A Task Graph Representation
for Flexible Hardware/Software
Partitioning

Tiago Santos, Joao Bispo, Joao M. P. Cardoso

HIPEAC Workshop on Reconfigurable Computing (WRC’ 24)
17th of January 2024, Munich, Germany

[@PORTO INESCTEC ~ #8.SPeCS
FEUP FACULDADE DE ENGENHARIA - Special-Purpose Computing
Systems. languages and tools

UNIVERSIDADE DO PORTO

Hardware/Software Partitioning

T1
, Host Accelerator
| (CPU) (FPGA)
s T ':'c; e ﬂ

)

7 tasks — 27 possible solutions, and more if accounting for variants/versions of each task or clusters!

T3)

=

\ :q:)

. .« = = = = = on =

=

T4 8

(44}

e
T5 %
<

Exec. Time

Task Granularity for Holistic HW/SW
Partitioning

How can we enable tasks with flexible
o) Possible code region for offloading? granularity? Mix up statements, loop

:convolveZd(output, filter, image_gray);|

Ifilter[0] = 1; How can we merge and split tasks while
Ifilter[1] = 2; : : .
1 keeping as much as possible the original
Ifilter[7] = -2; source code?

:filter[S] = -1;

I L
lconvolve2d(output, filter, temp_buf): How can we expose data communication,

- - — and create clusters of tasks across shared
combthreshold(image_gray, temp_buf, output); data?

(end)

Our Task Graph Formulation

void F1(int *A, int *B, int *C, int *D) { F1
F2(A, B);
for (int 1 = 0; 1 < 100; 1i++) {
F3(A, C[i]);
FA(B, C[i]);
}
for (int 1 = 0; 1 < 500; 1i++) { Loop
FS5(A, B);
F6(A): Task
¥
F7(A, B, D);

AST Transformation Task Graph Transformation
Function Inlining Merging Tasks

Function Outlining Splitting a Task

Exposing Data Communication

image_rgb {6116},
image_gray {1529}

main_begin

temp_buf
output {1529}
rgbToGrayscale {1529}
image_gray filter {0}
image_gray
{1529} convolve2d (1)
outp filter {0}

r)"

output
{1529}

convolve2d (3)

convolve2d (2)

image_gray
{1529}

output {1529}

>

combthreshold

filter {0}

set_smooth_filter

— -
i filter {0}

/ set_vert_filter

i lﬁlter o)

set_horiz_filter

filter {C

main_end

Multigraph with one data item per
edge, with its size and communication
cost

Find the cluster of tasks that modify
the same data item

Find nearby tasks that use copies of
the data item

Task Graph Properties

 Subgraph level of
parallelism: ratio of the
subgraph’s critical path and
its total number of tasks

« Dataflow regions: pairs of
tasks with a producer-
consumer relationship may
suggest the presence of a
dataflow region

[he

F1

K_/ Rv
F2 F3
F2.1 F3.1
F2.2 F2.3 F3-2 F3-3

—

=]
2
oy

KJ

8

Tool Flow

Clava C/C++ to C/C++ Source-to-Source Compiler
Host
Clava Core APIs CiC++
A A A A | > code
C/CH++ A 4 \ 4 \ 4 \ 4
Application T Preprocessing." _y |Task Graphl_y,| | Properties | Partitioni
Code Transforms ! Generator Extractor SRR
) : ' Accelerator
. O > C/C++
e N N code
. P Graph Properties | Target
Dotfile JSON . Properties | Clava

« Ensuring every function | |] : :

returnS\g/oid i | Clava extensions
« Constant Folding and ! Application Source Code

iopaganon | Intermediate Artifacts
« Decomposing complex | :

statements !
o Array Flattening (N-

dimensions to 1-D) '

Clava is available on GitHub: github.com/specs-feup/clava
Task Graph extension will be open-sourced in the very near future! 7

github.com/specs-feup/clava

Concluding Remarks

Hierarchical Task Graph as an overlay
of the AST

Enables creation of arbitrary clusters
with flexible granularity while preserving
source code

Exposes data communication and
traceability between tasks

Experimental results for Rosetta and
MachSuite show potential in
parallelizing tasks and exploiting
dataflow regions

Ongoing work: perform
partitioning and code
optimization as a single-pass
holistic process

Thank you for listening!

[APORTO INESC ? SPeCS
J
Special-Purpose Computing
Systems. languages and tools

FEUP FACULDADE DE ENGENHARIA
UNIVERSIDADE DO PORTO

