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Talk structure

• Adaptive Voltage Scaling framework presentation

• Binarized neural network application. 

• Conclusions



Embedded hard processor : Zynq and ZynqMP (ultrascale) 

families => (ARM + FPGA)

• The Zynq and Zynq Ultrascale processing platform are system on a chip (SoC) 

processors with embedded programmable logic : processing system (PS) + 

programmable logic (PL).

• New programming models for this type of devices favour C/C++ flow with 

frameworks such as Xilinx SDx replacing traditional RTL design.



Improving the energy efficiency of the FPGA with 

Adaptive Voltage Scaling. 

• Slowing down the 

FPGA device if it is too 

fast is only energy 

beneficial if voltage is 

reduced.  

• We have been 

working on a tool flow 

and IP blocks to  

control the frequency 

and voltage of the 

device and detect 

optimal operational 

points using in-situ 

detectors.
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Example of timing detector for logic
• Soft-macro Detectors 

guarantee that the path 

of the slow flip-flop (SFF) 

slightly longer than main 

flip-flop (MFF).  

• Discrepancies between 

MFF and SFF are 

detector in XOR and 

communicated to DFS 

(Dynamic Frequency 

Scaling) unit. 

• MFF replicates the 

functionality of the 

original flip-flop in the 

critical path. 
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Example of timing detector for memory
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• A different type of 

detector is needed for 

critical paths that are not 

directly observable such 

as memories or DSP 

blocks

• These elements use  a 

clock with different phase 

than the main clock. The 

phase differences is 

selected to create a 

critical path in the 

detector.  

• The disadvantage is that 

both FFs represent an 

overhead and approach 

is not as accurate as the 

logic detectors. 



Elongate framework for Zynq and Zynq ultrascale with 

SDx
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• We use the Xilinx SDx tools to 

generate a hardware library that 

links with the host code and a 

BOOT.bin file for the FPGA.

• To use elongate we intercept the 

VHDL netlist and re-insert the 

modify netlist directly in Vivado

and produce a new BOOT.bin .

• The Zynq ultrascale and Zynq

devices use different detector 

libraries but the flow is very 

similar. 



Application to Neural network inference with fully binarized CNN

• Based on the Xilinx FINN BNN 

that uses single bits for weights 

and activations and ported to 

SDSoC. 

• Accuracy on CIFAR-10 is around 

80% while state-of-the-art 

accuracy is around 90%.

• Each layer uses a configurable 

number of processing elements 

(PEs) and each PE uses a 

variable number of SIMD lines.
FINN layers: 

convolutional, pooling 

and fully connected



BNN architecture with voltage and frequency scalability 

ARM A53 MP
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• Up to four compute units 

working in parallel in a 

Zynq ultrascale device. 

• Only one compute unit is 

instrumented with 

Elongate detectors.

• The Zynq version uses 

ony one CU with fewer 

PE/SIMD.

• DMA engines move data 

from memory to the BNN 

hardware Elongate BNN architecture



Frequency and phase control IP component
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• Based on  a FSM control unit with two MMCM (Mixed Mode Clock Managers) 

with locked frequencies and phases.

• AXI slave interface to access control registers for configuration and enabling. 

Elongate control registers

Frequency/phase control



System complexity 

in Zynq and Zynq

Ultra devices

• The Zynq Ultrascale

device enables a larger 

hardware configuration 

and 2x nominal frequency.

• Resource utilization is 

close to 100% for both 

configurations. 

• Ultrascale ~12x times 

more energy efficient at 

nominal.

Zynq

Device z7020

28nm, dual A9

ZynqMP

Device XCZU9-EG

16nm, quad A53 

LUTs (K) 32 224

FFs (K) 36 209

BRAMs 131 740

CUs 1 4

PEs 91 832

SIMDs 176 1488

KFPS  

/Watt

Nominal

3.2

(1v, 100 MHz) 

37.9

(0,85 v, 200 MHz)



Detector overheads

• The number of inserted 

detectors is user 

controllable.

• The total number of 

inserted detectors and 

protected paths 

oscillates between 100 

to 300 depending on 

design timing.

• This covers paths with 

around 10% better 

timing than the critical 

path. Elongate FF/LUT overhead and path 

coverage relation



Performance and 

energy efficiency
• Performance  in the Ultrascale

device is 60x better and energy 

efficiency is 17x than Zynq.

• The Elongate versions improve 

performance and energy 

efficiency by up to 80% without 

affecting accuracy.

• The smaller Zynq device can be 

more energy efficient that 

ultrascale if the processing 

requirements are lower than 1 

KFPS.
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Power scalability

• Valid voltage levels range 

from 0.55 v to 0.85 v for the 

16nm device and 0.75v to 1v 

for the 28 nm device. 

• Both devices obtain good 

power/frequency scalability 

that is linear for each voltage 

level. 

• Absolute power requirements 

are higher in the 16nm 

Ultrascale device due to its 

significantly larger size (~6x). 

Z
Y

N
Q

Z
Y

N
Q

 U
lt

ra
s
c
a
le



Inference accuracy 

robustness 
• The classification accuracy of 

the neural network remains 

within a 1% margin if 

frequency increases after the 

first timing errors are 

detected.

• This ‘noise’ robustness is 

present in both devices and 

for all voltage levels.  

• Consequently, better energy 

efficiency and performance 

are possible if in 1% variability 

in accuracy is acceptable. Z
Y
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Conclusions 
▪ Adaptive voltage scaling (AVS) in FPGAs with in-situ detectors shows that 

significant improve performance or reduced energy are possible exploiting 

margins.

▪ Up 80 % lower energy or better performance.

▪ Elongate measured 96 KFPS/Watt better than the energy efficiency of IBM 

TrueNorth (6.1 KFPS/Watt) on the same application

▪ Elongate portable between the 16 nm Zynq Ultrascale and the 28nm Zynq FPGA 

technology

▪ The binarized neural network application is specially suitable since it offers good 

scalability and robustness after the first timing errors are detected. 

▪ Future work involves making the whole system controllable in a energy-aware 

run-time system connected to video cameras extracting a variable number of 

regions of interest in frames before the inference process. 
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