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▪ FPGA Accelerators 
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Reliability of FPGA Systems
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▪ It matters for mission-critical applications

Avionics Control Space Automotive Transport



Artificial Intelligence 
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▪ Increasing advent of 

vision-oriented 

elaboration algorithms

▪ Adoption of deep 

learning techniques

▪ Autonomous computing 

systems will enable to 

take autonomous 

decisions
Panda 79 %

Cat 11 %

Clown 6 %

Penguin 4 %



High-performance Computing on FPGAs
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▪ The high performance and reprogrammable capability lead 

FPGA as an appealing solution for high-performance 

demanding algorithms

– limited power consumption 

– high efficiency 



Neural Networks and Artificial Intelligence 
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▪ The usage of hardware devices capable of supporting 

Convolutional Neural Networks (CNNs) become strategic
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Implementation of CNNs on FPGA (i)
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▪ Several parallel neurons must be instantiated to implement a 

complete CNN

▪ All the data flow traversing structure from the synapse inputs 

to the post-rectified linear output required is limited to a 

resolution

▪ The product requires higher resolution for the multiplication 

and extra range for the accumulation to avoid overflow 

conditions of any arithmetic process

▪ Fully parallel neurons is not optimized for FPGA



Hardware Synthesizable Neurons
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▪ Customization of MAC and Hardwired units depending on 

– architectural organization of the Neural Network

– physical implementation tailoring depending on the FPGA resources 

availability
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Customizable Placement
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▪ The placement can be parametrized to manage the Neural 

Neuron characteristics

– Routing congestions

– Clock-skew

– Logic cone delay balancing 

Programmable Wires

HM HM

Combinational and Sequential Vertices

Hard Macros

Hardwired interconnections



Neural Network Reliability
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▪ Transient errors have been demonstrated to be dominant 

effects on the reliability degradation
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Radiation-induced Transient Errors
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Location Elevation [ft] Relative Neutron

Flux

Seattle, WA 160 1,05

Moscow, Russia 490 1,14

Chicago, IL 590 1,19

Denver, CO 5,280 3,76

Leadville, CO 10,170 10,79

White Mountain 12,500 15,07

Keller and Wirtlin, “Impact of Soft Errors on Large-

Scale FPGA Cloud Computing” FPGA 2019



Neuron Architecture
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Neural Network Reliability Analysis
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▪ Embedded Fault Injection Platform

▪ Inject faults in the implementing hardware via configuration 

memory corruption

▪ Structural modification of the Neural Network



Neural Network Structural Modification Methodology
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More configuration memory manipulation: “

PyXEL: An Integrated Environment for the Analysis of Fault Effects in SRAM-Based FPGA Routing“

2018 International Symposium on Rapid System Prototyping (RSP), Torino, Italy, 2018



Experimental Analysis (i)
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▪ Single bit-flip injection 

within the Neural 

Network FPGA 

configuration memory

▪ Error rate of a single 

neuron with different 

resolutions



Experimental Analysis – Error Propagation (ii)
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▪ Errors not propagated 

to the Neural Network 

output

▪ Errors propagated to the 

Neural Network output



Experimental Analysis (iii)
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▪ Placement view of the 

ZFNet Neural Network 

implementation on a 

Zynq 7020 SRAM-based 

FPGA



TMR Mitigation Approach
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▪ Application of Triple 

Modular Redundancy 

(TMR) techniques on 

selective resources

– Counters

– Input Streams

– Weight Memories

– ReLU



Experimental Analysis (iv)
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Timing Analysis
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Power Analysis
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Transient Errors Mitigation
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Neural Node slices area

Filtering area
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▪ Selective activation 

Transient filtering 

performs massive SET 

filtering

▪ Avoid drastic performance 

degradation



Transient Errors Mitigation
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▪ Selective activation 

Transient filtering 

performs massive SET 

filtering

▪ Avoid drastic performance 

degradation



ZFNet Complete Mitigation on RTG4 FPGA
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▪ Pruned ZFNet

implemented on RTG4 
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• Original
Timing performance optimization and without any mitigation

• Commercial
Implemented with the SET filtering feature up to 600 ps

• Proposed
Implemented with placement constraints targeting DSP performance 

and LSRAM resources and adopting selective SET filtering



Experimental Results (v)
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▪ The maximal SET pulse 

width distribution for the 

overall CCN sequential 

element 

– FFs and Block RAMs

Maximal SET Width Distribution

Original Commercial Proposed
0.15ns   0.25ns    0.35ns    0.45ns 0.15ns   0.25ns    0.35ns    0.45ns 0.15ns   0.25ns    0.35ns    0.45ns

[ns]



Experimental Results (vi)
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▪ Monte Carlo SET pulse 

width distribution 

obtained thanks to 

random fault injection on 

the CCN resources

Original

MonteCarlo SET Width Distribution

Commercial Proposed
0.15ns   0.25ns    0.35ns    0.45ns 0.15ns   0.25ns    0.35ns    0.45ns 0.15ns   0.25ns    0.35ns    0.45ns

[ns]



Sensitivity and Vulnerability Factors
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Conclusions
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▪ Reliability evaluation of Neural Network must be performed 

considering structural and transient faults

▪ Faults intrinsic of other hardware can be analyzed via FPGA

▪ Sensitivity and Vulnerability Factors are crucial parameters 

that should be addressed for any reliability analysis of 

Neural Network



Future works
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▪ Propose a comprehensive analysis involving other layers, 

network architectures and other accelerators such as TPU

▪ Compare the implementation tool also considering the 

synthesis and the mapping phases

▪ Compare results deriving by our approach with the results 

from network level injection and environmental tests
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