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Embedded hard processor : Zyng and ZyngMP (ultrascale)
families => (ARM + FPGA)
» The Zynq and Zynq Ultrascale processing platform are system on a chip (SoC)

processors with embedded programmable logic : processing system (PS) +
programmable logic (PL).

* New programming models for this type of devices favour C/C++ flow with
frameworks such as Xilinx SDx replacing traditional RTL design.
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Improving the energy efficiency of the FPGA with
Adaptive Voltage Scaling.
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Example of timing detector for logic
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Example of timing detector for memory

. A different type of
detector is needed for
critical paths that are not
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Elongate framework for Zynqg and Zynq ultrascale with

SDx

We use the Xilinx SDx tools to
generate a hardware library that
links with the host code and a
BOQOT.bin file for the FPGA.

To use elongate we intercept the
VHDL netlist and re-insert the
modify netlist directly in Vivado
and produce a new BOOT.hin .

The Zynq ultrascale and Zynq
devices use different detector
libraries but the flow is very
similar.
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Application to Neural network inference with fully binarized CNN

- Based on the Xilinx FINN BNN FINN
that uses single bits for weights mput (32x32 RGB image)
and activations and ported to 3 x 3-conv-64
SDSoC. 3% 3-conv-64
pooling

3% 3-conv-128
3% 3-conv-128
pooling

3% 3-conv-256
3% 3-conv-256

« Accuracy on CIFAR-10 is around
80% while state-of-the-art
accuracy is around 90%.

- Each layer uses a configurable FC-64
number of processing elements FC-64
(PEs) and each PE uses a FC-64 (no activation)

variable number of SIMD lines.
FINN layers:

convolutional, pooling
and fully connected
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BNN architecture with voltage and frequency scalability
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Frequency and phase control IP component

« Based on a FSM control unit with two MMCM (Mixed Mode Clock Managers)
with locked frequencies and phases.
« AXI slave interface to access control registers for configuration and enabling.
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System complexity
In Zyng and Zynq
Ultra devices

The Zynq Ultrascale
device enables a larger
hardware configuration
and 2x nominal frequency.

Resource utilization is
close to 100% for both
configurations.

Ultrascale ~12x times
more energy efficient at
nominal.
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Zynq ZyngMP
Device z7020 | Device XCZU9-EG
28nm, dual A9 | 16nm, quad A53
LUTs (K) 32 224
FFs (K) 36 209
BRAMs 131 740
CUs 1 4
PEs 91 832
SIMDs 176 1488
KFPS 3.2 37.9
/Watt (1v, 100 MHz) | (0,85 v, 200 MHz)
Nominal




Detector overheads

«  The number of inserted 14
detectors is user
controllable.

Y
=N W

* The total number of
inserted detectors and
protected paths
oscillates between 100
to 300 depending on
design timing.

overhead %

=
ORrNWRERUOONWLO

14

: - th timing %
- This covers paths with patiHmine

around 10% better

timing than the critical

path. Elongate FF/LUT overhead and path
coverage relation
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D

Performance and
energy efficiency

« Performance in the Ultrascale
device is 60x better and energy
efficiency is 17x than Zynq,.

wu
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W Nominal KFPS (1v,100 Mhz)
W Nominal Energy Efficiency KFPS/Watt (1v, 100 MHz)
M Elongate KFPS (1v,155MHz)

Elongate energy efficiency KFPS/Watt (0.8v,110MHz))

Number of frames per second (thousands)
o N

« The Elongate versions improve
performance and energy
efficiency by up to 80% without

affecting accuracy £ 160

3 140

5120

- The smaller Zynq device can be glgg

more energy efficient that 5 60

ultrascale if the processing g 40
requirements are lower than 1 £ -

N
o

ZYNQ Ultrascale

KFPS. m Nominal KFPS (0.85v,200 Mhz)
W Nominal Energy Efficiency KFPS/Watt (0.85v,200 MHz)

M Elongate KFPS (0.85v,360MHz)
Elongate energy efficiency KFPS/Watt (0.65v,204MHz))
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Inference accuracy roe =
robustness 0 e

60 129.17,78.3 158.33,78.6
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Conclusions

Adaptive voltage scaling (AVS) in FPGAs with in-situ detectors shows that
significant improve performance or reduced energy are possible exploiting
margins.

= Up 80 % lower energy or better performance.
= Elongate measured 96 KFPS/Watt better than the energy efficiency of IBM
TrueNorth (6.1 KFPS/Watt) on the same application

Elongate portable between the 16 nm Zynq Ultrascale and the 28nm Zynq FPGA
technology

The binarized neural network application is specially suitable since it offers good
scalability and robustness after the first timing errors are detected.

Future work involves making the whole system controllable in a energy-aware
run-time system connected to video cameras extracting a variable number of
regions of interest in frames before the inference process.

% University of

D [ & BRISTOL



Acknowledgements

 Thanks to Xilinx for access to the FINN neural
network and SDx development tools.

. XILINX

* Thanks to EPSRC for supporting this research
with the ENPOWER/ENEAC projects.

* |f you want to know more or cite please check:
Nunez-Yanez, J, 2017, ‘Adaptive voltage S ———
scaling in a heterogeneous FPGA device with E PS RC
memory and logic in-situ detectors’.
Microprocessors and Microsystems, vol 51., Ploneering research
pp. 227-238 and skills

* Happy to answer any questions ?

.% University of

B BRISTOL



