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ABSTRACT

In this article we will explain how the data preparation process
of our information retrieval system on European Parliament data
works. We will address every step in the process from dataset
gathering, data preparation, natural-language processing and data
storage in a relational database. Our goal is to analyze a variety of
data related to the European Parliament in order for it to be more
accessible to the general public.
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1 INTRODUCTION

Over the years the volume of information has been growing and
become accessible to all via the World Wide Web. The organization
and structuring of information can bring many benefits to users,
such as the dissemination of knowledge and relevant data. However,
the emergent information has steadily become more unorganized
and sparse making its research an arduous task.

Likewise the information provided by the European Parliament
is very sparse, making it hard to analyse and search relevant infor-
mation. For example, it is impossible to understand the trajectory
of each European Parliament member. How did their work, vot-
ing behaviour and topics of interest change over time? Can we
understand how political groups and individual politicians vote
depending on the topic being voted, who submitted the proposal
and other relevant factors?

For this reason, we decided to organize this data and make it
available in a new interface with more advanced search parameters
and new ways of visualizing possible patterns and other useful
information.

2 DATASET PREPARATION

In this section we will go through the entire process related to data
extraction and preparation for further usage, including the tools
used, as can be seen in Figure 1.

2.1 Data Collection

For this project we used two sources: Parltrack and the European
Parliament website.
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Regarding the European Parliament website, we employed scrap-
ing techniques, such as HTML parsing, to extract relevant text data
from reports, e.g. its text, rapporteur(s) and committee, if any.

As for Parltrack, it is an European initiative that aggregates
information from various official EU sources and releases it in JSON
format. It provides a huge amount of data so we decided to focus
our efforts in a subset of the dumps provided, namely Members
of the European Parliament (MEPs) and MEP Plenary Votes.

The MEPs dump contains information on all the current and
previous members of the European Parliament since 2004, including
their names, age, country, political groups affiliation, national party
affiliation, committees they were or are part of and their social
media info, while the MEP Plenary Votes dump contains informa-
tion on the votes cast by MEPs in the plenary (in favor, against or
abstention) and information on what is being voted.

2.2 Data preparation

In this stage we used OpenRefine, a specialized tool for data clean-
ing. We started by normalized the data provided by the Parltrack
dumps. Political group names’ were normalized, since some of them
were abreviated and others not, and the names refering to the same
group were often in different languages. Insertion errors in the com-
mittees names were also fixed. These errors were mostly related
with the arbitrary usage of single and double quotes interchange-
ably. Finally, we removed data that was not relevant for our project.
The dumps including much more information that are not relevant
for the goals of this project, for example the Curriculum Vitae of
the MEPs. We also greatly reduced the number of plenary votes
because we decided to include only final votes on final proposals,
removing all the votes on amendments and paragraph changes.

The Parltrack JSON dumps contain for each plenary vote only
some basic information regarding the corresponding resolution.
On the other hand, the EP website contains the full text of each
document, complete with the author and respective committee. In
order to cross these two data sources, some Python libraries where
used: For each vote in the Parltrack dump, the respective document
code was used to access the EP website URL and download the page
with the content. Then, by using the PyQuery library, the HTML
code was parsed. Because the documents’ pages don’t follow a
common structure, some attention was needed to deal with all the
inconsistencies between different pages, requiring some extra steps
to extract all needed details of each Resolution.

In the end, all the needed information was combined into a single
Pandas dataframe, ready to be stored.
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Figure 1: Data Pipeline Diagram

To prepare and add descriptions to textual data of those reports
we used spaCy. By using spaCy we were able to extract the most
important and common keywords present with the reports. Particu-
larly, we applied the language processing pipeline on the reports by
joining all the reports’ texts, segmenting them into tokens, detecting
and labeling named entities.

2.3 Conceptual Model

The main entities of our domain are Committee, Country, MEPs,
Political Group, Resolutions and Vote as can be seen in Figure 2.
Each MEP can vote on several Resolutions and each can have
several Authors, or rapporteurs. MEPs can belong to several Po-
litical Groups since they can change their political affiliation over
time, and they are elected to represent a specific Country.
Resolutions can be proposed by a Committee, while MEPs
can belong to several committees as they may change over time.

2.4 Data Storage

In order to make the collected data easily available for the next
processing steps, it was decided to store everything in a relational
database.

In order 1or this to be possible, the data needed to be normalized.
This means ensuring, for example, that each cell contained only
atomic information and that all repeated data was centralized into
a single table, thus eliminating all data redundancy.

This required additional processing of some generated Pandas
dataframes, in order to normalize information. Some data frames
were splitted up, with primary/foreign keys being generated to
establish a relationship.

The presented conceptual model already accounts for this rela-
tional data structure

2.5 System Documents

We will have three documents in our system: MEPs, reports and
committees.

The MEP document will have a brief bio section of a parlia-
ment member’s information such as their name, gender, birth date,

national party they belong to, their usernames on social media
platforms etc. It will also be possible to view the votes cast by them.
A user can search for an MEP by their name.

The document Report will have a date, a title, content and voting
results (total number of votes in favor, against and abstained, and
information of who voted). A user can search for resolutions by its
title or by keywords present in its content.

The Committee document will have the name of the committee
and a list of reports motioned by it.

2.6 Collection characterization

2.6.1 Reports. The information contained in 6396 reports, pro-
duced from 2004 to 2020, is being used. We have got this number
after heavily filtering all the reports to include only final versions
of them. The number of reports per years is very variable but we
can see in Figure 3 that there was an unusual low number of reports
during the 2009-2014 term.
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Figure 3: Number of reports per year
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Figure 2: European Parliament’s Conceptual Model

The top 9 most common keywords present in the reports are
represented in Figure 4. The most used terms are Council, EU and
Commission.
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Figure 4: Term frequency of entities in reports

Most of the reports are produced in the context of a committee.
There are many however that are produced in other contexts, e.g.

written by an individual MEP.
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Figure 5: Number of reports per committee

2.6.2 Meps. The information on 4150 MEPs that were at some
point part of the parliament from 2004 to 2020 is being used.

The activity of MEPs in terms of votes is very variable. One of
the reasons for this is that there are many MEPs that did not spend
an entire term - five years - in the parliament. Some of them stayed
for a time period inferior to a month, as to replace a temporarily
absent MEP for a few weeks.
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Figure 6: Density of MEPs votes
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2.6.3 Committees. The information on 32 committees is being
used.

2.7 Data Retrieval tasks

Our results will be focused on the previous documents listed: MEPs,
Committees and Reports. Starting with the MEPs, the system
will present their personal information, the votes they have cast,
political groups they have been part of organized by periods of time
and all the committees they have been part of, also organized by
period of time. For the committees, the data presented will be about
all the reports produced by it and all of its members. Finally, for
the reports, the system will present its title and text along with the
votes cast for it by MEP and organized by political group.
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