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James Wilkinson on Value+Error
Computation can be described as 
ideal infinite precision results + error
(J. Wilkinson)

OR

as a multiscale discretization of

Space, Time and Value (STV)

Multiscale (Dataflow) Reconfigurable Computing enables the discretization of 
STV and direct tradeoff with performance, computational density, power 
consumption and total cost of computation.
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Multiple scales of 
computing

Important features for optimization

complete system level Þ balance compute, storage and IO

parallel node level Þ maximize utilization of compute 
and interconnect

microarchitecture level Þ minimize data movements 

arithmetic level Þ tradeoff range, precision and 
accuracy = discretize in Time, 
Space and Value

bit level Þ encode and add redundancy

transistor level => manipulate ‘0’ and ‘1’

and more, e.g., trade/hide Communication (Time) 
for/behind Computation (Space), etc

4

Optimizations at all abstraction levels 
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Easy it is not (and not really new)
Slotnick’s law (of effort):   

“The parallel approach to computing does require that 
some original thinking be done about numerical 
analysis and data management in order to secure 
efficient use.
 
    In an environment which has represented the 
absence of the need to think as the highest virtue this 
is a decided disadvantage.”

Daniel Slotnick (1931-1985) 
Chief Architect of Illiac IV 
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Depends heavily on what is computed
Imaging: What does it mean for the result to be good enough?

IEEE Floating Point: Bit-accurate IEEE Floating Point, needed?

Accounting: Computing certain exact digits? Decimal? Binary?

Risk: Qualitative feedback might be enough? 1 bit: will it rain or not?

?
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Optimize representation 
for arithmetic and data movements

Floating Point
• Vary mantissa & exponent sizes
• Radix-4, radix 16, etc
• Block floating point
• Decimal floating point, etc

Advanced
• Logarithmic numbers
• Modulo Arithmetic 

(Chinese Remainder Theorem)
• Redundant Numbers

Integer
• Fixed Point
• Dual fixed point

Encode the wave field (STV):
• Predictive coding
• Arithmetic coding
• Lossless vs lossy

– Wavelets
– Curvelets, de-noising, etc
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Limits on Computing + and ×
[Shmuel Winograd, 1965]

Bounds on Addition
- Binary: O(log n)
- Residue Number System: O(log 2log α(N))
- Redundant Number System: O(1)

Bounds on Multiplication
- Binary: O(log n)
- Residue Number System: O(log 2log β(N))
- Using Tables: O(2[log n/2]+2+[log 2n/2])
- Logarithmic Number System: O(Addition)

However, Binary and Log numbers are easy to compare, others are not!

Also, constant multiplication complexity depends on the number of ‘1’s ………
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From ‘1’s to distance between ‘1’s
Rational Approximations & Continued Fractions

Oskar Mencer, Rational Arithmetic Units in Computer Systems
PhD Thesis, Stanford University, 2000. 
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Tradeoff compute versus memory

Computing f(x) in the range [a,b] with |E| ≤ 2⁻ⁿ
Table                          Table+Arithmetic Arithmetic-only

and +,-,×,÷ +,-,×,÷

§ uniform vs non-uniform
§ number of table entries
§ how many coefficients

§ polynomial or rational approx
§ continued fractions 
§ multi-partite tables

Underlying hardware/technology changes the optimum
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Dong-U Lee, et.al.,Optimizing Hardware Function Evaluation, IEEE 
Transactions on Computers. vol. 54, no. 12, pp. 1520-1531. Dec, 2005

in Practice: Tradeoff Representation, Memory and Arithmetic 
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Nicolas Brisebarre, Jean-Michel Muller and Arnaud Tisserand
Sparse Coefficient Polynomial Approximations for Hardware Implementation,
Asilomar Conference, 2004. 

Next: Minimize ‘1’s => Sparse Coefficients
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Coefficients, Coefficients, FD Coefficients…

3D Finite Difference Coefficients

19 MADDs 27 MADDs

Local Buffer = 6 slices Local Buffer = 3 slices

Time to compute is consequence of 
distance of coefficients in memory

Local temporal parallelism
=> Cascading timesteps
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• Used by compute intensive applications
• Evaluating on CPU

– Many cycles in software or CPU microcode
• Evaluating on Reconfigurable HW (FPGA):

– Evaluation stages add latency
– Resources reduce to required precision and bit width

• Function composition at the cost of just one function
– Similar costs in terms of hardware resources for 

approximating the value at a given x for expressions like 
f(x) = log(1+ exp(-x2/2)) and g(x) = exp(x).

14

Motivation for Elementary Functions
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Resource utilisation: floating point1

LUT FF BRAM DSP LUT FF BRAM DSP

dfeFloat(8,24) dfeFloat(11,53)

multiplication 155 364 2 1 343 696 3 4

addition 582 657 4 0 1,025 1,307 2 0

division 3,302 3,188 10 0 9,713 7,881 24 0

sqrt 470 897 1 0 1,741 3,356 1 0

sin 679 1,082 7 4 2,053 3,928 28 16

cos 693 1,072 7 4 2,082 3,908 28 16

exp 781 1,201 3 5 2,495 3,759 6 22

pow2 684 961 3 3 2,097 3,131 6 14

log2 541 916 5 4 1,533 3,163 26 16

1 Maia DFE, pipelining 1.0. Numbers may differ for each compilation. Sampled with MaxCompiler 2016.1.1
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Resource utilisation: fixed point2
LUT FF BRAM DSP LUT FF BRAM DSP

dfeFix(16,16, TWOSCOMPLEMENT) dfeFix(32,32, TWOSCOMPLEMENT)

multiplication 36 33 0 2 193 536 0 8

addition 16 17 0 0 32 33 0 0

division 1210 2,378 0 0 4,786 8,509 19 0

sqrt 347 352 0 0 1,271 1,275 0 0

sin 349 431 4 8 1,255 2,909 26 26

cos 365 448 4 8 1,287 2,947 26 26

exp 1053 1,485 4 8 1,699 2,920 5 16

pow2 904 1,198 1 4 1,322 1,868 1 7

log 248 317 2 5 659 1,193 4 14

2 Maia DFE, pipelining 1.0. Numbers may differ for each compilation. Sampled with MaxCompiler 2016.1.1



17Munich, Jan 17 2024

• Function value is approximated at a given point
– vast literature on function approximations in hardware
– libraries: CPU (e.g. fdlibm), FPGA (e.g. FloPoCo), …
– multi-precision approximations: Maple, Mathematica, etc.

• Options in hardware:
– Simple lookup table
– Iterative methods (e.g., Newton-Raphson)
– Approximations on one interval [a,b]
– Piece-wise approximations on many subintervals
– Combination of lookup tables and shifts
– Various combinations of all above

17

What about custom functions



18Munich, Jan 17 2024

Problem: implement  f(x) = sin(x) for 12 bit fixed 
point x

• There are 212 = 4,096 function values in total
• Each value is only 12 bit wide
• hardware implementation as a lookup into FMEM 

Cost: no more than 4 BRAMs

A bit of CPU work:
• tabulate the function on CPU
• define mapped ROM

18

Small lookup table example
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• E.g., Newton-Raphson
• Works well when rhs simplifies to a polynomial
• Example: evaluate

Choose                                  =>

• Notes
– Needs differentiable         , converges to a local minimum
– sensitive to initial guess
– quadratic convergence: precision roughly doubles

=> you can start iterations in small bit width

19

Iterative methods
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• 3 steps to compute f(x)
– Step 1: Argument Reduction = g(x) (bare for the next slide)

– Step 2: Approximation of g(x) over interval [a,b]

1. Lookup Table for a small number of bits
2. Lookup Table + Add/Sub  => Bi-partite tables
3. Lookup Table + Mult-Add => Piecewise Linear Approx
4. Shift-and-Add Methods => e.g., CORDIC
5. Polynomial and Rational Approximations  
6. Almost never use Taylor series: converges slowly!

– Step 3: Reconstruction to original argument (if necessary)

20

Approximations on one interval
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• Function is periodic: can shift x towards the origin
• Example: sin(float x) 

float sin(float x){
float y = x mod (π/2);   // argument reduction
float r1 = c0*y*y+c1*y+c2;
float r2 = c3*y*y+c4*y+c5;
return (r1/r2);          // rational approximation

}

• c0-c5 are coefficients of a rational approximation of 
sin(x) in [0, π/2]

• How to generate coefficients c0-c5. Use computer 
algebra system: Wolfram alpha (Mathematica), 
Maple,...

21

Simple argument reduction
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• Function y = exp(x). Reducing x to r in [-ln(2)/2, +ln(2)/2]:
– Find integer N such that r := (x – N*ln(2))/2  is in the interval
– Equivalently, x = N (0.5 ln 2) + r
– Using identities:  exp(x) := 20.5N exp(r)

• Step 1: 
– N := integer quotient of x/(0.5 ln 2). Adjust N to make it even! 
– calculate r as accurate as you can

• Step 2: 
– Compute exp(r) by approximation (e.g. polynomial)
– Inaccurate r yields inaccurate exp(r)...

• Step 3: 
– Compute exp(x) = 20.5N exp(r) = 2k exp(r)  -- just a shift! If N=2k

22

More complicated argument reduction
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• Horner Rule transforms polynomial into a 
“Multiply-Add Structure”

• Multiply-Add is more numerically stable
• Multiply-Add takes less HW resources than 

multiply and add as 2 separate operations

23

Evaluating Polynomials

0123

01
2

2
3

3

)))(((        
)(

cxcxcxc
cxcxcxcxf

+×+×++=
++++»







24Munich, Jan 17 2024

• Many approximations locally defined on their sub-
intervals [ai, bi].

• Approximations only differ by e.g., polynomial 
coefficients

• For every x find its interval
• Table lookup: get coefficients for this interval
• Evaluate e.g., polynomial
• Does not hurt to employ argument reduction: less 

intervals, higher convergence in each interval
• How to generate: use compute algebra system. 

Remez method (minimax polynomial), splines...

24

Piece-wise approximations
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• J.M. Muller, “Elementary Functions,” Birkhaeuser, 
Boston, 1997.

• Story, S. and Tang, P.T.P., "New algorithms for improved 
transcendental functions on IA-64," in Proceedings of 14th 
IEEE symposium on computer arithmetic, IEEE Computer 
Society Press, 1999.

• D.E. Knuth, “The Art of Computer Programming”, Vol 2, 
Seminumerical Algorithms, Addison-Wesley, Reading, 
Mass., 1969. 

• C.T. Fike, “Computer evaluation of mathematical functions,”
Englewood Cliffs, N.J., Prentice-Hall, 1968. 

• L.A. Lyusternik, “Handbook for computing elementary 
functions”, available in English translation.

25

Further Reading on Function Evaluation
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Euclids Elements, Representing a²+b²=c²
=> optimal representation is important
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Maximum Performance Computing
=> Kolmogorov Complexity (K)

Definition (Kolmogorov*): 
“If a description of string s, d(s), is of minimal length, […] 
it is called a minimal description of s. Then the length of d(s), […] is 
the Kolmogorov complexity of s, written K(s), where K(s) = |d(s)|”

Of course K(s) depends heavily on the Language L used to describe 
actions in K. (e.g. Java, Esperanto, an Executable file, etc)

Optimal Representation is a hard problem ontop of a hard 
problem.

*Kolmogorov, A.N. (1965). "Three Approaches to the Quantitative Definition of Information". Problems Inform. Transmission 1
(1): 1–7.

http://www.ece.umd.edu/~abarg/ppi/contents/1-65-abstracts.html
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Comparing an x86 based 1U machine 
with a Multiscale Dataflow based 1U machine with 8 DFEs

Modelling 25x Finite Difference 60x Data Correlation 22x

Smith-Waterman 16-32x Fluid Flow 30x Imaging 29x

28
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Weather and climate models on DFEs

Which one is better?

Finer grid and higher precision are obviously preferred but the computational 
requirements will increase è Power usage à $$

What about using reduced precision? (15 bits instead of 64bit double precision FP) 
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Weather models precision comparison
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What about 15 days of simulation?

Surface pressure after 15 days of simulation for the double precision and the 
reduced precision simulations (quality of the simulation hardly reduced)
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Concluding remarks

• Reconfigurable acceleration success points to the 
weakness of evolutionary approaches to parallel 
processing: hardware (multi core) and software (C++, 
etc.), at least for HPC applications

• The automation of acceleration is still early on; still 
required: tools, methodology for writing apps., analysis 
methodologies, and

• a new hardware substrate (coarser grain, higher speed, 
shorter P&R times) maybe DFRA (way too many letters)
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Concluding remarks (2)

• Reconfigurable HPC can become a reality if underlying 
software problems can be solved

• In HPC the parallel approach demands rethinking 
algorithms, data representation, programming approach, 
models of computation and environment (and hardware)

• There’s a lot of research ahead to effectively create 
parallel translation and array based technology
– How much automation?

• Tools, Tools, Tools + dedicated methodologies
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Example:
data flow graph 

generated by 
MaxCompiler 

4,866 
static dataflow cores

in 1 chip

Doable with VHDL / Verilog?
Also for nuclear physicists?
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Thank you very much for your attention

?

35
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Fixed-point bit-width exploration 

‘true’ image: single-precision floating-point

8-bit fixed-point 10-bit fixed-point
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Different parts are explored 
separately, i.e., when we investigate 
one part, we keep the bit-widths in 
other parts a constant high value

Similarly, we observe a significant 
drop of the error when the SQRT 
bit-width increases from 8 to 10

Similar precision thresholds observed in both synthetic and field results. This behavior enables an 
automatic tool to determine the minimum precision that still keeps the result good enough 
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Floating-point bit-width exploration 
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floating-point: 5-bit exponent floating-point: 6-bit exponent 

‘true’ image: single-precision floating-point

We use the Marmousi synthetic 
data set as the test data, and 
explore different combinations of 
exponent and mantissa bit-width 

A precision threshold at exponent 
width of 6 bits:
• The error drops significantly when 

we increase the exponent width 
from 5 bits to 6 bits

• The image also turns from nearly 
random noise at 5 bits, to almost 
identical to the 32-bit image at 6 bits 



38Munich, Jan 17 2024

§ Equations: Shallow Water Equations (SWEs)

§ Atmospheric equations

𝜕𝑄
𝜕𝑡 +

1
Λ
𝜕(Λ𝐹!)
𝜕𝑥! +

1
Λ
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𝜕𝑥" + 𝑆 = 0

Global Weather Simulation (10 years ago!)

[L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and G. Yang,  Accelerating solvers for 
global atmospheric equations through mixed-precision data flow engine, FPL2013]
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Always double-precision needed?
§ Range analysis to track the absolute values of all variables   

fixed-point fixed-point 

fixed-point 

reduced-precision

reduced-precision
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What about error vs area tradeoffs
§ Bit accurate simulations for different bit-width configurations. 
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Accuracy validation

[Chao Yang, Wei Xue, Haohuan Fu, Lin Gan, et al.  ‘A Peta-scalable CPU-GPU 
Algorithm for Global Atmospheric Simulations’, PPoPP’2013]
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And there is also performance gain

Meshsize: 1,024×1,024×6
MaxNode speedup over Tianhe node: 14 times

Platform Performance
()

Speedup

6-core CPU 4.66K 1
Tianhe-1A node 110.38K 23x
MaxWorkstation 468.1K 100x

MaxNode 1.54M 330x
14x
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And power efficiency too

Platform Efficiency
( )

Speedup

6-core CPU 20.71 1
Tianhe-1A node 306.6 14.8x
MaxWorkstation 2.52K 121.6x

MaxNode 3K 144.9x
Meshsize: 1,024×1,024×6
MaxNode is 9 times more power efficient

9 x


