games with a toxic community
Relevance Judgment: Here we intend to search for games

where players consider the community toxic. In order to
exclude other comments regarding the community we used
the + operator to force a match with the toxic keyword.
As publishers do not want the toxicity of the community
associated with the game the only location where we can find
this information is in the reviews text.

Query: +toxic community
Conclusion: As we can see from Table VIII the first two

systems had a good performance. As expected the system 3
with a bigger weight to the review text gave us a perfect set

TABLE VII: Free games with in-app purchases Information
Need Results.

Rank System 1 System 2 System 3

1 R R N

2 N R N

3 R R N

4 N N N

5 R R N

6 R N N

7 R R R

8 R R R

9 R N R

10 R R R

P@10 0.80 0.7 0.4

AvP 0.747 0.852 0.282

of retrieved documents. So we decided to analyse how system
3 would behave if we reduced the review text weight to 0.5.
We expected a reduction of precision but we actually got 0
relevant documents retrieved, proving the importance of the
review text for this Information Need.

TABLE VIII: Games with Toxic Community Information
Need Results.

Rank System 1 System 2 System 3

1 R R N

2 N R N

3 N R N

4 R R N

5 R N N

6 R R N

7 R R N

8 R R N

9 R R N

10 R R N

P@10 0.70 0.7 0.00

AvP 0.716 0.712 0.000

E. Fast Paced Games

Information Need: Games that offer a fast paced gameplay,
sometimes described as “adrenaline-inducing games”.

Relevance Judgment: Must not simply be a game with,
per example, fast cars or fast races. The game must provide
constant changing environments and be action-packed. Usually
this information can be retrieved straight from the description,
but reviews also portray this information quite well.

Query: +fast pace

7

Conclusion: All the 3 systems demonstrated good results,
as it can be seen in Table IX, given the general correct use
of the ‘‘fast pace” term in both game descriptions and games
reviews. There is no real gain in falsely advertising games in
this aspect since both fast and slow paced games are equally
important in the game community, being a matter of personal
taste.

TABLE IX: Fast Games Information Need Results.

Rank System 1 System 2 System 3

1 R R R

2 R R R

3 R R R

4 R R R

5 R R R

6 R R R

7 R R R

8 R R R

9 R R R

10 R N R

P@10 1.00 0.9 1.00

AvP 1.000 1.000 1.000

F. Specific Game - Counter Strike

Information Need: Find information regarding a specific
game, in this case Counter-Strike. This Information Need was
introduced to study a navigational query type in our systems.

Relevance Judgment: Given the navigational nature, to be
relevant, the first result must be the game document.

Query: Counter Strike
Conclusion: In the context of this Information Need, we

changed the aforementioned weights and only considered the
name field in the query. This had the expected result of
retrieving the actual game document in the first result as
expected, in each system.

TABLE X: Specific Game Information Need Results.

Rank System 1 System 2 System 3

1 R R R

P@1 1.00 1.00 1.00

AvP 1.000 1.000 1.000

Overall Conclusions

Taking into account all the results from the multiple infor-
mation needs experiments, we can calculate the MAP (Mean
Average Precision) of the systems in order to compare them
on a more general scope. Table XI contains the MAP values
of each system. As we can see, System 2 improves on
System 1 a little bit overall. However, System 3 is worse

than the others. We knew this when deciding on the systems’
properties, since we started out with a System 3 that weighed
the reviews higher than the games’ descriptions. However, this
would make it really similar to System 1, since games have
much more reviews than descriptions. Thus, we decided to
test the opposite and confirm that the reviews indeed have
a huge impact on the Information Needs, specially the ones
of Informational type. We can also conclude that a system
similar to System 2, but with weights configured to prefer
reviews would probably be the best of both worlds, and
provide the most accurate results.

TABLE XI: MAP values of the 3 system configurations.

System 1 System 2 System 3

0.814 0.859 0.357

XII. INFORMATION RETRIEVAL TOOL EVALUATION

After this experiment, we have some remarks on the tool
(Solr) as an Information Retrieval Tool. First, Solr lacks clear
documentation and examples for many of its features and
in all versions. Most of our trouble boiled down to lack of
documentation on how to use Solr. Also, after fiddling with
the dataset, we found out that working with nested documents
is not trivial for retrieval operations (regarding retrieving both
the parent and the child, when one or the other matches the
query). In hindsight, since some of the members had some
experience with ElasticSesarch, and even though some things
are not trivial either with this tool, probably it should have
been the selected tool, since experience and familiarity is a
good starting point with these kinds of tools. Besides, the
documentation and support is generally better, and there are
more friendly and intuitive UIs that can be used with it, such
as Kibana.

XIII. SEMANTIC WEB

Following its creators’ desires, the World Wide Web
(WWW) quickly became the main way of sharing information.
In this new platform, users started to share many different
types of information without a common structure, leading
to an extremely heterogeneous environment. While humans
could make sense of this chaotic environment and understand
the relation between documents, the same did not apply to
machines — the content was mostly non machine-readable,
making it impossible to automatize some day-to-day mecha-
nisms. The Semantic Web, as envisioned by Tim Berners-Lee
[1], appeared to tackle this issue — make the Web machine-
readable. As an extension of the current WWW, in Semantic
Web, machines would understand the contents of one docu-
ment and its integration/relation with others. This meant that
machines had to interpret each document’s semantics and draw
inferences or even create new knowledge. To achieve this, the
Semantic Web makes use of ontologies to characterize data.
In the following sections, we semantically explore our data,
identifying the existing entities and their relations (amongst
themselves and with other existing ontologies).

8

XIV. EXISTING ONTOLOGIES

The Video Game Ontology (VGO) [17] was created by
researchers at Lappeenranta University of Technology, Finland
and Universidad Politecnica de Madrid, Spain, to capture
knowledge about events that happen in video games and
information about the player. It provides a way of describing
concepts in the video game domain such as: the game itself,
players, achievements, leaderboards, in-app purchases, the
game genres, among others. While sharing some entities with
our domain (e.g, the Game and Genre class), its main goal
does not align with ours. We try to provide the user with
information about video games that will help them in the
decision-making process of purchasing a game. To do this,
we provide the user with the game’s reviews and properties
such as the price, required age, positive ratings and number of
owners. Nonetheless, the VGO will be useful when developing
an ontology for our specific domain. The class Game is present
in both ontologies and can be associated with the owl:sameAs
property, thus connecting the same game in both ontologies
resulting in the linking of two different data sources.

XV. ONTOLOGY CREATION

To create the ontology for our domain we used the
Protégé [16] tool, a open-source ontology editor that allows
users to create, visualize and query ontologies.

Every ontology is composed of three main types of entities:
classes, object properties and data properties. Classes represent
concepts or types of things, and are used as an abstraction
mechanism for grouping resources with similar characteris-
tics. The first step in building our ontology was identifying
which concepts could be considered ontology classes. We
decided on 7 different classes, summarized in Figure 6, 5
represent the 3 main concepts of our domain: Games, Re-
views and Organizations and 2 represent fixed characteristics
of the game individuals: Genres and Category, defined as
enumerated classes. The classes Publisher and Developer are
sub-classes of the class Organization forming a non-disjoint
generalization, where individuals can be of the Developer
and Publisher class at the same time. Apart from the classes
Organization, Publisher and Developer all the other classes
were set as disjoint from all the ontology classes. In addition
to this, the classes Publisher and Developer were specified
as defined classes using the following existential restrictions,
published some Game and developed some Game
respectively.

Object properties in an ontology are entities that allow to
link individuals to other individuals. The term individual, in an
ontology domain, corresponds to an instance of a class. So, the
next step to build the ontology was to define these properties.
We started out by mapping some of the associations present in
our Conceptual Model, Figure IV, that linked different classes
and then defined the inverse for each one, summarized in
Figure 6.

Next we set the characteristics of each object property,
all the properties were set as asymmetric and irreflexive,
as other characteristics such as symmetry, relexiveness and

transitiveness do not apply to our domain. The properties
is developed by, is published by and refers to are func-
tional, making their inverse properties, developed, published,
and is reviewed on respectively inverse functional.

Data proprieties are the properties of an ontology that allow
to link individuals of a class with data values. The data
properties in our domain are manly the entities names’ and
descriptions’ and numeric values associated with the Games’
individuals such as, the number of owners, the price and
the average playtime. All the data proprieties were set as
functional.

XVI. ONTOLOGY POPULATION

After the ontology was defined we started to research the
tools available to populate it. Cellfie [2], a desktop plugin
for importing spreadsheet data into OWL ontologies, was
chosen because it is already integrated in Protégé and allows
to process the spreadsheets and use cell referencing with an
extension of the OWL 2 Manchester Syntax [6].

To import data with the Cellfie plugin it is required to have
a different spreadsheet for each ontology class, as our original
datasets were in the csv format, we only needed to extract the
names of the Genre and Category individuals to a separate
spreadsheet. Due to Protégé being a very resource heavy tool
and not being able to handle huge amounts of data, like our
original datasets, we decided to only import a subset of them.
The ontology was populated with 20 Organization individuals,
chosen at random, 150 Game individuals, each one with at
most 10 related Review individuals, 3 Category individuals
and 10 Genre individuals.

To parse the spreadsheet data and transform it into the
previously defined ontology classes and their properties Cellfie
allows to upload a set of rules, in a json file. Figure 7 and 8
show the set of rules used to import the Game and Review
individuals, the two classes with the higher number of object
and data properties.

Fig. 7: Game rules.

Fig. 8: Review rules.

XVII. SPARQL QUERYING

With the ontology correctly defined and populated we
focused on answering some of the retrieval tasks not possible
during the Information Retrieval phase. In order to do this

9

Fig. 6: Steam Game ontolgy.

we used the Semantic Web’s main technology for querying
data, SPARQL [9]. Some of the original queries suffered some
alterations, due to the dataset subset used in the ontology pop-
ulation not returning meaningful results. The chosen retrieval
tasks, respective SPARQL queries, results, and description of
the modifications to the original query are presented next.

For the following SPARQL queries the set of prefixes in
Listing XVII were used.

PREFIX owl: <http://www.w3.org/2002/07/
owl#>

PREFIX rdf: <http://www.w3.org
/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/
rdf-schema#>

PREFIX steam: <http://www.semanticweb.org
/pedro/ontologies/2020/11/steam-games
#>

Listing 2: SPARQL Query Prefixes

Question: How many games made by Valve have a mini-
mum age under 18?

In this query we are trying to find how many games made
by Valve have the minimum age less than 18 years old,
which is a valid approach to find the non violent games.
To do this we retrieve the games using the class Game and
filter using the object property developed and data property
hasRequiredAge, both from the class Game, based on being
made by Valve and having the minimum age less than 18.
The SPARQL query for this question can be consulted in
Listing XVII and its results in Figure 9.

SELECT (count(?games) AS ?num)
WHERE {

?games a steam:Game .
?games steam:is_developed_by

steam:Valve .
?games steam:hasRequiredAge ?age.
FILTER(?age <18) .

}

10

Listing 3: “How many games made by Valve have a minimum
age under 18?” SPARQL Query.

Fig. 9: Results for “How many games made by Valve have a
minimum age under 18?”.

Question: Which are the top 10 most profitable games?
Here we try to find out which games are the most profitable

of all time, in order to do this, we multiply the estimated
number of owners by the game’s price, both values given by
data properties of the class Game. Then, we order all the Game
individuals by the results of the multiplication and limit the
results to the first 10. The SPARQL query for this question can
be consulted in Listing XVII and its results in Figure 10. The
obtained results do not represent the most profitable games of
the whole Steam Store, but rather of the subset of 150 games
imported into Protégé.

SELECT ?name WHERE {
?x a steam:Game .
?x steam:hasName ?name .
?x steam:hasPrice ?price .
?x steam:hasNumberOfOwners ?

owners .
BIND ((?price*?owners) AS ?result

)
}
ORDER BY DESC (?result)
LIMIT 10

Listing 4: “Which are the top 10 most profitable games?”
SPARQL Query.

Fig. 10: Results for “Which are the top 10 most profitable
games?”.

Question: Which are the top 3 most played games of the
last 8 years?

Here we try to analyse the most played games of the last 8
years, by ordering the Game individuals by their hasAverage-
Playtime values. Then, like in the previous query, we make

use of the LIMIT keyword to just return the top 3. Initially,
we intended with this query to find out which were the top 3
most played games of the last 5 years, 2015 to 2020. However,
the subset utilized to populate the ontology contains Games
from 1998 to 2013, so we decided to change the number of
years from 5 to 8 to obtain better results.

SELECT ?name ?playtime
WHERE {

?game a steam:Game .
?game steam:hasName ?name .
?game steam:hasAveragePlaytime ?

playtime .
?game steam:hasReleaseDate ?date

.
FILTER (?date >= "2012-01-01"ˆˆ

xsd:dateTime)
}
ORDER BY DESC (?playtime)
LIMIT 3

Listing 5: “Which are the top 3 most played games of the last
8 years?” SPARQL Query.

Fig. 11: Results for “Which are the top 3 most played games
of the last 8 years?”.

Question: Which are the top 3 organizations whose games
have the best reviews?

Here we try to find out the top 3 Organizations that have
the best reviews, i.e. reviews with the most helpful votes.
We start by getting the list of all games and their respective
organizations and number of helpful votes. Then, we group
by Organization in order to obtain the sum of all the votes.
Finally we sort the results, descending, and limit to the top 3.

SELECT ?org (SUM(?votes) as ?totalVotes)
WHERE
{

?game a steam:Game.
?game steam:hasName ?name.
?game steam:is_published_by ?org.
?review a steam:Review.
?review steam:refers_to ?game.
?review steam:

hasNumberOfHelpfulVotes ?votes
}
GROUP BY ?org
ORDER BY DESC(?totalVotes)
LIMIT 3

11

Fig. 12: Results for “Which are the top 3 organizations whose
games have the best reviews?”.

Listing 6: “Which are the top 3 organizations whose games
have the best reviews?” SPARQL Query.

Question: Are the top 10 most-played games free?
Here we try to find out if the top 10 most-played games

are free. For this, we get the top 10 games based on average
play-time and add the isFree flag, sorting them from the most
played to the least played. We then count the number of free
games in the list and if it matches the number of games (10),
it means that the top-10 are all free, being false otherwise.

SELECT ?top10AreFree
WHERE {

BIND((?count = 10) AS ?
top10AreFree)

{SELECT (COUNT(?isFree) AS ?count
)

WHERE {
FILTER (?isFree = true) .
{SELECT ?isFree
WHERE {
?game a steam:Game.
?game steam:hasName ?name

.
?game steam:

hasAveragePlaytime ?
playTime .

?game steam:hasPrice ?
price

BIND((?price = 0) AS ?
isFree)

}
ORDER BY DESC(?playTime)
LIMIT 10}

}
GROUP BY ?isFree}

}

Listing 7: “Are the top 10 most played games free?” SPARQL
Query.

Question: Which are the top 20 organizations (developers
and publishers) in Action genre by average playtime?

Here we try to find out the top 20 Organizations, meaning
they could be Publishers or Developers, that have the most

Fig. 13: Results for “Are the top 10 most played games free?”.

playtime in their Action games, on average. We start by getting
the list of Action games and their respective organizations and
playtime. Then, we group by Organization in order to average
the playtime of all their Action games. Finally we sort by
playtime, descending, and limit to the top 20.

SELECT * WHERE {
{SELECT ?org (AVG(?playtime) AS

?avg_playtime)
WHERE {

?game a steam:Game .

{ ?game steam:
is_published_by ?org
. }

UNION
{ ?game steam:

is_developed_by ?org .
}

?game steam:
hasAveragePlaytime ?
playtime .

?game steam:is_of_genre
steam:Action .

}
GROUP BY ?org}

}
ORDER BY DESC(?avg_playtime)
LIMIT 20

Listing 8: “Which are the top 20 organizations (developers and
publishers) in Action genre by average playtime?” SPARQL
Query.

Question: What is the ratio of number of reviews to number
of players?

With this query, we’re trying to retrieve which games have
more players than reviews, and this regularly means that it’s a
well-received game due to most reviews being about negative
experiences with the game. With the nested select statement,
we get the number of owners and reviews for each game,
using the Game and Review class, we group by Game to
perform the count of the reviews. In the outer select statement,
the ratio calculation of reviews to the number of players is
performed. Finally, we sort by ascending order to show the

12

Fig. 14: Results for “Which are the top 20 organizations
(developers and publishers) in Action genre by average play-
time?”.

ones who should represent well-received games (more players
than reviews). The SPARQL query for this question can be
consulted in Listing XVII and its results in Figure 15. In
this case, the number of reviews imported to Protégé was
limited to 10, unlike the number of players, so it doesn’t return
interesting results due to the number of players being much
higher.

SELECT ?games (((?num_revs*100)/?
num_owners) AS ?ratio)

WHERE
{SELECT ?games ?num_owners (count(?revs)

as ?num_revs)
WHERE {

?games a steam:Game .
?games steam:hasNumberOfOwners ?

num_owners .
OPTIONAL{

?revs a steam:Review .
?revs steam:refers_to ?games

.
}

}
GROUP BY ?games ?num_owners}
ORDER BY ASC(?ratio)
LIMIT 10

Listing 9: “What is the ratio of number of reviews to number
of players?” SPARQL Query.

Fig. 15: Results for “What is the ratio of number of reviews
to number of players?”.

XVIII. EVALUATION

Regarding the ontology creation, the team found the process
intuitive and straightforward. About the ontology population,
Protégé limitations concerning the quantity of data proved to
be a challenge as only a small subset of the project data could
be used, making the process of retrieving results from queries
hard to find interesting results. Lastly, about querying, several
unexpected bugs also slowed the team’s development, mainly
some members not being able to use the main window of
SPARQL having to fall back to an experimental window where
essential functionalities were missing (e.g., nested statements,
basic commands). The quality of the results was negatively
impacted by the dataset size, as mentioned above, other than
that, the team was able to circumvent the shortcomings of
Protége and perform the initially considered queries.

XIX. SEMANTIC WEB VS. INFORMATION RETRIEVAL

Information Retrieval (IR) and Semantic Web (SW) are two
distinct areas that serve different, albeit related, purposes. The
first allows the user to retrieve information with a simplified
query - oftentimes a human-friendly string - which might
return results from different types and contexts depending on
its configuration. However, this does not mean that they will
be connectable among them: that is provided in SW. With the
latter, there is a series of predicates serving as meaningful links
among instances. This allows the “machine” to understand the
connections and make the search process faster if you know
what you are looking for and how to query it in an SW-friendly
way.

This presents us the main difference between both systems:
If the user has an Information Need solely and is not certain
what to look for or how to query about it, IR might be
more appropriate; on the other hand, knowing the connections
between the instances and the available predicates empowers
the users in the sense that they can now place more complex
questions, which is not usually the case.

In the end, it’s all a matter of trade-offs. An IR system
allows for simple questions like “What is the developer of
Counter-Strike?” or “How many players have the Dota 2
game?” which are most common among users. SW, on the
other hand, allows for more complex and often statistic-based
questions like “Considering Valve’s games, how many of their
action games were played by at least 1 million users?” or “Is

13

there any free strategy game with more than 100 million users
and a positive ratio of reviews?”

It’s also relevant to note that both solutions can be integrated
into existing knowledge collections by having specialized
search engines or merging with existing ontologies, respec-
tively for IR and SW.

To summarize, both Semantic Web and Information Re-
trieval have their use cases and should be leveraged appro-
priately to fulfill the multiple users’ information needs.

XX. CONCLUSIONS AND FUTURE WORK

In the paper’s initial sections regarding data characteriza-
tion, we presented the processed used to create our dataset.
We enumerated the steps done to clean the data, as well the
tools used, and showed how we were able to integrate different
sources of information, achieving a better structured and more
detailed dataset that can be easily integrated into a search
system. We then presented our information retrieval process
for the search system, evaluating the search tool to compare
Solr and ElasticSearch through its different features and why
Solr was selected as the best for our project. We defined a set
of information retrieval tasks, our indexing process, the steps
we took from the end of the data characterization step to the
indexing process, the Solr schema and filters used to optimize
the system. We selected six information needs for users
from the previously defined retrieval tasks and performed a
comparison between three systems, evaluating the performance
through the precision from the first ten documents retrieved.
Evidencing the impact of Solr filters and weighted search
queries. We concluded that the correct usage of stemming and
synonyms in the dataset (done in System 2) is very relevant
to the accuracy of the Information System.

In the Semantic Web domain, we looked at our project
from a different perspective, starting by exploring similar
existing ontologies in our domain. After, we created, from
scratch, an ontology to represent our system and the inner
connections, which was queried, with SPARQL, to answer the
remaining retrieval tasks. The results were as expected, within
the limitations of the dataset size, and allowed us to compare
the Information Retrieval and Semantic Web paradigms.

In future work, we will concentrate on reducing the high
percentage of games whose organizations do not yet have a
description in the system and designing, building and popu-
lating an ontology for the domain at hand.

REFERENCES

[1] Tim Berners-Lee, James Hendler, and Ora Lassila. “The
Semantic Web: A New Form of Web Content That is
Meaningful to Computers Will Unleash a Revolution
of New Possibilities”. In: ScientificAmerican.com (May
2001).

[2] Cellfie. URL: https://github.com/protegeproject/cellfie-
plugin (Accessed Jan. 4, 2021).

[3] Nik Davis. Steam Store Games Dataset. 2019. URL:
https://www.kaggle.com/nikdavis/steam- store- games
(Accessed Nov. 24, 2020).

[4] Elasticsearch replaced Solr as the most popular search
engine. URL: https://db-engines.com/en/blog post/55
(Accessed Jan. 4, 2021).

[5] Kaggle. URL: https://www.kaggle.com (Accessed Nov.
24, 2020).

[6] OWL 2 Web Ontology Language Manchester Syntax
(Second Edition). URL: https://www.w3.org/TR/owl2-
manchester-syntax/ (Accessed Jan. 4, 2021).

[7] Antoni Sobkowicz. Steam Review Dataset. 2017. URL:
https://zenodo.org/record/1000885 (Accessed Nov. 24,
2020).

[8] spaCy. URL: https://spacy.io/ (Accessed Nov. 24, 2020).
[9] SPARQL Query Language for RDF. URL: https://www.

w3.org/TR/rdf-sparql-query/ (Accessed Jan. 4, 2021).
[10] Steam Reviews. URL: https://store.steampowered.com/

reviews/ (Accessed Nov. 24, 2020).
[11] Steam Store. URL: https : / / store . steampowered . com

(Accessed Nov. 24, 2020).
[12] SteamSpy. URL: https://steamspy.com (Accessed Nov.

24, 2020).
[13] The Apache Solr Website. URL: https://lucene.apache.

org/solr/ (Accessed Dec. 2, 2020).
[14] The Elasticsearch Website. URL: https:/ /www.elastic.

co/elasticsearch/ (Accessed Dec. 2, 2020).
[15] The OpenRefine Website. URL: https : / /openrefine .org

(Accessed Nov. 24, 2020).
[16] The Protege Website. URL: https://protege.stanford.edu/

(Accessed Jan. 11, 2021).
[17] The Video Game Ontology. URL: http : / / vocab .

linkeddata.es/vgo/ (Accessed Dec. 28, 2020).
[18] wikibase-sdk NPM package. URL: https://www.npmjs.

com/package/wikibase-sdk (Accessed Nov. 24, 2020).
[19] Wikidata. URL: https : / / www . wikidata . org / wiki /

Wikidata:Main Page (Accessed Nov. 24, 2020).
[20] Wikipedia. URL: https : / / en .wikipedia .org /w/api .php

(Accessed Nov. 24, 2020).
[21] wtf wikipedia NPM package. URL: https://www.npmjs.

com/package/wtf wikipedia (Accessed Nov. 24, 2020).
[22] Zenodo. URL: https://www.zenodo.org (Accessed Nov.

24, 2020).

14

https://github.com/protegeproject/cellfie-plugin
https://github.com/protegeproject/cellfie-plugin
https://www.kaggle.com/nikdavis/steam-store-games
https://db-engines.com/en/blog_post/55
https://www.kaggle.com
https://www.w3.org/TR/owl2-manchester-syntax/
https://www.w3.org/TR/owl2-manchester-syntax/
https://zenodo.org/record/1000885
https://spacy.io/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://store.steampowered.com/reviews/
https://store.steampowered.com/reviews/
https://store.steampowered.com
https://steamspy.com
https://lucene.apache.org/solr/
https://lucene.apache.org/solr/
https://www.elastic.co/elasticsearch/
https://www.elastic.co/elasticsearch/
https://openrefine.org
https://protege.stanford.edu/
http://vocab.linkeddata.es/vgo/
http://vocab.linkeddata.es/vgo/
https://www.npmjs.com/package/wikibase-sdk
https://www.npmjs.com/package/wikibase-sdk
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://en.wikipedia.org/w/api.php
https://www.npmjs.com/package/wtf_wikipedia
https://www.npmjs.com/package/wtf_wikipedia
https://www.zenodo.org

	Introduction
	Data Extraction
	Dataset Preparation
	Refinement
	Attribute Selection
	Attribute type transformation
	Attribute cleaning

	Enrichment

	Conceptual Model
	Data Characterization
	Games distribution
	Text Analysis

	Retrieval Tasks
	Information Retrieval
	Information Retrieval Tool Selection
	Collections and Documents
	Indexing Process
	Retrieval Process
	Family Games
	Online games with server problems
	Free games with in-app purchases
	Games with a toxic community
	Fast Paced Games
	Specific Game - Counter Strike

	Information Retrieval Tool Evaluation
	Semantic Web
	Existing Ontologies
	Ontology Creation
	Ontology Population
	SPARQL Querying
	Evaluation
	Semantic Web vs. Information Retrieval
	Conclusions and Future Work

