
Open source placement 
and routing tools for FPGAs 
and their extensions to 
multi-die FPGAs
Prof. Dirk Stroobandt
Ghent University, Belgium

Presentation at HiPEAC-WRC – 17 January 2024



Presentation overview

• Connection-based physical design
– Our FPGA CAD framework
– Liquid placement tool
– Croute and RWRoute

• Multi-die placement and routing
– LiquidMD
– CRouteMD (in progress)

2



FPGA CAD FRAMEWORK



FPGA CAD FRAMEWORK

Packing

FPGA 
Architecture 
Description

HDL Digital Circuit

FPGA Configuration

Placement

Routing

Elaboration

Synthesis

Technology mapping

Lo
gi

c 
Sy

nt
he

si
s

Ph
ys

ic
al

 
Sy

nt
he

si
s

ODIN II

ABC

State of the art

ABC

VPR

VPR

VPR

Our framework

MultiPart

Liquid

CRoute



FPGA CAD FRAMEWORK

State of the art

VPR

VPR

VPR

Our framework

MultiPart

Liquid

CRoute

Packing

Placement

Routing

Ph
ys

ic
al

 
Sy

nt
he

si
s

https://GitHub.UGent.be/UGent-HES/FPGA-CAD-Framework

CPD WL

8.4x -8% -32%

28x -1% -2%

3.4x -6% -11%

𝟏
𝐑𝐓



Liquid: 
High-quality Scalable
Placement for Large 
Heterogeneous FPGAs



Placement problem

Analytical placement

Build linear 
system

LegalizeSolve
Stop 

condition

Increase anchor weight 
of pseudo connections

Optimize

Legalize



Liquid placement technique

• Each net is spring between extreme blocks

• Long springs pull harder

• Extra spring for highly critical source-sink 
connections

E. Vansteenkiste, S. Lenders, and D. 
Stroobandt, “Liquid: Fast placement 
prototyping through steepest gradient 
descent movement,” in Field 
Programmable Logic and Applications 
(FPL), 2016 26th International Conference 
on. IEEE, 2016, pp. 1–4.

Build linear 
system

LegalizeSolve
Stop 

condition



Liquid placement technique

Build linear 
system

LegalizeSolve
Stop 

condition

Is it necessary to exactly solve the linear 
system?

Legalization partly destroys the 
solution

Optimize system by moving each block 
several times in the direction that reduces 
the placement cost the most

E. Vansteenkiste, S. Lenders, and D. 
Stroobandt, “Liquid: Fast placement 
prototyping through steepest gradient 
descent movement,” in Field 
Programmable Logic and Applications 
(FPL), 2016 26th International Conference 
on. IEEE, 2016, pp. 1–4.



Hard Block Legalization

Optimized placement



Hard Block Legalization

1. Assign to nearest hard block column



Hard Block Legalization

2. Column swap        satisfy capacity constraints



Hard Block Legalization

3. Greedy legalization



Hard Block Legalization

4. Simulated annealing-based optimization



Liquid versus vpr

Runtime [s]Critical path 
delay [ns]

Total wire-
length [M]

92421.83.83VPR
3921.73.85Liquid

0.040.991.00ratio

- Large heterogeneous Titan23 benchmark designs
- Model of Altera’s Stratix IV FPGA



scalability

O(x1.65)

O(x1.36)

O(x0.99)

8

32

128

512

2048

8192

4 8 16 32 64

R
u

n
ti

m
e 

 [
s]

Design size (num pins)
x 100000

VPR

Chen et al.

Liquid

4008 sVPR
denoise 14.5x276 sChen et al.

3.9x56.6x71 sLiquid

S.-Y. Chen and Y.-W. Chang, “Routing-architecture-aware analytical placement for heterogeneous FPGAs,” 
in Proceedings of the 52nd Annual Design Automation Conference. ACM, 2015, p. 27.



CRoute: 
A Fast High-quality
Timing-driven
Connection-based
FPGA Router



Routing Problem

A

C

B



Routing Problem

C

B

A



Net-based routing: Pathfinder

while (IllegalRoutingResourcesExist()):
for each Net n do:

if (firstIteration or n.congested()):
ripUpRouting(n)
route(n)
n.resources().updatePresentCongestionCost()

allResources().updateHistoryCost()
updatePresentCongestionMultiplier()
allResources().updatePresentCongestionCost()

function route(Net n):
routingTree = {source}
for each Sink s of n:

path = Dijkstra(routingTree, s)
routingTree = routingTree U path



Routing Problem

C

B

A



Routing Problem

C

B

A



Routing Problem

C

B

A



Routing Problem

C

B

A



Routing Problem

C

B

A



connection-based routing

while (IllegalRoutingResourcesExist()):
for each Conn c do:

if (firstIteration or c.congested()):
ripUpRouting(c)
route(c)
c.resources().updatePresentCongestionCost()

allResources().updateHistoryCost()
updatePresentCongestionMultiplier()
allResources().updatePresentCongestionCost()



Routing Problem

C

B

A



Routing Problem

C

B

A



Routing Problem

C

B

A



connection-based routing

while (IllegalRoutingResourcesExist()):
for each Conn c do:

if (firstIteration or c.congested()):
ripUpRouting(c)
route(c)
c.resources().updatePresentCongestionCost()

allResources().updateHistoryCost()
updatePresentCongestionMultiplier()
allResources().updatePresentCongestionCost()

function route(Conn c):
path = Dijkstra(c.getSink())



Routing Problem

C

B

A

Negotiated sharing 
mechanism:
=> share(n) devision



Runtime



Runtime

5.5x faster



runtime

6.2x

5.5x faster



Runtime

8.5x

5.5x faster



Wire-length



Critical path delay



RWRoute: An Open-source 
Timing-driven Router for 
Commercial FPGAs



●Companion open-source 
framework for Vivado

●Enables custom crafted 
implementations

●Enables targeting 
commercial FPGAs

Background: RapidWright

Source:
Chris Lavin and Alireza Kaviani, RapidWright: Enabling Custom Crafted Implementations for FPGAs,  FCCM 2018.

39

DCP: Design Checkpoint



CRoute: Sharing Mechanism and Drawback

40

●Scales down the cost of using a node n with a sharing 
factor, i.e., sharing(n)

●sharing(n) = # connections using the node n
●Unaware of the criticality of connection under 

consideration
●Encourages resource sharing even when a 

connection is long and timing-critical
●Limits critical path delay optimization

Net
A

sink
A0

sink
A1

sink
A2

Detours for long and timing-critical 
connection

Source:
Elias Vansteenkiste, Karel Bruneel and D. Stroobandt, A connection-based router for FPGAs, FPT 2013.



41

●sharingʼ(n) = (1 - criticality)𝛌 x sharing(n)
●𝛌: user-defined sharing exponent
●𝛌 = 0: the criticality-unaware sharing mechanism as that of CRoute
●𝛌 ≥ 1:  effective criticality-aware sharing mechanism

■Encourage timing optimization for critical connections

RWRoute: Criticality-aware Sharing 
Mechanism

With sharingʼ(n)

Critical path



●4.9X runtime speedup
●10% longer wirelength
●10% longer critical path delay

42

Runtime and QoR Comparisons with Vivado

4.9X

1.1X
1.1X



●GNL designs: up to 110K LUTs, Rent Exponent 0.7, logic 
depth 3, timing requirement 3.0 ns

●RWRoute maintains a speedup no smaller than 1.3X

43

Scalability Comparison with Vivado

10.8X
3.0X

2.2X
1.9X 1.7X

1.5X
1.4X

1.4X
1.4X

1.3X
1.4X

1.3X



44

Comparisons Regarding Rosetta 
Benchmarks

4.6X 3.6X

2.3X 2.5X

1.1X

1.7X

Increasing number of nets (within 60K)

●1.1X ~ 4.6X runtime speedup
●Comparable QoR



www.rapidwright.io

How Do You Use RWRoute?

45



Multi-die placement and 
routing



Single die architecture (simplified)

Intra-die global 
interconnection 

network

Multi - die architecture (simplified)Multi - die architecture (simplified)

SLL connections 
(L36)

L1,L2,L6 
wires

Introduction

Multi - die architecture (simplified)

Limitations of using SLLs

• Limited in number

• Higher Delay 

• Longer Wirelength



Partitioning

Partitioning

• Partitioning using hMETIS
• Factors influencing the partitioning quality.

• Type of algorithm
• Number of runs (=10).
• UB factor

• Timing driven partitioning

High UB factor Low UB factor

Partitioned 
netlist

Original 
netlist

Original netlist Timing sensitive edges



• Choosing the optimal value of UB is a tradeoff between
• Minimizing the cutsize and obtaining balanced partitions

Balanced PartitionsMinimize Cutsize

• Better die resource 
utilization.

• Smaller die size
• Slightly higher SLL 

utilization.

• Lower SLL utilization.
• Larger die size.
• Poor die resource 

utilization.

Partitioning

Results published in the proceedings of SLIP workshop



Parse 
Architecture

Parse Netlist
Build circuit blocks

Add Anchor block
connections

Build System level 
timing graph

Random placement of 
all dies

Placement

Last
die?

• SLL legalization is simpler.
• Positions fixed at the start of the flow -> parallel 

independent placement



Interconnection demand
Single-die placement results 

Virtual 
Cut

Width

H
ei

gh
t

• From placement results
• Get block positions
• Get nets crossing the virtual 

boundary.
• Nets crossing virtual 

boundary = Nets occupying 
an SLL.

•
 

 



Interconnection demand

Average ~58%

Average ~8%

With Single die 
placement
Average ~20%



Runtime

Single die Multi-die
(sequential flow)

Multi-die
(parallel flow)



WL estimation

Average ~10.22%
Average ~6.13%



CPD estimation

Average ~14%
Average ~0.65%



CRouteMD

• We are currently working on extending CRoute to a 
multi-die parallel router

• Unfortunately no results yet

56



Many thanks to my Ph.D. students who 

collaborated to obtain these results:

Elias Vansteenkiste, Dries Vercruyce, 

Yun Zhou, Raveena Raikar

Q & A


