
1

From Software Programs to Digital Circuits

Prof. Dr. Lana Josipović

January 2024

22

Hardware acceleration for
high parallelism and energy efficiency

33

How to perform hardware design?

4

High-Level Synthesis: From Programs to Circuits

Raise the level of abstraction for hardware design
beyond RTL level (VHDL, Verilog)

5

High-Level Synthesis: From Programs to Circuits

A completely new type of users for HLS!

Software application programmers
A completely new type of applications for HLS!

General-purpose code

6

Bridging the Gap Between Software and Hardware

HLS is still not meant
for software programmers

SW

HW

George et al. FPL 2014.

Unoptimized software program, execution time = 27,236 clock cycles

Optimized software program, execution time = 302 clock cycles

7

Bridging the Gap Between Software and Hardware

for (i = 0; i < num_rows, i++) {
 tmp = 0;
 s = row[i]; e = row[i+1];

 for (c = s; c < e; c++) {
 cid = col[c];
 tmp += val[c] * vec[cid];
 }

 out[i] = tmp;
}

Sparse-matrix dense-vector multiplication
(SpMV)

Variable loop bounds

Irregular memory
access patterns

Variable memory latency

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

SW

HW

8

Bridging the Gap Between Software and Hardware

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

SW

HW

Functional verification of circuits using hardware simulation
→ inefficient, limited, non-exhaustive

Covers some behaviors

9

Bridging the Gap Between Software and Hardware

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

It is difficult for HLS to account for
reconfigurable platform details

SW

HW
Langhammer et al. ARITH 2015.

FPGA technology mapping, placement, and routing
→ impact on circuit performance and power

A

B
A → B

B’

short & fast long & slow

10

Bridging the Gap Between Software and Hardware

How to generate high-performance circuits from
general-purpose software code?

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

It is difficult for HLS to account for
reconfigurable platform details

SW

HW

11

Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

}

i

+

1

<

N

acc

Static
controller

2 stages

LD x[i] LD c[n-i]

*

+

Program functionality

Operation
schedule

12Program functionality

Operation
schedule

Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

}

i

+

1

<

N

acc

Static
controller

2 stages

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Clock cycles

1

2

3

Lo
o

p
 it

e
ra

ti
o

n
s

Naïve schedule:

LD x[i] LD c[n-i]

*

+

13Program functionality

Operation
schedule

Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

}

i

+

1

<

N

acc

Static
controller

2 stages

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

LD
regs

Clock cycles

1

2

3

Lo
o

p
 it

e
ra

ti
o

n
s

Naïve schedule:

LD x[i] LD c[n-i]

*

+

14Program functionality

Operation
schedule

Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

}

i

+

1

<

N

acc

Static
controller

2 stages

C1 C2 C3 C4 C5 C6

mul

C7 C8 C9 C10 C11 C12

LD
regs

Clock cycles

1

2

3

Lo
o

p
 it

e
ra

ti
o

n
s

Naïve schedule:

LD x[i] LD c[n-i]

*

+

15Program functionality

Operation
schedule

Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

}

i

+

1

<

N

acc

Static
controller

2 stages

C1 C2 C3 C4 C5 C6

mul

C7

add

C8 C9 C10 C11 C12

LD
regs

Clock cycles

1

2

3

Lo
o

p
 it

e
ra

ti
o

n
s

Naïve schedule:

LD x[i] LD c[n-i]

*

+

16Program functionality

Operation
schedule

Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

}

i

+

1

<

N

acc

Static
controller

2 stages

C1 C2 C3 C4 C5 C6

mul

C7

add

C8 C9 C10 C11 C12

LD
regs

mul add
LD

regs

mul add
LD

regs

Clock cycles

1

2

3

Lo
o

p
 it

e
ra

ti
o

n
s

Naïve schedule:

LD x[i] LD c[n-i]

*

+

Low throughput: slow execution

17Program functionality

Operation
schedule

Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

} C1 C2 C3 C4 C5 C6

mul

C7

add

C8 C9 C10 C11 C12

LD
regs

mul add
LD

regs

mul add
LD

regs

C1 C2 C3 C4 C5 C6

mul

C7

add

C8 C9 C10 C11 C12

LD
regs

mul add
LD

regs

mul add
LD

regs

Clock cycles

1

2

3

Lo
o

p
 it

e
ra

ti
o

n
s

Clock cycles

1

2

3

Lo
o

p
 it

e
ra

ti
o

n
s

Naïve schedule:

Pipelined schedule:

High throughput: fast execution

i

+

1

<

N

acc

Static
controller

LD x[i] LD c[n-i]

*

+ Initiation Interval (II) = 1

18

• Dynamic scheduling
– Maximum parallelism: Only serialize memory accesses on actual dependencies

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

1: x[0]=5 → ld hist[5]; st hist[5];
2: x[1]=4 → ld hist[4]; st hist[4];
3: x[2]=4 → ld hist[4]; st hist[4];

RAW dependency
• Static scheduling (standard HLS tool)

– Inferior when memory accesses cannot be disambiguated at compile time

The Limitations of Static Scheduling

19

A Different Way to Do HLS

Static scheduling (standard HLS tool): decide
at compile time when each operation executes

Dynamic scheduling (our HLS approach): decide
at runtime when each operation executes

20

A Different Way to Do HLS

Static scheduling (standard HLS tool): decide
at compile time when each operation executes

Dynamic scheduling (our HLS approach): decide
at runtime when each operation executes

21

A Different Way to Do HLS

Static scheduling (standard HLS tool): decide
at compile time when each operation executes

Dynamic scheduling (our HLS approach): decide
at runtime when each operation executes

22

• Asynchronous circuits: operators triggered when inputs are available
– Budiu et al. Dataflow: A complement to superscalar. ISPASS’05.

• Dataflow, latency-insensitive, elastic: the synchronous version of it
– Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

– Carloni et al. Theory of latency-insensitive design. TCAD’01.

– Jacobson et al. Synchronous interlocked pipelines. ASYNC’02.

– Vijayaraghavan and Arvind. Bounded dataflow networks and latency-insensitive circuits. MEMOCODE’09.

Dynamically Scheduled Circuits

Component 1 Component 2

data

valid

ready High-level synthesis of
dynamically scheduled

(dataflow) circuits

Make scheduling decisions at runtime: as soon as all
conditions for execution are satisfied, an operation starts

valid

ready

23

HLS of Dynamically Scheduled Circuits

Pipelining

Resource sharing

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution

Out-of-order memory

Reaping the benefits of
dynamic scheduling

24

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

25

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

26

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

27

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

28

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

29

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

From Program to Dataflow Circuit

Single token on cycle, in-order
tokens in noncyclic paths

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

30

Backpressure from slow paths prevents pipelining

From Program to Dataflow Circuit

31

Reaping the benefits of
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution

32

Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

LD x[i]

Merge

Reg

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

Fork

Buffers as registers to break
combinational paths

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

33

Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

FIFO

FIFO
FIFO

Buffers as FIFOs to regulate
throughput

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

34

Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

FIFO

FIFO
FIFO

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

BEFORE
(without buffers)

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

35

Inserting Buffers

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

FIFO

FIFO
FIFO

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

BEFORE
(without buffers)

NOW
(with buffers)

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

36

Inserting Buffers

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

FIFO

FIFO
FIFO

NOW
(with buffers)

Mixed integer linear programming (MILP) model
based on Petri net theory
• Analyze token flow through the circuit
• Determine buffer placement and sizing
• Maximize throughput for a target clock period

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

37

Backpressure from slow paths prevents pipelining

Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

38

Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

Buffers for high throughput

39

RAW dependency
not honored!

Inserting Buffers

What about memory?

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

1: x[0]=5 → ld hist[5]; st hist[5];
2: x[1]=4 → ld hist[4]; st hist[4];
3: x[2]=4 → ld hist[4]; st hist[4];

RAW dependency

40

Reaping the benefits of
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution

41

• Processor LSQs keep dependent memory accesses in the original program order

• Application-specific LSQs for dataflow circuits

We Need a Load-Store Queue (LSQ)!

Processor
datapath

(out of order)

Memory
Ordering

(load-store
queue)

Instruction
fetch & decode

(in order)

loop: lw $t2, 0($t4)

lw $t3, 100($t4)

mul $t5, $t2, $t3

 addi $t5, $t5, $t1

sw $t5, 100($t4)

addi $t1, $t1, 4

bne $t6, $t1, loop

store hist

load weight

…

Dataflow (out of order)

Memory

…

…

…

…
…

load hist

load x

Ordering

(load-store
queue)

LSQ placement and sizing for high
throughput and low resources

Josipović, Brisk, and Ienne. An Out-of-Order Load-Store Queue for Spatial Computing. CASES 2017 Best Paper Award Nominee
Liu, Rizzi, and Josipović. Load-Store Queue Sizing for Efficient Dataflow Circuits. FPT 2022.

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

42

Dataflow Circuit with the LSQ

High-throughput pipeline with
memory dependencies honored

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

1: x[0]=5 → ld hist[5]; st hist[5];
2: x[1]=4 → ld hist[4]; st hist[4];
3: x[2]=4 → ld hist[4]; st hist[4];

RAW dependency

43

HLS of Dynamically Scheduled Circuits

Static HLS vs. dynamic HLS?

44

Static vs. Dynamic HLS
• Dynamatic: an open-source HLS compiler

45

Static vs. Dynamic HLS

××
Mvt

Gaussian

Lo
w

e
r

is
 b

et
te

r

Left is better

• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS

46

Static vs. Dynamic HLS
• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS

Reduced execution time in
irregular benchmarks

(speedup of up to 14.9X)

Lo
w

e
r

is
 b

et
te

r

Left is better

××
Mvt

Gaussian

47

Static vs. Dynamic HLS

Reduced execution time in
irregular benchmarks

(speedup of up to 14.9X)

Lo
w

e
r

is
 b

et
te

r

Left is better

××
Mvt

Gaussian

• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS

48

Static vs. Dynamic HLS

LSQ causes significant
resource overheads

Lo
w

e
r

is
 b

et
te

r

Left is better

××
Mvt

Gaussian

• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS

49

Static vs. Dynamic HLS

1020 LSQ slices

220 295 kernel slices

1073

~ 5% of a Kintex-7
FPGA

LSQ causes significant
resource overheads

Lo
w

e
r

is
 b

et
te

r

Left is better

××
Mvt

Gaussian

• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS

50

Static vs. Dynamic HLS

Static and dynamic HLS
have the same pipelining

capabilities

Lo
w

e
r

is
 b

et
te

r

Left is better

××
Mvt

Gaussian

• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS

51

Static vs. Dynamic HLS

Regular benchmarks are
Pareto-dominated due to

CP increase

Lo
w

e
r

is
 b

et
te

r

Left is better

××
Mvt

Gaussian

• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS

52

DSP-oriented applications

Static vs. Dynamic Scheduling

Computer
Architecture

High-Level
Synthesis

Statically Scheduled
→ “Compiler does the job”

Dynamically Scheduled
→ “Hardware does the job”

VLIW
Processors

Out-of-Order
Superscalar
Processors

Traditional HLS Dataflow circuits

General-purpose code

(new applications and users)

53

Bridging the Gap Between Software and Hardware

A different way to go about HLS
(generating dynamically scheduled circuits from C code)

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

It is difficult for HLS to account for
reconfigurable platform details

SW

HW

54

Bridging the Gap Between Software and Hardware

Elakhras, Guerrieri, Josipović, and Ienne. Unleashing Parallelism in Elastic Circuits with Faster Token Delivery. FPL 2022 Best Paper Award Nominee
Cheng, Josipović, Wickerson, and Constantinides. Dynamic Inter-Block Scheduling for HLS. FPL 2022 Best Paper Award Nominee

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

It is difficult for HLS to account for
reconfigurable platform details

SW

HW

New programming models and
compiler techniques for irregular parallelism

Sequential synthesis limits
parallelism

Exploiting spatial parallelism
without user intervention

Loop 1

Loop 2
after Loop 1

Loop 1
Loop 2 parallel

to Loop 1

55

Bridging the Gap Between Software and Hardware

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

It is difficult for HLS to account for
reconfigurable platform details

SW

HW

A formal verification framework for improving the
quality of circuits generated from software code

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.
Xu and Josipović. Automatic inductive invariant generation for scalable dataflow circuit verification. ICCAD 2023.

Customize circuit logic
(50% area reduction)

Maintain dynamism only when needed and
match resources of static HLS otherwise

56

Bridging the Gap Between Software and Hardware

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

It is difficult for HLS to account for
reconfigurable platform details

SW

HW

Implementation-aware compiler optimizations
for fast and small circuits

Rizzi, Guerrieri, and Josipović. An Iterative Method for Mapping-Aware Frequency Regulation in Dataflow Circuits. DAC 2023
Wang, Rizzi, and Josipović. MapBuf: Simultaneous Technology Mapping and Buffer Insertion for HLS Performance Optimization. ICCAD 2023 Best Paper Award Nominee

R
egister

Logic block A Logic block B

Register for high performance

Accurate frequency estimates and regulation
for high-performance circuits

57

Bridging the Gap Between Software and Hardware

Enable diverse users to accelerate compute-intensive
applications on hardware platforms

for (j = 0; j < 10; j++) {
 float x = 0.0;
 for (i = 0; i < 10; i++)
 x += data[i][j];
 mean[j] = x / float_n;
}

for (j = 0; j < 10; j++) {
 float x = 0.0;
 for (i = 0; i < 10; i++)
 x += (data[i][j] - mean[j]) *
(data[i][j] - mean[j]);
 x /= float_n;
 x = x*x;
 stdev[j] = x;
}

58

Thanks! ☺

dynamo.ethz.ch dynamatic.epfl.ch

Research group: Dynamatic HLS tool:

Dynamatic 2.0 coming soon!

	Slide 1: From Software Programs to Digital Circuits
	Slide 2
	Slide 3
	Slide 4: High-Level Synthesis: From Programs to Circuits
	Slide 5: High-Level Synthesis: From Programs to Circuits
	Slide 6: Bridging the Gap Between Software and Hardware
	Slide 7: Bridging the Gap Between Software and Hardware
	Slide 8: Bridging the Gap Between Software and Hardware
	Slide 9: Bridging the Gap Between Software and Hardware
	Slide 10: Bridging the Gap Between Software and Hardware
	Slide 11: Standard HLS
	Slide 12: Standard HLS
	Slide 13: Standard HLS
	Slide 14: Standard HLS
	Slide 15: Standard HLS
	Slide 16: Standard HLS
	Slide 17: Standard HLS
	Slide 18: The Limitations of Static Scheduling
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44: Static vs. Dynamic HLS
	Slide 45: Static vs. Dynamic HLS
	Slide 46: Static vs. Dynamic HLS
	Slide 47: Static vs. Dynamic HLS
	Slide 48: Static vs. Dynamic HLS
	Slide 49: Static vs. Dynamic HLS
	Slide 50: Static vs. Dynamic HLS
	Slide 51: Static vs. Dynamic HLS
	Slide 52
	Slide 53: Bridging the Gap Between Software and Hardware
	Slide 54: Bridging the Gap Between Software and Hardware
	Slide 55: Bridging the Gap Between Software and Hardware
	Slide 56: Bridging the Gap Between Software and Hardware
	Slide 57: Bridging the Gap Between Software and Hardware
	Slide 58: Thanks!

