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Hardware acceleration for 
high parallelism and energy efficiency
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How to perform hardware design?
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High-Level Synthesis: From Programs to Circuits

Raise the level of abstraction for hardware design 
beyond RTL level (VHDL, Verilog)
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High-Level Synthesis: From Programs to Circuits

A completely new type of users for HLS!

Software application programmers
A completely new type of applications for HLS!

General-purpose code
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Bridging the Gap Between Software and Hardware

HLS is still not meant 
for software programmers

SW

HW

George et al. FPL 2014.

Unoptimized software program, execution time = 27,236 clock cycles

Optimized software program, execution time = 302 clock cycles
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Bridging the Gap Between Software and Hardware

for (i = 0; i < num_rows, i++) {
  tmp = 0; 
  s = row[i]; e = row[i+1];

  for (c = s; c < e; c++) {
    cid = col[c];
    tmp += val[c] * vec[cid];
  }

  out[i] = tmp;
}

Sparse-matrix dense-vector multiplication
(SpMV)

Variable loop bounds

Irregular memory 
access patterns

Variable memory latency

HLS is still not meant 
for software programmers

HLS often fails in extracting 
parallelism from software code

SW

HW
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Bridging the Gap Between Software and Hardware

HLS is still not meant 
for software programmers

HLS often fails in extracting 
parallelism from software code

HLS circuits need hardware-level 
functional verification

SW

HW

Functional verification of circuits using hardware simulation 
→ inefficient, limited, non-exhaustive

Covers some behaviors
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Bridging the Gap Between Software and Hardware

HLS is still not meant 
for software programmers

HLS often fails in extracting 
parallelism from software code

HLS circuits need hardware-level 
functional verification

It is difficult for HLS to account for 
reconfigurable platform details

SW

HW
Langhammer et al. ARITH 2015.

FPGA technology mapping, placement, and routing
→ impact on circuit performance and power

A

B
A → B

B’

short & fast long & slow
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Bridging the Gap Between Software and Hardware

How to generate high-performance circuits from 
general-purpose software code? 

HLS is still not meant 
for software programmers

HLS often fails in extracting 
parallelism from software code

HLS circuits need hardware-level 
functional verification

It is difficult for HLS to account for 
reconfigurable platform details

SW

HW
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Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

}

i

+

1

<

N

acc

Static 
controller

2 stages

LD x[i] LD c[n-i]

*

+

Program functionality

Operation 
schedule
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Operation 
schedule

Standard HLS
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Operation 
schedule

Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

}
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Low throughput: slow execution 
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Operation 
schedule

Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

} C1 C2 C3 C4 C5 C6

mul
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add

C8 C9 C10 C11 C12

LD 
regs
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C1 C2 C3 C4 C5 C6

mul

C7

add

C8 C9 C10 C11 C12
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Naïve schedule:

Pipelined schedule:

High throughput: fast execution 

i

+

1

<

N

acc

Static 
controller

LD x[i] LD c[n-i]

*

+ Initiation Interval (II) = 1
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• Dynamic scheduling
– Maximum parallelism: Only serialize memory accesses on actual dependencies

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

1: x[0]=5 → ld hist[5]; st hist[5]; 
2: x[1]=4 → ld hist[4]; st hist[4]; 
3: x[2]=4 → ld hist[4]; st hist[4];

RAW dependency
• Static scheduling (standard HLS tool)

– Inferior when memory accesses cannot be disambiguated at compile time

The Limitations of Static Scheduling 
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A Different Way to Do HLS

Static scheduling (standard HLS tool): decide 
at compile time when each operation executes

Dynamic scheduling (our HLS approach): decide 
at runtime when each operation executes
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A Different Way to Do HLS

Static scheduling (standard HLS tool): decide 
at compile time when each operation executes

Dynamic scheduling (our HLS approach): decide 
at runtime when each operation executes
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• Asynchronous circuits: operators triggered when inputs are available
– Budiu et al. Dataflow: A complement to superscalar. ISPASS’05.

• Dataflow, latency-insensitive, elastic: the synchronous version of it
– Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

– Carloni et al. Theory of latency-insensitive design. TCAD’01.

– Jacobson et al. Synchronous interlocked pipelines. ASYNC’02.

– Vijayaraghavan and Arvind. Bounded dataflow networks and latency-insensitive circuits. MEMOCODE’09.

Dynamically Scheduled Circuits

Component 1 Component 2

data

valid

ready High-level synthesis of 
dynamically scheduled 

(dataflow) circuits

Make scheduling decisions at runtime: as soon as all 
conditions for execution are satisfied, an operation starts

valid

ready
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HLS of Dynamically Scheduled Circuits

Pipelining 

Resource sharing

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution

Out-of-order memory

Reaping the benefits of 
dynamic scheduling
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LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017
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From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x[i]
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comb.

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017
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From Program to Dataflow Circuit
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From Program to Dataflow Circuit
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LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

From Program to Dataflow Circuit

Single token on cycle, in-order 
tokens in noncyclic paths

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017
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Backpressure from slow paths prevents pipelining

From Program to Dataflow Circuit
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Reaping the benefits of 
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining 

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution



32

Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

LD x[i]

Merge

Reg

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

Fork

Buffers as registers to break 
combinational paths

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022
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Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

LD x[i]

Merge

Reg
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LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

FIFO

FIFO
FIFO

Buffers as FIFOs to regulate 
throughput

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022
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Inserting Buffers
for (i=0; i<N; i++) {
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Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022
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Inserting Buffers
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Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022
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Inserting Buffers

LD x[i]

Merge

Reg

Fork

+
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LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N
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ST hist[x[i]]

4 stages

comb.

Fork

FIFO

FIFO
FIFO

NOW
(with buffers)

Mixed integer linear programming (MILP) model 
based on Petri net theory
• Analyze token flow through the circuit
• Determine buffer placement and sizing
• Maximize throughput for a target clock period

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022
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Backpressure from slow paths prevents pipelining

Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}
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Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

Buffers for high throughput
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RAW dependency
not honored!

Inserting Buffers

What about memory?

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

1: x[0]=5 → ld hist[5]; st hist[5]; 
2: x[1]=4 → ld hist[4]; st hist[4]; 
3: x[2]=4 → ld hist[4]; st hist[4];

RAW dependency
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Reaping the benefits of 
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining 

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution
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• Processor LSQs keep dependent memory accesses in the original program order

• Application-specific LSQs for dataflow circuits

We Need a Load-Store Queue (LSQ)!

Processor
datapath 

(out of order)

Memory
Ordering 

(load-store 
queue)

Instruction 
fetch & decode

(in order)

loop: lw $t2, 0($t4) 

lw $t3, 100($t4) 

mul $t5, $t2, $t3

      addi $t5, $t5, $t1

sw $t5, 100($t4)

addi $t1, $t1, 4 

bne $t6, $t1, loop

store hist

load weight

…

Dataflow (out of order)

Memory

…

…

…

…
…

load hist

load x

Ordering 

(load-store 
queue)

LSQ placement and sizing for high 
throughput and low resources

Josipović, Brisk, and Ienne. An Out-of-Order Load-Store Queue for Spatial Computing. CASES 2017 Best Paper Award Nominee
Liu, Rizzi, and Josipović. Load-Store Queue Sizing for Efficient Dataflow Circuits. FPT 2022.

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}
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Dataflow Circuit with the LSQ

High-throughput pipeline with 
memory dependencies honored

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

1: x[0]=5 → ld hist[5]; st hist[5]; 
2: x[1]=4 → ld hist[4]; st hist[4]; 
3: x[2]=4 → ld hist[4]; st hist[4];

RAW dependency
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HLS of Dynamically Scheduled Circuits

Static HLS vs. dynamic HLS?
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Static vs. Dynamic HLS
• Dynamatic: an open-source HLS compiler
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Static vs. Dynamic HLS

××
Mvt

Gaussian
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• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS
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Static vs. Dynamic HLS
• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS

Reduced execution time in 
irregular benchmarks

(speedup of up to 14.9X)

Lo
w

e
r 

is
 b

et
te

r

Left is better

××
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Gaussian
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Static vs. Dynamic HLS

Reduced execution time in 
irregular benchmarks

(speedup of up to 14.9X)
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• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS
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Static vs. Dynamic HLS

LSQ causes significant 
resource overheads

Lo
w
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Left is better

××
Mvt

Gaussian

• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS
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Static vs. Dynamic HLS

1020 LSQ slices

220 295 kernel slices

1073

~ 5% of a Kintex-7 
FPGA

LSQ causes significant 
resource overheads

Lo
w

e
r 

is
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r

Left is better

××
Mvt

Gaussian

• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS
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Static vs. Dynamic HLS

Static and dynamic HLS 
have the same pipelining 

capabilities
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• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS
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Static vs. Dynamic HLS

Regular benchmarks are 
Pareto-dominated due to 

CP increase

Lo
w

e
r 

is
 b

et
te

r

Left is better

××
Mvt

Gaussian

• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS
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DSP-oriented applications

Static vs. Dynamic Scheduling

Computer
Architecture

High-Level
Synthesis

Statically Scheduled
→ “Compiler does the job”

Dynamically Scheduled
→ “Hardware does the job”

VLIW
Processors

Out-of-Order
Superscalar
Processors

Traditional HLS Dataflow circuits

General-purpose code

(new applications and users)
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Bridging the Gap Between Software and Hardware

A different way to go about HLS
(generating dynamically scheduled circuits from C code)

HLS is still not meant 
for software programmers

HLS often fails in extracting 
parallelism from software code

HLS circuits need hardware-level 
functional verification

It is difficult for HLS to account for 
reconfigurable platform details

SW

HW
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Bridging the Gap Between Software and Hardware

Elakhras, Guerrieri, Josipović, and Ienne. Unleashing Parallelism in Elastic Circuits with Faster Token Delivery. FPL 2022 Best Paper Award Nominee
Cheng, Josipović, Wickerson, and Constantinides. Dynamic Inter-Block Scheduling for HLS. FPL 2022 Best Paper Award Nominee

HLS is still not meant 
for software programmers

HLS often fails in extracting 
parallelism from software code

HLS circuits need hardware-level 
functional verification

It is difficult for HLS to account for 
reconfigurable platform details

SW

HW

New programming models and 
compiler techniques for irregular parallelism

Sequential synthesis limits 
parallelism

Exploiting spatial parallelism 
without user intervention

Loop 1

Loop 2
after Loop 1

Loop 1
Loop 2 parallel 

to Loop 1
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Bridging the Gap Between Software and Hardware

HLS is still not meant 
for software programmers

HLS often fails in extracting 
parallelism from software code

HLS circuits need hardware-level 
functional verification

It is difficult for HLS to account for 
reconfigurable platform details

SW

HW

A formal verification framework for improving the 
quality of circuits generated from software code

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.
Xu and Josipović. Automatic inductive invariant generation for scalable dataflow circuit verification. ICCAD 2023.

Customize circuit logic 
(50% area reduction)

Maintain dynamism only when needed and 
match resources of static HLS otherwise
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Bridging the Gap Between Software and Hardware

HLS is still not meant 
for software programmers

HLS often fails in extracting 
parallelism from software code

HLS circuits need hardware-level 
functional verification

It is difficult for HLS to account for 
reconfigurable platform details

SW

HW

Implementation-aware compiler optimizations 
for fast and small circuits

Rizzi, Guerrieri, and Josipović. An Iterative Method for Mapping-Aware Frequency Regulation in Dataflow Circuits. DAC 2023
Wang, Rizzi, and Josipović. MapBuf: Simultaneous Technology Mapping and Buffer Insertion for HLS Performance Optimization. ICCAD 2023 Best Paper Award Nominee

R
egister

Logic block A Logic block B

Register for high performance

Accurate frequency estimates and regulation 
for high-performance circuits
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Bridging the Gap Between Software and Hardware

Enable diverse users to accelerate compute-intensive 
applications on hardware platforms

for (j = 0; j < 10; j++) {
   float x = 0.0;
   for (i = 0; i < 10; i++)
       x += data[i][j];
    mean[j] = x / float_n;
}

for (j = 0; j < 10; j++) {
   float x = 0.0;
   for (i = 0; i < 10; i++)
       x += (data[i][j] - mean[j]) *    
(data[i][j] - mean[j]);
   x /= float_n;
   x = x*x;
   stdev[j] = x;
}
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Thanks! ☺

dynamo.ethz.ch dynamatic.epfl.ch

Research group: Dynamatic HLS tool: 

Dynamatic 2.0 coming soon!
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