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Automotive networks

▶︎ Over 100 ECUs in higher end 
vehicles 

▶︎ Over 100 million lines of code –
more than an aircraft! 

▶︎ Over 100kg of electronics 

▶︎ Over 6km of cabling!
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Automotive networks
▶︎ Traditionally split into: 

▶︎ Critical networks: generally assumed to be low to medium bandwidth but 
with strict requirements for key subsystems  

▶︎ Non-critical networks: lightweight comfort features and audiovisual 
without strict requirements 

▶︎ More specifically, the domains specify a required combination of bandwidth, 
reliability, and other QoS properties 

▶︎ Body, chassis, powertrain, telematics, occupant safety
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Automotive network constraints
▶︎ Key drivers of network choice in the automotive domain: 

▶︎ Cost 

▶︎ Safety 

▶︎ Weight 

▶︎ Ethernet was problematic for a long time, due to cabling cost; BroadCom 
developed a new physical layer allowing unshielded twisted  
pair wiring, standardised by OPEN Alliance
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ADAS and autonomy requirements
▶︎ Emergence of advanced driver assistance systems and autonomous driving 

bring with them the following 

1. A larger number of data-intensive sensors, 

2. distributed more widely around the vehicle, 

3. requiring significant computation to determine outcomes, 

4. which must be communicated within strict deadlines 

▶︎ This impacts the networking and computation requirements in vehicles
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Network architecture
▶︎ ECU architecture includes 

▶︎ Single/multi-core processor 

▶︎ Memory 

▶︎ Sensor interfaces 

▶︎ Network interface 

▶︎ Some hardware accelerators
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Network architecture
▶︎ Currently, adding new functionality to a vehicle means adding more ECUs to 

perform the required computation → number of ECUs 1.45×/year 

▶︎ There is an interest in ECU consolidation 

▶︎ Non-concurrent functions can share the same hardware 

▶︎ But isolation problematic even with multi-core ECUs 
due to shared resources, e.g. memory, network interface 

▶︎ ADAS and autonomous driving are ideal for this due to 
shared sensors and multiple modes
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Compute limitations
▶︎ Many applications require additional 

compute tasks to be added 

▶︎ Add encryption to critical messages 

▶︎ Add preprocessing to sensor data 

▶︎ These adversely affect timing, requiring 
recertification 

▶︎ Even hardware coprocessors have have 
this problem

9
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Smart network interfaces
▶︎ Normally network interface 

simply moves messages between 
network and ECU processor 

▶︎ Our proposal: add an 
extensible, 
programmable 
datapath inside 
the controller
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Prototyping platform
▶︎ We built a standards-compliant FlexRay 

controller to explore these ideas 

▶︎ Comparable power consumption to a 
discrete ASIC controller (Bosch eRay) 

▶︎ Additional features added to controller 
to quantify overheads
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Moving large data streams
▶︎ How do we move large-volume sensor data more 

efficiently? 

▶︎ Currently frame size determined by standard 

▶︎ Each frame initiates an interrupt to the ECU 
processor 

▶︎ Usable amount of data typically involves multiple 
frames, latency 

▶︎ Adding a suitably sized buffer in the network 
controller means it only initiates an interrupt once 
sufficient data has been received
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Fig. 16. Data repacking for multicycle data transfers.

Fig. 17. Overheads for including headers and timestamps.

VI. DISCUSSION

The FlexRay protocol does not define the usage of headers
within the data segment, which is entirely dependent upon user
implementation. While the usage of headers and timestamps
within data provides the aforementioned advantages, it may re-
sult in significant payload overheads for small data sizes, while
also limiting the payload capability of a FlexRay frame. Fig. 17
compares the overheads associated with different configurable
values for the application header and timestamp, as a function
of the payload size. As can be observed, at lower payload sizes,
the inclusion of a timestamp and application header results in
large overheads, but for large payload sizes, the penalty paid
is very small. Beyond the maximum payload size of 256 B,
additional data have to be handled as multicycle transactions,
causing the curve to flatten out for higher payload sizes. Since
the application header and timestamp data are inserted within
the data segment of the FlexRay frame, it is transparent to other
FlexRay controllers on the network, ensuring interoperability
with standard controllers.

We have purposefully designed the controller’s architecture
to coexist with ECU functions on the same FPGA. Doing so
allows us to leverage the computational capabilities of FPGAs
for implementing ECU functions while no longer requiring
a discrete network controller. We can also incorporate partial
reconfiguration to allow multiple applications to interface with
the bus through a single controller and to define fault-tolerant
ECUs for safety-critical functions [32].

Furthermore, timestamps and data processing capabilities
within the controller can also be used extensively for functional
validation of novel applications, architectures, and network
features. On a large enough FPGA such as the Virtex-7, we can
integrate up to ten ECUs, network controllers, and the actual
network to create a validation platform (replicating an actual
car network) for functional verification [33].

VII. CONCLUSION

In this paper, we have given an overview of the FlexRay
protocol and the generic architecture of the CC, as defined
by the specification. By identifying and extracting operations
that are mutually exclusive or natively parallel, we have de-
signed a custom controller that takes advantage of the het-
erogeneous resources on modern FPGAs, resulting in reduced
logic footprint and low power consumption, while providing
a host of features beyond those described by the standard.
Advanced computational capabilities such as fault tolerance
and function consolidation can be built into nodes that integrate
complex ECU functions with advanced CCs. This approach
also improves power consumption compared with the use of
discrete controllers. We hope that our flexible and configurable
architecture can be leveraged for continued research on intelli-
gent FlexRay nodes and switches on FPGAs, leading to wider
adoption of reconfigurable hardware for in-vehicle applications.

We aim to investigate extending this controller for use with
partial reconfiguration to provide flexible use of the FPGA
fabric, enabling further sharing of communication resources
between ECUs. We intend to develop intelligent FlexRay nodes
and switches on reconfigurable hardware that are energy effi-
cient and that will allow us to explore more advanced network
setups. Finally, the principles demonstrated in this paper are
also applicable to other time-triggered interfaces, and we hope
to explore this for time-triggered Ethernet.
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TABLE I: Data re-packing for multi-cycle data transfers (64-byte data).

Mode Latency components Total time Change

Interrupt Data Movement

Software 2.96 µs ⇥ 8 0.3 µs ⇥ 8 26.08 µs
Extension 2.96 µs ⇥ 1 0.3 µs ⇥ 8 5.36 µs �79%

TABLE II: Comparison of adaptation times when handled through software or through the hardware extension
within the smart network interface.

Mode Latency components Total time Change

Interrupt Data Movement Reconfig.

Software (PCAP) 2.96 µs 0.3 µs 2257.9 µs 2261.1 µs
H/W intelligence with

NA NA 759.4 µs 759.4 µs �66%
custom ICAP

A. Handling Volume Data at Interfaces
In this case study, we consider the case of transmitting messages from a conventional FlexRay ECU to an Ethernet

backbone network. We use an 8-byte message for this experiment (on FlexRay), as other work has shown that the
8-byte message size represents over 70% of traffic on FlexRay-based vehicular systems. Multiple such messages
are packed together to form a valid Ethernet payload of 64 bytes. With a software-based gateway, the processor has
a fetch-and-pack task that is activated whenever an 8-byte FlexRay frame is received at the network interface (using
an interrupt). The task reads the message into the Ethernet buffer and sets the done flag if the packet is ready to be
transmitted (i.e., when 64-bytes have been filled), otherwise it executes other tasks and waits for the next interrupt.
Each of these actions incurs some latency, as shown in Table I, with a best case interrupt latency of 2.96 µs. As
shown, the fetch-and-pack task is executed multiple times every Ethernet frame, consuming considerable processor
cycles in context switch and data movement (total latency of 26.08 µs).

Embedding this capability into the network layer allows the interface to pack multiple messages into an Ethernet
payload, which can be read with a simpler fetch task, reducing latency by around 80%. It should also be noted that
many tasks in an automotive system are non-preemptive to ensure strict deadlines, which could increase performance
gains further. Finally, a fully hardware based packing and switching system that does not rely on software tasks
further cuts down the latency to 3.3 µs including the transmission latency over the Ethernet link (through hardware
based packing, and forwarding, measured on actual hardware), and is a more viable solution for high-performance
automotive gateways (see VEGa [10]). Such packing also applies to ECUs that deal with data-dense sensors, such
as radar or cameras.

B. Hardware-Level Adaptation
This case study explores the benefits of coupling device-level capabilities like dynamic reconfiguration with

the datapath extensions in the network interface. Consider an ECU system that can adapt its control algorithm in
response to changes in environmental conditions or user settings, like an adaptive terrain response system that is
common in off-road capable vehicles. Since these different modes of operation are mutually exclusive, it is sensible
to have them swap in and out as required to save area and power. The Zynq platform enables the hardware blocks
to be selectively modified to adapt the processing logic through a processor-based PCAP interface. In this scenario,
a software task that monitors information from sensors or user inputs (over the network) triggers a reconfiguration
through the processor, keeping the processor occupied with a non-preemptive task until reconfiguration is completed.

Alternatively, by interfacing the low-level reconfiguration primitives with the network extensions, the recon-
figuration process can be fully handled by the interface, while the processor carries out its regular tasks. The
custom reconfiguration system determines the mode to be chosen, fetches the new hardware configuration (through
DMA) and configures the hardware block without processor intervention. The time consumed for the adaptation
process (from message reception to adaptation) in both cases is shown in Table II. The software technique keeps

On Microblaze
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Adapting ECU functionality
▶︎ The advent of ADAS and autonomous driving means we need to adapt 

ECU functionality depending on operating context 

▶︎ The same set of sensors can support multiple mutually-exclusive system 
functions 

▶︎ The amount of signal processing required suggests a place for hardware 
acceleration, and perhaps FPGAs 

▶︎ Ideally, we could consolidate these functions on a single platform, 
requiring a trigger to switch between modes

13
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Adapting ECU functionality
▶︎ To maintain standards-compliance, we 

can extend the data frame format  within 
the payload, allowing the network 
controller to add/read data there 

▶︎ Extensions in the network interface 
manage this data transparently to the 
application 

▶︎ Special status bits allow interfaces to 
communicate with each other without 
affecting processor operation

14
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Cycle 0 Cycle 1 ..... Cycle 63

Static Segment Dynamic Segment Symbol Window NIT

Slot 1 Slot 2 ..... Slot n Slot 1 Slot 2 ..... Slot k

Figure 4.3: Specification of the FlexRay cycle.

Header Payload CRC
Data Frame

Format

Node ID (10 bits) Critical (1 bit) Err Sts (3 bits) Prime/Red (2 bits)

Node Status Message

Figure 4.4: Dynamic segment payload with Message ID.

on the dynamic segment for deterministic communication can be solved by using

standard scheduling algorithms. Here we explore a simple mechanism, which in-

corporates the two possible extreme cases – use the first n slots in each cycle or

use one slot in every cycle, which is reused for n nodes across di↵erent cycles. In

either case, the slot in the dynamic segment communicates a fixed length system

status messages for safety-critical nodes, at varying periodicity depending on the

scheme chosen. These messages are used to trigger recovery in case of errors.

For this application, we propose to make use of an optional message ID feature

that is described by the protocol specification [53]. Message ID’s are used in the

dynamic segment as an optional two-byte data element, whose use is not restricted

by the protocol. Using this inbuilt mechanism allows us to make use of the existing

protocol filtering scheme, allowing this approach to be applied even with standard

o↵-the-shelf controllers. Alternatively, the datapath extensions on our custom CC

can be configured to achieve the same functionality with lower latency, since our

extensions process the messages closer to the lower protocol layers compared to

the upper layer operation defined in the protocol.

We propose to utilise bits of the message ID to indicate the critical status of the

device, and whether its functions need to be taken over by a redundant unit. The
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Adapting ECU functionality
▶︎ We propose FPGA-based ECUs to 

provide a redundant backup that can 
be adapted to errors/mode changes in 
real time 

▶︎ The redundant unit can be partially 
reconfigured with the appropriate 
backup function, in direct response to a 
critical error message on the network 

▶︎ A high performance accelerator can be 
replaced as needed for different modes
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A-1 A-2

C 1C 2

(a)

Critical Error Status
Node A-1 fails

Adaptive
Redundant Unit

A 2 A 1

C 1C 2

(b)

⇥

Node A-1 removed
(non-functional)

Normal Status

Adaptive unit
replaces A-1

Figure 4.7: A Distributed redundancy scheme for non-critical ECUs.

In such an environment, we can assign a single backup region as the redundant unit

for multiple nodes. Each node in the subset has a virtual redundant unit, which is

enabled only when the original node is disabled by errors. The architecture of the

redundant node is the same as in Figure 4.5, where virtualisation is enabled by

multiple bitstreams that emulate the behaviour of the subset nodes. SR-2 in Fig-

ure 4.5 of the adaptive node can be programmed as centralised fault-monitoring

logic, which monitors the fault status of each of the subset nodes in the respective

slots. On detecting (or receiving) a fault condition, the active node forces itself to

turn o↵, while the redundant unit assumes its position and identity on the bus.

Such a virtual redundant scheme is more e�cient in terms of power, space and

weight, than a point-wise discrete redundancy scheme. PRR-1 in Figure 4.5 of

the adaptive node is initially blank, consuming zero dynamic power. The region

is programmed with the functionality of the erroneous ECU as soon as the fault is

identified and takes over the function, including the bus identity and configuration

of the failed ECU, as shown in the transition from Figure 4.7 (a) to Figure 4.7 (b).

It is also possible to integrate multiple redundant units onto a large enough FPGA,

which can operate in complete isolation. Resources can be e↵ectively partitioned

into two or more distinct regions, which are large enough to incorporate the func-

tional units, running in parallel with complete isolation. Such redundant units

can be distributed throughout the network or associated with clusters of critical

ECUs. This improves the number of simultaneous failures that can be handled by

the system at the expense of slightly higher cost and complexity. The datapath

extensions in our CC enable such functionality to be implemented in hardware,
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Adapting ECU functionality
▶︎ Enabling FPGA 

reconfiguration from within 
the network controller 
improves the response time 
significantly 

▶︎ Adding the decision making 
time that would otherwise be 
done within an ECU processor 
increases this even further
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TABLE I: Data re-packing for multi-cycle data transfers (64-byte data).

Mode Latency components Total time Change

Interrupt Data Movement

Software 2.96 µs ⇥ 8 0.3 µs ⇥ 8 26.08 µs
Extension 2.96 µs ⇥ 1 0.3 µs ⇥ 8 5.36 µs �79%

TABLE II: Comparison of adaptation times when handled through software or through the hardware extension
within the smart network interface.

Mode Latency components Total time Change

Interrupt Data Movement Reconfig.

Software (PCAP) 2.96 µs 0.3 µs 2257.9 µs 2261.1 µs
H/W intelligence with

NA NA 759.4 µs 759.4 µs �66%
custom ICAP

A. Handling Volume Data at Interfaces
In this case study, we consider the case of transmitting messages from a conventional FlexRay ECU to an Ethernet

backbone network. We use an 8-byte message for this experiment (on FlexRay), as other work has shown that the
8-byte message size represents over 70% of traffic on FlexRay-based vehicular systems. Multiple such messages
are packed together to form a valid Ethernet payload of 64 bytes. With a software-based gateway, the processor has
a fetch-and-pack task that is activated whenever an 8-byte FlexRay frame is received at the network interface (using
an interrupt). The task reads the message into the Ethernet buffer and sets the done flag if the packet is ready to be
transmitted (i.e., when 64-bytes have been filled), otherwise it executes other tasks and waits for the next interrupt.
Each of these actions incurs some latency, as shown in Table I, with a best case interrupt latency of 2.96 µs. As
shown, the fetch-and-pack task is executed multiple times every Ethernet frame, consuming considerable processor
cycles in context switch and data movement (total latency of 26.08 µs).

Embedding this capability into the network layer allows the interface to pack multiple messages into an Ethernet
payload, which can be read with a simpler fetch task, reducing latency by around 80%. It should also be noted that
many tasks in an automotive system are non-preemptive to ensure strict deadlines, which could increase performance
gains further. Finally, a fully hardware based packing and switching system that does not rely on software tasks
further cuts down the latency to 3.3 µs including the transmission latency over the Ethernet link (through hardware
based packing, and forwarding, measured on actual hardware), and is a more viable solution for high-performance
automotive gateways (see VEGa [10]). Such packing also applies to ECUs that deal with data-dense sensors, such
as radar or cameras.

B. Hardware-Level Adaptation
This case study explores the benefits of coupling device-level capabilities like dynamic reconfiguration with

the datapath extensions in the network interface. Consider an ECU system that can adapt its control algorithm in
response to changes in environmental conditions or user settings, like an adaptive terrain response system that is
common in off-road capable vehicles. Since these different modes of operation are mutually exclusive, it is sensible
to have them swap in and out as required to save area and power. The Zynq platform enables the hardware blocks
to be selectively modified to adapt the processing logic through a processor-based PCAP interface. In this scenario,
a software task that monitors information from sensors or user inputs (over the network) triggers a reconfiguration
through the processor, keeping the processor occupied with a non-preemptive task until reconfiguration is completed.

Alternatively, by interfacing the low-level reconfiguration primitives with the network extensions, the recon-
figuration process can be fully handled by the interface, while the processor carries out its regular tasks. The
custom reconfiguration system determines the mode to be chosen, fetches the new hardware configuration (through
DMA) and configures the hardware block without processor intervention. The time consumed for the adaptation
process (from message reception to adaptation) in both cases is shown in Table II. The software technique keeps
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Securing automotive networks
▶︎ Wider connectivity will underly the ADAS 

and autonomy trends – sensitive data 

▶︎ This challenges the previous approach of 
only protecting networks external interfaces 

▶︎ One compromised ECU can bring down the 
whole network 

▶︎ Adding security entails significant software 
overhead; hardware accelerator adds less 
overhead but inflexible in terms of protocol
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Fig. 3: AES performance for software implementations (SW) and
with hardware support (HW). The measurements of encryptions
(Enc.) and decryptions (Dec.) have been performed on an STM32
microcontroller with AES in Cipher-Block Chaining (AES CBC)
mode.

τh(f), τcomp, τφsm
, 3 · τtx. It is further assumed that the CRLs

are locally available on the ECU and do not need to be fetched,
and so, these values have been omitted.

As expected, this is a considerable latency introduced into the
communication. Thus, we conclude that it would not be feasible
to introduce asymmetric cryptography mechanisms in the mes-
sage stream itself, but rather in the first phase of authentication.
Since ECU authentication is only performed when the vehicle
is not operating and no real-time performance is required, this
latency is acceptable.

B. Stream Authorization
As described in Section II, stream authorization is performed

with symmetric keys. To approximate the performance of the
proposed approach, we measure the performance of symmetric
encryption on the STM32 microcontroller. We use the STM32
Cryptographic Library.

The results of our measurements are shown in Fig. 3 for
AES CBC in hardware and software. It is important to note
that due to the structure of AES, the length of the key does not
have any mentionable influence on the duration of the encryp-
tion/decryption. From Fig. 3, it is clear that hardware performance
clearly dominates software performance, even for short messages.
Consequently, to ensure minimal latencies, hardware encryption
is required for stream setup and message encryption.

In the following, we approximate the latency introduced by
stream authorization, based on Equation (5) and Fig. 3. As
the latencies are highly dependent on the throughput of the
underlying communication system, we approximate the latency
for different communication systems in Table II. Note that these
approximations are based on the net data rate of the different
bus systems and the medium access schemes can influence this
timing drastically if the required messages have to be queued.

As shown in Table II, the available data rate of the bus
influences the latency of stream authorization significantly. With
faster buses, such as Automotive Ethernet, the impact of our
scheme is reduced to cryptographic latency. The cryptographic
latency in our case is 0.35 ms. Even for high-speed CAN, the
impact of our approach is small, because we have minimized
the required communication. This is especially beneficial in
low-cost networks. Low-speed CAN may not be suitable for
secured traffic, but high-speed CAN or CAN FD can tolerate
our scheme well. For all communication systems from high-speed
CAN onwards, it is possible to use our lightweight authentication
framework and set up real-time message streams with minimal
latency.
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CAN Low-Speed (LS) 0.1 ≤ 0.06 ≥ 2.43 14.4
CAN High-Speed (HS) 0.5 ≤ 0.29 ≥ 0.77 45.8
CAN FD (automotive) 2.5 ≤ 2.37 ≥ 0.41 86.4
FlexRay 10 ≤ 9.69 ≥ 0.37 96.5
Automotive Ethernet 100 ≤ 97.5 ≥ 0.35 99.4

TABLE II: Comparison of latencies for stream authorization on
different communication systems, based on 2 ECUs with HW support
for symmetric cryptography and AES-256 encryption/decryption.

C. Discussion
By separating the ECU authentication and stream authorization

and thus the asymmetric and symmetric authentication steps,
we are able to achieve a significant speed-up, allowing the
negotiation of keys in a highly efficient manner. Our proposed
approach also works efficiently for bus systems such as high-
speed CAN. By reducing the cryptographic latency down to
0.35 ms (see Table II), we can initiate message streams with very
short latency, allowing applications to exchange symmetric keys
and secure their entire communication efficiently.

V. CONCLUSION
We have proposed a lightweight authentication framework

for real-time automotive systems, enabling the secure and effi-
cient distribution of symmetric cryptographic keys among ECUs
without pre-shared secrets. Our framework combines symmetric
and asymmetric cryptographic methods to implement a two-
phase authentication of ECUs and message streams. While our
framework is optimized for automotive networks, it can be
applied to any real-time system requiring security. We have
evaluated the performance based on measurements of the un-
derlying cryptographic methods on cryptographically accelerated
hardware and compared the performance of our approach to
existing authentication frameworks. Our framework proves to
be highly efficient with the ability to set up real-time message
streams.
Future work. Our future work includes investigations into the
handling of CRLs and the scheduling of message stream au-
thorization in high-utility situations, such as the start of vehicle
operation, among others.
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Securing automotive networks
▶︎ We similarly explore the ability to move security functions into the network 

controller as opposed to additional software 

▶︎ Motivations: 

▶︎ Time triggered controllers have a synchronised time-base, software had 
jitter 

▶︎ Network headers can be obfuscated to prevent attack nodes from joining 
the network – access control 

▶︎ Data can be encrypted transparently to the ECU processors
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Securing automotive networks
▶︎ We add obfuscation of the 

network headers with a pre-
shared key 

▶︎ Only devices with this key can 
integrate onto the network 

▶︎ Header manipulation cannot be 
done in software since this is 
managed in the interface
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Securing automotive networks
▶︎ Adding a lightweight cipher 

primitive in the controller enables 
seamless encryption and 
decryption of messages 

▶︎ Adding timestamp information 
increases entropy significantly 

▶︎ This can be done within the buffer 
time for a single frame, effectively 
zero latency
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Tx H0 E(Hdr + t0) E t0(Data1) CRC

Encrypt In Hdr Data1

TS Timer
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Key PSK PSK + t0 PSK

EncryptDone

EncryptOut E(Hdr + t0) E t0(Data1)

Start of slot at t

0 Start of transmission End of transmission

Fig. 4: Timing diagram showing the overlapping of transmission with the encryption process to effectively hide the
encryption latency for the header and data segment of the communication. The start of slot timestamp t0 registered
in the TS Register is used to improve the entropy of the header (by encrypting Header + t0 using the PSK, labelled
E(H+t0)) and for randomising the data-segment (by using a PSK + t0 as key, labelled E t0(Data)).

TABLE IV: Area and power overheads on a Xilinx Zynq Z-7020 device.

Implementation Normalized resource consumption Peak resource Power consumption

Reg LUTs BRAMs

FlexRay with data-path extns 1.29 ⇥ 1.20 ⇥ 1 (⇥) 21.0% (LUTs) 1.02 ⇥
Intelligent network interface 1.42 ⇥ 1.27 ⇥ 1.06 (⇥) 22.4% (LUTs) 1.02 ⇥
Secure FlexRay interface 2.27 ⇥ 1.51 ⇥ 1.63 (⇥) 26.7% (LUTs) 1.26 ⇥

D. Overheads
While embedding smart capabilities into the network interface improves the overall determinism and flexibility of

the system, it does incur some cost in terms of hardware resources, and power consumption, as shown in Table IV
when implemented on a small Xilinx Zynq Z-7020 device. The simple datapath extensions (pattern detectors,
timestamp logic) on an otherwise standard FlexRay network interface increase resource consumption by 28.9% (for
registers, with dual-channel mode), with a negligible increase in power consumption. Interfacing the reconfiguration
management increases resource consumption of the intelligent network interface by 11.8% (for registers), with no
appreciable increase in power consumption. However, incorporating network security within the interface for both
channels on a FlexRay network incurs an additional 98.7% resources (for registers) and increases the overall power
consumption of the network interface by 24% (36 mW). Similarly, incorporating the data-segment protocol discussed
in Sec. II reduces the payload capacity of the FlexRay frame to 248 bytes. Despite these minor overheads (compared
to the available resource on the chip, with the highest being 6% of LUTs), the smarter network interface offers
unique ways to enhance the system’s performance and capabilities, some of which are impossible to achieve using
a software-based implementation.

We must state once more that though these experiments were validated on FPGAs, the approach could equally be
applied in the design of new network interface ASICs, where a programmable datapath segment could be integrated.

IV. CONCLUSIONS

This article presented the concept of integrating a programmable computation layer within automotive network
interfaces. This offers unique ways to address emerging challenges in vehicular systems, namely security, determin-
istic performance, and hardware-level adaptation. We demonstrated the approach using a prototype implementation
of a smart FlexRay network interface and evaluated the benefits as well as overheads associated with the approach.
Our evaluation demonstrates that smart network interfaces offer significant improvements in terms of processing
and response times over a traditional software approach.
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TABLE III: Latency introduced by the PRESENT cipher on an Zynq ARM core per 8 bytes of data, compared to
the smart controller that embeds the same cipher block in its datapath.

Task Rounds Latency components Total delay

Encyption TS Read Encrypt Writeback

Software
32 0.3 µs 40.9 µs 0.3 µs 41.5 µs
64 0.3 µs 82.6 µs 0.3 µs 83.2 µs

Extension
up to

NA
0 µs

0.3 µs 0.3 µs
470 Overlaps with txn

Decyption Data Read TS read Decrypt

Software
32 0.6 µs 0.3 µs 42.1 µs 43.0 µs
64 0.6 µs 0.3 µs 85.2 µs 86.1 µs

Extension
up to

0.3µs NA
0 µs

0.3 µs
470 Overlaps with rxn

the processor occupied for 2.26 ms for the reconfiguration of a small hardware block (3 % of device resources),
delaying other tasks by a significant period of time. By handling the reconfiguration through the network interface,
the processor continues to execute its tasks normally; this approach also offers much improved reconfiguration
performance (reduced by 66%), allowing a faster switch to the new mode. For more complex hardware blocks
that incur more resources, the processor driven reconfiguration can result in the processor being busy for tens of
milliseconds, and may not be a viable option in critical systems.

C. Network Security
This case study shows how a security architecture can be integrated seamlessly as an extension of the network

interface with zero latency overhead. Our prior work showed that security primitives within the network interface
can authenticate application code and protect the network from unauthorised access (see [4]). However, the key
challenge is to integrate this complex security architecture in a manner that introduces minimal overheads in latency
(for the network or application) and without affecting protocol guarantees. For security managed through software,
the encrypted message received from the network must be read and decrypted using the current configuration of
the cipher primitives before the information can be used by the application. As shown in Table III, this results in
considerable overheads (41.5 µs) per 8-bytes of sensor data, for a lightweight symmetric cipher, PRESENT, at a
minimum security setting of 32 rounds (i.e., each block of data is encrypted and decrypted over the entire cycle
32 times). Increasing the security level (more rounds) increases the latency super-linearly due to the complexity
associated with managing the cipher operations (memory requirements, computation of intermediate stage keys).
For comparison, the slot width on a standard 5 ms FlexRay cycle that supports 64 (static) slots is around 65 µs
and the increased security level results in a lost window for transmission. Moreover, the software tasks are not
synchronised to the network timing while the self adaptive nature of networks like FlexRay causes the application
and network to drift out of sync, causing further errors due to missed transmissions.

Embedding the security primitive within the network interface allows the cipher operations to be synchronised
with the network timing ensuring guaranteed transmission at all times. Within the datapath, prefetching and extensive
pipelining allow the transmission/reception of the data segments to be overlapped with the encryption/decryption
process. An abstract timing diagram of the process is shown in Fig. 4. The frame headers are prefetched at the start
of the transmission slot and are encrypted (along with the frame timestamp tn, labelled TS) using the pre-shared key
(PSK) before the start of frame sequence and the flag bits have been transmitted. Subsequently, the transmission
of the frame header is overlapped with the encryption of the first 8 bytes of data and so on. The time-stamp based
key technique (PSK + tn) ensures that the encrypted data varies in every slot even if the actual application data is
static, which is common in many automotive applications. Also, the overlap allows higher levels of security (up
to 470 rounds) per 8-byte data block before the slightest violation of timing boundaries, as shown in Table III for
both transmission and reception. Furthermore, the network extensions can also manage a security adaptation frame
(a special frame for adapting security specifics) without intervention from the application, allowing the security
scheme to be fully transparent to the application.
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unshielded cables [2]. However, vehicular systems will still
depend on CAN and FlexRay for safety-critical function-
ality. The Ethernet backbone infrastructure illustrated in
Fig. 2 is a viable solution for allowing existing systems to
operate without modification, while providing high perfor-
mance interconnect for functions that utilise information
from existing systems as well as volume data sensors,
which are connected through an Ethernet Gateway (EG).
The EG would be an additional ECU on the network, with
software control mechanisms allowing each branch of the
network to be independently controlled and disconnected
(if needed), to meet the reliability requirements of criti-
cal systems. Also, the interconnect must offer low-latency
switching with priority-based routing to support exchange
of mixed criticality messages across domains.

Though an ASIC implementation of the EG would
provide performance, energy and cost benefits, ECU and
network architectures often differ across a range of vehicle
models and thus the gateway needs flexibility to accom-
modate the different architectures (existing and evolving).
This has prompted the use of processor-based gateways in
current vehicles, with software-based routing and hardened
network interfaces to cater to multiple architectures [1], [3],
[4]. Adaptability is also a requirement for integrating se-
curity standards into automotive embedded systems, which
have a lifetime of 10 or more years. However, achieving real-
time routing on mixed-criticality networks at high band-
width is difficult on general purpose processors, and scales
poorly with increasing network complexity and require-
ments (like security).

An alternative solution is the use of FPGA-based gate-
ways that use custom architectures to provide acceler-
ated computation and routing, while providing adaptability
through reconfiguration. Researchers have explored FPGA-
based gateways for legacy automotive networks, utilising
software-based routing on soft processors [1] and with ded-
icated routing hardware [5]. Extending these architectures
for Ethernet backbone networks is impractical since they
are optimised for low-bandwidth legacy networks like CAN
and FlexRay which have very different properties compared
to standard Ethernet (priority-driven and time-triggered v/s
best-effort). FPGAs are widely used in general network-
ing due to their ability to offer low-latency switching [6],
[7]. Although a standalone Ethernet switch on an FPGA
can cater to the performance requirements in vehicles, the
switch architecture must be significantly adapted to sup-
port the deterministic nature and real-time requirements of
automotive systems. Furthermore, the architecture must be
modular to enable easy (parametric) adaptation to different
network architectures that are employed in low/high-end
vehicles.

Unlike generic Ethernet gateways, vehicular ECUs re-
quire some level of software intervention for monitoring,
control, debugging and certification. On an FPGA, software
control can be added using soft processors instantiated in
the logic; however, they do not offer sufficient computa-
tional capability to implement complex algorithms with
time-bound performance [8]. The FPGA fabric can also be
connected as an extension of a standard automotive mi-
crocontroller unit (MCU) as an accelerator. This approach
only provides a loose coupling between the function on
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Fig. 2: Proposed vehicular network structure using the
VEGa Ethernet Gateway (EG). Non-critical functions on
legacy networks use the Ethernet backbone via Domain
Controllers (DC), while critical functions are directly inter-
faced to the EG over corresponding networks.

the MCU and the accelerator, impacting overall latency,
especially when there is frequent data movement between
the two processing elements (MCU and accelerator). Tightly
coupling the computational logic with the network interface
can allow for extended functionality as well as enhanced
capabilities [9].

In this paper, we present VEGa, a vehicular Ethernet
gateway architecture. It exploits the tight coupling between
processors and programmable logic in hybrid FPGAs like
the Xilinx Zynq to provide a scalable switching architecture
with software control. The reconfigurable fabric implements
the communication interfaces and the switching infrastruc-
ture, which can be controlled and configured at run-time by
the software on the processing system. Switching branches
are designed in a modular fashion to allow adaptability to
different in-vehicle network designs, by tuning configurable
parameters at design time. The tightly coupled architecture
and modular design offers pathways for integration of se-
curity approaches such as light weight authentication [10]
in software or hardware [11]. It also ensures isolation be-
tween the communication channels and predicable latencies
through hardware implementation, unlike the case with
software-based switching. We evaluate VEGa on the Zynq
ZC702 and ZC706 platforms to quantify switching perfor-
mance (predictability and latency) and compare it against
existing FPGA-based and processor-based automotive gate-
ways as well as low-latency Ethernet switch architectures.

The contributions of this work are two-fold: First, it
describes a modular infrastructure for Ethernet backbone
automotive architectures, that can seamlessly exchange in-
formation between legacy protocols and high-speed Ether-
net devices. Our evaluation shows that VEGa is capable
of achieving low-latency and deterministic switching in a
priority-aware manner, which can scale to complex net-
works and high network utilisation. Second, the extension
and integration of a scheduling mechanism to translate in-
formation between legacy networks and standard Ethernet,
in a manner that is transparent to the networks involved.
The remainder of the paper is organised as follows: Section 2
introduces the related work on automotive networks and
gateways. In Section 3.2, we describe the architecture of
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reconfigurable switch architecture 

▶︎ Enables low-latency switching of 
legacy networks with Ethernet 
backbone, including priority messages 

▶︎ Flexible switch enables application of 
same hardware in different products
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Fig. 3: Zynq Architecture showing the Processor Subsystem
(PS), Programmable Logic (PL), and the high-level architec-
ture of VEGa in the PL region.

Ethernet presents new challenges like variable message
sizes, mixed criticality messages, and higher bandwidth,
which must be interfaced with traditional automotive net-
works. Our approach explores the use of hybrid FPGAs to
achieve deterministic message exchange in a heterogeneous
network environment involving legacy networks and Gi-
gabit Ethernet, modelling the scenario in future Ethernet-
backbone vehicular architectures.

In the case of generic networks, FPGAs have been widely
employed in line-rate switching systems for high perfor-
mance Ethernet [7], [33], where custom architecture de-
sign offers low-latency switching performance. FPGA-based
custom network interface modules were shown to offer
improved switching latency over off-the-shelf components
in Ethernet networks supporting real-time high-bandwidth
communication [34]. Customisable datapaths allow FPGA-
based switches to analyse traffic during the switching op-
eration [35], which can also be extended to incorporate
some level of security like intrusion detection [36], [37]. Our
approach aims to bring such high-performance, low-latency
switching to the multi-standard mixed-criticality network
structure used in the automotive domain.

3 THE VEGA ARCHITECTURE

3.1 Overview of Zynq FPGAs and VEGa on Zynq
The Zynq family from Xilinx are hybrid reconfigurable
devices that offer tight integration of a capable processing
system (PS) with configurable programmable logic (PL) on
the same die, as shown in Fig. 3 [38]. The PS is a hardened
region of the die that combines a dual-core ARM Cortex-
A9 processor along with several memory and connectivity
interfaces. The Cortex-A9 along with its memory subsystem
is capable of hosting a fully-fledged operating system like
Linux and can operate as a standalone device without any
support from the PL, providing a familiar environment for
embedded software developers. The connectivity to periph-
eral blocks is established through ARM’s AMBA eXtensible
Interface (AXI) interconnect. This wide array of interfaces in
the PS makes it ideally suited as a hardware platform for a
highly connected embedded system.

The functionality of the PS can be further extended
with custom logic in the PL region. The Zynq offers high
bandwidth interconnect between the PS and PL. Further-
more, dedicated direct memory access (DMA) blocks enable
high-speed data movement between the PL and interfaces
managed by the PS, like DRAM or the Ethernet interface.
The PL is based on the Xilinx 7-series architecture, combin-
ing flexibility features like partial reconfiguration, advanced
computational capabilities (like advanced DSP48E1 blocks)
and lower power consumption. The hybrid architecture
enables scalable and parallel implementations of complex
processing blocks in the PL, while retaining software-based
control through the tightly coupled ARM cores [8]. As
shown in Fig. 3, VEGa is completely contained within the
PL region of the Zynq, whose behaviour can be controlled
dynamically through software running in the PS.

3.2 System Architecture of VEGa
At a high-level, VEGa instantiates multiple physical ports
and a priority aware switching fabric that allows informa-
tion to be exchanged between the different physical ports, as
shown in Fig. 3. The top-level architecture of VEGa offers a
configurable set of parameters (in the Verilog description)
that control the number and type of network interfaces
that need to be implemented. Multiple physical switching
port combinations can be implemented by configuring a
parameter (4 in the default case, numbered 1 to 4) during the
physical implementation phase (FPGA design phase), each
capable of providing up to 1 Gbps throughput. Each port im-
plements independent transmit (Tx) and receive (Rx) paths
to handle connections from the network interfaces to the
switch fabric, as shown in Fig. 4. FIFOs embedded within
the paths help to decouple the network interface from the
switch fabric. The network interface logic is responsible for
implementing the communication protocol, and interfaces
the gateway through its corresponding port. The network
interfaces can be Gigabit Ethernet, FlexRay, or CAN, which
are also configured using the top-level parameters, and
for our experiments we use Gigabit Ethernet and FlexRay
interfaces. The number of branches and interface types are
defined using top-level (Verilog) parameters, which can be
altered for different configurations (during the FPGA design
phase). All forwarding decisions are based on the Ethernet
layer-2 headers, with each non-Ethernet ECU having a vir-
tual mapping in the medium access control (MAC) address
space.

3.2.1 Receive Path

The receive path buffers incoming frames and makes the
forwarding decision based on the Ethernet MAC header. It
employs three modules that operate on-the-fly on received
frames as they are passed up to the switching infrastructure.
The header extraction logic determines the header segment,
classifies the frame and passes the information to the lookup
module which determines the output port for the frame in
the form of a binary vector (called the port vector). The input
queue acts as a temporary buffer for incoming packets, before
they are forwarded to the switch logic. These modules oper-
ate in parallel, allowing the destination port for a packet to
be determined before the complete frame has been received,
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Integrating networks

▶︎ Built the VEGa Ethernet gateway with 
reconfigurable switch architecture 

▶︎ Enables low-latency switching of 
legacy networks with Ethernet 
backbone, including priority messages 

▶︎ Flexible switch enables application of 
same hardware in different products

23

IEEE TRANSACTIONS ON COMPUTERS, VOL. , NO. , MONTH YEAR 4

VEGa on Zynq PL
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Fig. 3: Zynq Architecture showing the Processor Subsystem
(PS), Programmable Logic (PL), and the high-level architec-
ture of VEGa in the PL region.

Ethernet presents new challenges like variable message
sizes, mixed criticality messages, and higher bandwidth,
which must be interfaced with traditional automotive net-
works. Our approach explores the use of hybrid FPGAs to
achieve deterministic message exchange in a heterogeneous
network environment involving legacy networks and Gi-
gabit Ethernet, modelling the scenario in future Ethernet-
backbone vehicular architectures.

In the case of generic networks, FPGAs have been widely
employed in line-rate switching systems for high perfor-
mance Ethernet [7], [33], where custom architecture de-
sign offers low-latency switching performance. FPGA-based
custom network interface modules were shown to offer
improved switching latency over off-the-shelf components
in Ethernet networks supporting real-time high-bandwidth
communication [34]. Customisable datapaths allow FPGA-
based switches to analyse traffic during the switching op-
eration [35], which can also be extended to incorporate
some level of security like intrusion detection [36], [37]. Our
approach aims to bring such high-performance, low-latency
switching to the multi-standard mixed-criticality network
structure used in the automotive domain.

3 THE VEGA ARCHITECTURE

3.1 Overview of Zynq FPGAs and VEGa on Zynq
The Zynq family from Xilinx are hybrid reconfigurable
devices that offer tight integration of a capable processing
system (PS) with configurable programmable logic (PL) on
the same die, as shown in Fig. 3 [38]. The PS is a hardened
region of the die that combines a dual-core ARM Cortex-
A9 processor along with several memory and connectivity
interfaces. The Cortex-A9 along with its memory subsystem
is capable of hosting a fully-fledged operating system like
Linux and can operate as a standalone device without any
support from the PL, providing a familiar environment for
embedded software developers. The connectivity to periph-
eral blocks is established through ARM’s AMBA eXtensible
Interface (AXI) interconnect. This wide array of interfaces in
the PS makes it ideally suited as a hardware platform for a
highly connected embedded system.

The functionality of the PS can be further extended
with custom logic in the PL region. The Zynq offers high
bandwidth interconnect between the PS and PL. Further-
more, dedicated direct memory access (DMA) blocks enable
high-speed data movement between the PL and interfaces
managed by the PS, like DRAM or the Ethernet interface.
The PL is based on the Xilinx 7-series architecture, combin-
ing flexibility features like partial reconfiguration, advanced
computational capabilities (like advanced DSP48E1 blocks)
and lower power consumption. The hybrid architecture
enables scalable and parallel implementations of complex
processing blocks in the PL, while retaining software-based
control through the tightly coupled ARM cores [8]. As
shown in Fig. 3, VEGa is completely contained within the
PL region of the Zynq, whose behaviour can be controlled
dynamically through software running in the PS.

3.2 System Architecture of VEGa
At a high-level, VEGa instantiates multiple physical ports
and a priority aware switching fabric that allows informa-
tion to be exchanged between the different physical ports, as
shown in Fig. 3. The top-level architecture of VEGa offers a
configurable set of parameters (in the Verilog description)
that control the number and type of network interfaces
that need to be implemented. Multiple physical switching
port combinations can be implemented by configuring a
parameter (4 in the default case, numbered 1 to 4) during the
physical implementation phase (FPGA design phase), each
capable of providing up to 1 Gbps throughput. Each port im-
plements independent transmit (Tx) and receive (Rx) paths
to handle connections from the network interfaces to the
switch fabric, as shown in Fig. 4. FIFOs embedded within
the paths help to decouple the network interface from the
switch fabric. The network interface logic is responsible for
implementing the communication protocol, and interfaces
the gateway through its corresponding port. The network
interfaces can be Gigabit Ethernet, FlexRay, or CAN, which
are also configured using the top-level parameters, and
for our experiments we use Gigabit Ethernet and FlexRay
interfaces. The number of branches and interface types are
defined using top-level (Verilog) parameters, which can be
altered for different configurations (during the FPGA design
phase). All forwarding decisions are based on the Ethernet
layer-2 headers, with each non-Ethernet ECU having a vir-
tual mapping in the medium access control (MAC) address
space.

3.2.1 Receive Path

The receive path buffers incoming frames and makes the
forwarding decision based on the Ethernet MAC header. It
employs three modules that operate on-the-fly on received
frames as they are passed up to the switching infrastructure.
The header extraction logic determines the header segment,
classifies the frame and passes the information to the lookup
module which determines the output port for the frame in
the form of a binary vector (called the port vector). The input
queue acts as a temporary buffer for incoming packets, before
they are forwarded to the switch logic. These modules oper-
ate in parallel, allowing the destination port for a packet to
be determined before the complete frame has been received,
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TABLE 1: VEGa: Resource Consumption on Zynq XC7Z020.

Function Submodule FFs LUTs BRAMs DSPs

FlexRay Port

CC 5572 9768 20 2
Tblock 2227 1849 13 0
Rx Path 662 492 4 0
Tx Path 160 121 5 0

Total 8576 12230 42 2
Frequency 80 MHz

Ethernet Ports ⇥3

MAC 2619 1851 1 0
Rx Path 661 476 4 0
Tx Path 160 121 5 0

Total 3549 2559 10 0
Frequency 125 MHz

Switch - 204 856 0 0
Frequency 125 MHz

Total (%) 19585 (18.4) 21095 (39.7) 72 (54.75) 2 (0)
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Fig. 13: Comparison of end-to-end latencies of VEGa with other implementations from literature.

FlexRay) described in Schmidt et al. [17], Kim et al. [16] and
Seo et al. [19]. Our architecture also outperforms the FPGA-
based Ethernet switching infrastructure Atacama (Carvajal
et al. [7]), though the margin is small (1.3⇥ lower latency at
128-byte priority data). Further improvements in latency can
be achieved by enhancing the Ethernet MAC/PHY mod-
ules (over the standard MAC/PHY modules that we have
used in our platform) at the expense increased hardware
resources and limited portability [34].

We also evaluate the performance of VEGa in the pres-
ence of cross-traffic. For this evaluation, priority and non-
priority traffic were directed to the same destination at an
aggregate bandwidth that nearly saturates the gateway. The
setup generates non-priority traffic at 600 Mbits/s with a
1 KB payload size and variable rate priority traffic (10-200
Mbits/s) with a 64-byte payload. Fig. 14 shows the variation
in latency in the presence of cross traffic, measured with
long duration tests. It can be observed that additional (and
varying) latency is incurred in the case of priority frames
compared to the fixed deterministic latency in the absence
of cross-traffic. This is due to the non-preemptive nature

of the switch fabric that blocks the priority frame once a
non-priority frame has entered the switch, resulting in a
maximum end-to-end latency of 21.3 µs for priority data.
In the case of non-priority traffic, the smaller size of the
priority frame causes only a minor increase in end-to-end
latency as the blocking period (due to the real-time frame)
is much shorter than the transmission latency of the non-
priority frames. When the rate of priority frames reaches 200
Mbits/s, we observe that the non-priority frames start accu-
mulating within the Rx port buffers, which eventually leads
to dropped frames. However, in the same conditions, the
priority frames were routed without any data loss, ensuring
that critical data is always delivered to the destination.
In comparison, the Atacama switch achieves better perfor-
mance in cross-traffic conditions due to its dedicated routing
structure for priority traffic. However, this higher perfor-
mance is achieved at the expense of increased resource
consumption and lower scalability: a 4-port Atacama switch
consumes 19223 LUTs and 138 18K BRAMs on a Virtex-2
device (LUT-4 architecture) compared to 10422 LUTs and
40 BRAMs (32⇥36K BRAMs and 8⇥18K BRAMs) used by
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Validation Platform
▶︎ Another benefit of having access to low level 

controller design is the ability to prototype a 
full cluster on a single (large) FPGA 

▶︎ Apply a variety of network tests 

▶︎ Bit errors 

▶︎ Frame drops 

▶︎ Babbling idiot 

▶︎ Frequency drift 

▶︎ Accelerated super-real time validation
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Figure 6.4: Hardware Architecture of the Validation Platform.

within ECUx, enabling the interfaces to be clocked at a di↵erent frequency from

the ECU core. The interfaces enable communication between ECUs (over the

FlexRay bus) and can be controlled by the host PC.

Host Interfaces and Global Registers: The host PC can communicate with

the ECUs over the shared UART Config/debug interface, the Xil debug JTAG

interface and the Ethernet interface, as shown in Figures 6.3 and 6.4. The host

PC controls the FPGA platform by accessing the global registers (register file) over

the Config/debug interface. The Xil debug JTAG interface enables initialisation

and debugging of MicroBlaze-based ECUs in the cluster, using the MicroBlaze

debugger module (MDM). The host PC uses the Ethernet interface as a real-time

debugger for monitoring the state of the FlexRay bus and selected control signals

from the ECUs in the cluster.

The Register File implements a set of global registers that are used to configure the

interfaces, set platform parameters, and control/configure the special test features.

The functionality of each register is described in Table 6.1. The control/configu-

ration registers are used for enabling/disabling the platform, enabling test cases

and to configure the operation modes. The Config UART is also mapped in the

memory space of each ECU, and thus doubles as a debug interface. This enables

host software to access debug data and registers using the ECU address registers

(ECU addr reg) as an indirect addressing register.
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Smart network interfaces
▶︎ Such capability in the network interfaces key to re-architecting automotive 

networks for upcoming applications 

▶︎ We are interested in porting this approach to new Ethernet TSN 

▶︎ FPGAs offer a significant opportunity in terms of processing ability and 
flexibility 

▶︎ Require significant effort to address concerns of the automotive 
community: functional safety, etc.
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