WWW.bsc.es

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Developing HPC applications with
OpenMP and TA-X (MPI, CUDA)

Highly Efficient Accelerators and Reconfigurable
Technologies (HEART) - 2024

Xavier Teruel and Kevin Sala

EXCELENCIA
SEVERO
OCHOA

Porto, June 21st, 2024

Agenda and lecturers

"Developing HPC applications with OpenMP, Task-Aware MPI (TAMPI)

and Task-Aware CUDA (TACUDA)"

10:30 Introduction to the tasking model
11:30 Tasking - Q&A

11:45 Hybrid programming with (TAMPI)
12:30 - LUNCH -

14:00 Hybrid - Q&A

14:15 Heterogeneous systems (TACUDA)
15:00 Heterogeneous - Q&A (and wrap-up)
15:30 Adjourn

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024

Porto, June 21st, 2024

Xavier Teruel

Team leader

Best Practices for Performance and
Programmability

* He will lecture tasking model

Kevin Sala

PhD Candidate

Runtime systems for parallel
programing models

= He will lecture TAMPI and
TACUDA

Outline: introduction to the tasking model @

OpenMP brief introduction
— Qverview, main components, the fork-join model, syntax, parallel region and
worksharing constructs

Task creation and scheduling
— Task execution model, task construct, data environmnet, tied vs untied, if,
mergeable, final

Task synchronization
— Tasks and barriers, taskwait, taskgroup, dependences

Taskloop construct
— Number of tasks vs grain of the task, collapse, nogroup

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 3

OpenMP overview ©

Parallel Programming Model

— (initially) Designed for shared memory parallel computers
» single address space across the host memory system

— But now it also includes multi-device architectures (GPUs, Accelerators,...)
» it may imply additional (per device) address spaces
» support of data mapping from/to each address space

Maintained by the Architecture Review Board (ARB)

— Permanents members: AMD, ARM, Cray, Fujitsu, HP, IBM, Intel, Micron,
NEC, NVIDIA, Oracle, Red Hat and Texas Instruments

— Auxiliary members: ANL, LLNL, BSC, cOMPunity, EPCC, LANL, LBNL,
NASA, ORNL, RWTH, SNL, TACC and UH

Supported by most compiler vendors
— Intel, IBM, PGlI, T, Sun, Cray, Fujitsu, MS, HP, LLVM, GCC,...

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 4

OpenMP components

OpenMP Directives: OpenMP API: OpenMP
code annotation functions and routines Environment Variables

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 5

Execution model @

Based on the fork-join paradigm

— a thread team is a set of threads which co-operate on a region

— the is responsible for coordinating the team

— usually running one thread per processor (but could be more / or less)

— different threads may follow different control flows

Sequential Parts

Nested
Parallel
Region

Parallel Regions

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 6

OpenMP (directive) syntax

In Fortran language
— through a specially formatted comment

|sentinel directive-name [clause[[,] clause]...]

— where sentinel is one of
» 1$OMP or C$OMP or *$OMP in fixed format
» 1$0OMP in free format

— API runtime services

» omp_lib module contains the subroutine and function definitions
In C/C++ language
— using compiler directives™

‘#pragma omp directive-name [clause[[,] clause]...]

— API runtime services
» omp.h contains the API prototypes and data types definitions

* directives are ignored if compiler does not recognize OpenMP

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 7

The parallel region
When two “blocks of code” may run in parallel...

#include <stdio.h> S ./myProgram

void main (void)
{
do_work_1(); do work 1() do_work 2()
do_work_2(); — T
}

... we just include them within a parallel region (replicate)

#include <stdio.h> $./myProgram
#include <omp.h>
void main (void)

{
llel threads(2
{pragma omp parallel num_threads(2) do_work 10 do_work 2()
do_work_1();
do_work_2();
} do_work_1() do_work_2()
}

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 8

Worksharing: introduction

Divide the execution of a code region among the threads of a team
— threads cooperate to do some work (i.e. to share some work)

— better way to split work than using thread-ids

— lower overhead than using tasks = less flexible

In OpenMP, there are four worksharing constructs:
— single construct

— sections construct

— loop construct

Restriction: worksharings cannot be nested

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 9

Worksharing: the single construct

Serializing (1-thread) a portion of the parallel region

#ipragma omp single [clause[[,] clause]...]
{structured-block}

Where clause: Semantics: only one thread of the team

— private(list) executes the structured block
— firstprivate(list)

— nowait

— copyprivate(list) Very useful in I/O operations

Example:

#pragma omp parallel

S OMP_NUM_THREADS=4 ./myProgram

This program writes just
{ one “Hello world!”
do_work_1();

#pragma omp single

printf();

{ do_work_1(); | |
‘)) ._-:——:'_‘
printf ("Hello world!\n") ; B e L s B
! - e
t‘ 1 1 .:
do_work_2(); _-:—:-_
} . - do_work_2();

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 10

Worksharing: the sections construct

Set of structured blocks distributed among threads
#pragma omp sections [clause[[,] clause]...] Where clause:

{
[#pragma omp section]
{structured-block}
#pragma omp section
{structured-block}

Example:

 #pragma omp parallel sections
| {

| do_work_1();

| #pragma omp section

| do_work_2();

| #pragma omp section

| do_work_3();

| }

— private(list)

— firstprivate(list)

— lastprivate(list)

— reduction(operator: variable-list)
— nowait

Semantics: sections distributed
among threads

S OMP_NUM_THREADS=4 ./myProgram

do_work_2(); I
.. I L
R3¢ . 1 v,
—‘. do work 3 ; §—
AT B
* L4
», L]
do_work_3(); |

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 11

Worksharing: the loop construct

Distributing a loop among threads

#pragma omp for [clause[[,] clause]...] Where clause:
{structured-block: loop} — private(list), firstprivate(list), lastprivate(list),

reduction(operator: list)
— schedule(schedule-kind)
Semantics: distributes the loop iteration — nowait, collapse(n), ordered

space among the threads

Chunks of iterations: I
R,

:—I “
Matrix initialization (using the loop construct) —:—
void foo (int *m, int N, int M) New created threads M
{ cooperate to execute
inti,j; all the iterations of the loop

#pragma omp parallel for private(j) e A el e
for (i=0;i<N;i++) automatically privatized

for(j=0;j<M;j++)

mli*N+j]=0; The j variabl.e myst be
} manually privatized

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 12

... but other distributions
are also possible

WWW.bsc.es

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Jask creation and scheduling

Highly Efficient Accel. and Reconfigurable
Tech. (HEART) - 2024 Porto, June 21st, 2024

What is a task in OpenMP?

Tasks are work units whose execution may be deferred...
... or it can be executed immediately!!!

Tasks appears in OpenMP 3.0 specification (2008)

Tasks are composed of:

— code to execute (set of instructions, function calls, etc...)
— a data environment (initialized at creation time)

— internal control variables (ICVs)

In OpenMP tasks are created...

— when reaching a parallel region = implicit task are created per thread

— when encounters a task construct - explicit task is created

— when encounters a taskloop construct - explicit task per chunk is created
— when encounters a target construct - target task is created

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 14

Tasking execution model

Supports unstructured parallelism
— unbounded loops
while (<expr>) {

.
ooy

} Parallel Region

oyt 1T
’f

— recursive function calls s Saee
U4

void myCode (<args>) { 4 ok pal

...3 myCode (<args>); ...; {

} \

\
. . \\\ /,
Several scenarios are possible Sna e

— single creator vs. multiple creators...
— but all members in the team are candidates to execute these tasks

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 15

The task construct

Deferring a unit of work (executable for any member of the team)
— always attached to a structured block

#pragma omp task [clause[[,] clause]...]

{structured-block}

Where clause:

— private(list), firstprivate(list), shared(list)
— default(shared | none)

— untied

— if(scalar-expression)

— mergeable

— final(scalar-expression)

— priority(priority-value)

— depend(dependence-type: list)

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 16

Data environment: role of a variable within a construct @

Pre-determined data-sharing attributes

— threadprivate variables are threadprivate

— dynamic storage duration objects are shared (malloc, new,...)
— static data members are shared

— variables declared inside the construct
» static storage duration variables are shared
» automatic storage duration variables are private

— the loop iteration variable(s) are private

Explicit data-sharing clauses (shared, private, firstprivate,...)

— if default clause present, what the clause says
» none means that the compiler will issue an error if the attribute is not explicitly set by the programmer (very
useful!!!)

Implicit data-sharing rules for...

... worksharings:
— non pre-determined/explicit variables will be shared

... tasks:
— the shared attribute is lexically inherited
— in any other case the variable is firstprivate

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 17

Data sharing attributes: pre-determined

threadprivate variables are threadprivate (1) *:Pragma omp task (5)
dynamic storage duration objects are shared (malloc, new,...) (2) int x = MN;
static data members are shared (3) , [/ Seope of xi private
variables declared inside the construct .
— static storage duration variables are shared (4)
. . . . #pragma omp task o
— automatic storage duration variables are private (5) {
the loop iteration variable(s) are private static int y;
// Scope of y: shared
}
1
int A[SIZE]; int *p; void foo (void) {
#fpragma omp threadprivate (A) o o static int s = MN; e
P = malloc(sizeof (float) *SIZE) ; }
/...
#fpragma omp task #fpragma omp task #pragma omp task
{ { {
// A: threadprivate // *p: shared foo(); // sRfoo(): shared
} } }

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 18

Data sharing attributes: explicit and default

Explicit data-sharing clauses (shared, private and firstprivate)

#fpragma omp task shared(a)

{
// Scope of a: shared

}

}

#pragma omp task private (b)
{

// Scope of b: private

#pragma omp task firstprivate(c)
{

// Scope of c: firstprivate

}

If default clause present, what the clause says

— shared: data which is not explicitly included in any other data sharing clause will be shared
— none: compiler will issue an error if the attribute is not explicitly set by the programmer (very

usefullll)

#fpragma omp task default (shared)

{

// Scope of all the references, not explicitly
// included in any other data sharing clause,
// and with no pre-determined attribute: shared

}

#fpragma omp task default (none)
{

// Compiler will force to specify the scope for
// every single variable referenced in the context

}

Hint: Use default(none) to be forced to think about every
variable if you do not see clearly.

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024

Porto, June 21st, 2024

Data sharing attributes: implicit

Implicit data-sharing rules for...
... worksharings:
— non pre-determined/explicit variables will be shared

... tasks:
— the shared attribute is lexically inherited
— in any other case the variable is firstprivate

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 20

Task default data-sharing attributes (in practice) @

int a ;
void foo (int b) {
int c;
#pragma omp parallel private(c)
{
int d ;
#pragma omp task
{ — default(none) may help when you are not sure of
int e; understand the default
a = <expr>;
b = <expr>;
C = <expr>;
d = <expr>;
e = <expr>;
g = <expr>;
¥
¥
¥

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 21

Task scheduling: tied vs untied tasks (1)

Tasks are tied by default (when no untied clause present)
— tied tasks are executed always by the same thread (not necessarily creator)
— tied tasks “may” run into performance problems

Programmers may specify tasks to be untied (relax scheduling)

#pragma omp task untied
{structured-block}

— can potentially switch to any thread (of the team)
— bad mix with thread based features: thread-id, threadprivate, critical regions...
— gives the runtime more flexibility to schedule tasks

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 22

Task scheduling: tied vs untied tasks (2)

Task scheduling points (and the taskyield directive)
— tasks can be suspended/resumed at these points

— some additional constraints to avoid deadlock problems
— implicit scheduling points (creation, synchronization, ...)
— explicit scheduling point: the taskyield directive

|#pragma omp taskyield

Scheduling untied tasks: example

#pragma omp parallel tied: foo bar
#pragma omp single ’::'
{ — e
#pragma omp task [untied]
{
foo ();
#pragma omp taskyield untied: igo
} bar (); :::: ; ’:.
4 bar() £
}

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 23

Controlling task scheduling (1)

The if clause of a task construct

— allows to optimize task creation/execution - reduces parallelism but also reduces the pressure
in the runtime’s task pool

— for “very” fine grain tasks you may need to do your own (manual) if

#pragma omp task if (expresion)
{structured-block}

If the expression of the “if” clause evaluates to false
— the encountering task is suspended e RS

Y

— the new task is executed immediately _ / : .\l
— the parent task resumes when the task finishes Rataller hapine -
This is known as undeferred task et y it 4

I' Task pool

" " ’

...more combined with mergeable clause!!! !

‘\

\

\\ y

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 24

Controlling task scheduling (2)

The mergeable clause of a task construct
— allows to optimize task creation/execution (combined with the if clause)
— under certain circustances it may avoid the whole task overhead

#pragma omp task mergeable [if (expression)]
{structured-block}

if-clause evaluates to false - task is executed immediately
— But with its own data environment and ICVs

Combined with the semantic of the mergeable clause

— “atask for which the data environment (inclusive of ICVs) may be the same as that of its
generating task region”

— so the user agrees (if posible) on relaxing the previous restriction

Undeferred and mergeable task may execute as a function call

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024

25

Controlling task scheduling (3)

The final clause of a task construct
— allows to omit future task creation - reduces parallelism & overhead

#pragma omp task final (expresion)
{structured-block}

If the expression of the “final” clause evaluates to true

— the new task is created and executed normally
— in the context of this task no new tasks will be created

#pragma omp parallel
#pragma omp single

Children tasks may have

additional task constructs

#pragma omp task final(e)
{
#pragma omp task
{ code_B; }
#pragma omp task
{ code_C; }
#pragma omp taskwait

}

}

Code_B;

Code_G;
code_cl;
code_c2;

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024

Porto, June 21st, 2024

26

Programmer’s hints for task scheduler

Programmers may specify a priority value when creating a task

#pragma omp task priority(pvalue)
{structured-block: loop}

— pvalue: the higher - the best (will be scheduled earlier)
— all ready tasks are inserted in an ordered ready queue
— once a thread becomes idle, gets one of the highest priority tasks

#pragma omp parallel
#pragma omp single

{

for (i =0; 1 < SIZE; i++) { Parallel Region
#tpragma omp task priority(1) P L
{ code_A; } ,/'
} J/
#tpragma omp task priority(100) :
{ code_C; } .
\
AN
} Wy p

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024

27

WWW.bsc.es

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Task Synchronization

Highly Efficient Accel. and Reconfigurable
Tech. (HEART) - 2024 Porto, June 21st, 2024

Synchronizing the execution of threads / tasks

Threads need “some” order in the sequence of their actions

— execute in a logical order certain regions

— mutual exclusion in the execution of a given region

— walit in a location until all other threads have reach the same location
— wait until a given condition is accomplished

OpenMP provides different synchronization mechanisms

— masked / master construct, selecting thread within a parallel region

— critical construct, mutual exclusion when executing a region

— barrier directive [and implicits], all threads reaching the “barrier” before continuing
— atomic construct, load/update with hardware support

— flush directive [and implicits], make visible changes in the relaxed consistency model
— ordered clause/construct, forces a logical order among loop iterations

— taskwait directive, waiting for tasks (shallow)

— taskgroup construct, waiting for tasks (deep)

— depend clause, establish an order among tasks: pre-decessor, successor

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024

29

The barrier directive

Threads cannot proceed after a barrier point until
— all threads reach the barrier

| #pragma omp barrier

— some constructs have an implicit barrier at the end (e.g., the parallel construct)

Synchronizing threads between two phases in a parallel region

#pragma omp parallel

{

Forces all foo()’s too
happen before all bar()’s

foo ();
#pragma omp barrier

bar (); ———

) Implicit barrier

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 30

The barrier directive

Threads cannot proceed after a barrier point until

— and all previously generated work is completed

| #pragma omp barrier

— some constructs have an implicit barrier at the end (e.g., the parallel construct)

Using barrier to force task completion

#pragma omp parallel

{ Forces all tasks (T1) to be
#pragma omp single executed
generate_taks_T1 ();

T1’s : 1
i o r.
#pragma omp barrier D e — = — e W
—— Gr——

#pragma omp single eee--looo
prag p SSné Implicit barrier: also forces b s !
generate_taks_T2 3
} tasks to complete

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 31

Waiting for child tasks

The taskwalit directive (shalow task synchronization)
— It is a stand-alone directive

|#pragma omp taskwait

— wait on the completion of child tasks of the current task
— just direct children, not descendants
— includes an implicit task scheduling point

Using the taskwait directive

#pragma omp pa.wr‘allel Children tasks may create @
#ipragma omp single additional tasks >
4 *
#pragma omp task ‘.” ".’
{ .0 L 4

#pragma omp task

: : wait for...
{ .} Wait only for direct
#pragma omp tas descendant tasks

{ .}

&
0’ “
#pragma omp taskwait—
}

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 32

}

Waiting for all descendant tasks

The taskgroup construct (deep task synchronization)
— always attached to a structured block

#pragma omp taskgroup

{structured-block}

— wait on the completion of all descendant tasks of the current task
— includes an implicit task scheduling point at the end of the construct

Using the taskgroup construct

#pragma omp p.araIIeI Children tasks may create TG
#pragma omp single additional tasks

{

£ 4 »
& »

r ."‘0 0"“ \
wait for... £ O @ >
ela)

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 33

#pragma omp taskgroup

{

pragma omp task

{..}
Hpragma omp task Wait for all
o}

descendant tasks

Using task dependences

The depend clause of the task construct

#pragma omp task depend (dependence-type: list)
{structured-block}

— used to compute dependences, but actually it is not a dependence
— specify the data directionality of a list of variables

Where dependence-type can be:

— in: the task only reads from the data specified
— out: the task only writes to the data specified

— inout: the task reads from and writes to the data

And where list items are
— variables, a named data storage block (memory address)

— array sections, a designated subset of the elements of an array
» Aflower:length]

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024

Porto, June 21st, 2024

34

Computing task dependences (1)

If a task does “in” on a given data variable
— the task will depend on all previously generated sibling tasks that reference at least one of the
list items in an out or inout dependence list

If a task does “out” or “inout” on a given data variable
— on both out and inout dependence types, the task will depend on all previously generated
sibling tasks that reference at least one of list items in an in, out or inout dependence list

#pragma omp parallel

#pragma omp single dependences ‘

{ .
#pragma omp task domain
{ "
#pragma omp task depend(out:a) K O
{..} 4 .

#pragma omp task depend(in:a)

0’ ’Q
4 *
0‘ ’0
() dependence
#pragma omp taskwait 0 RaW
}
.0 0’

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 35

}

Computing task dependences (2)

Computing dependences between one writer and n-readers

#pragma omp parallel dependences ‘

#pragma omp single domain
{
#pragma omp task

{ O ©
#pragma omp task depend(out:a) s’ . *e

g .
{..} ‘." . .,
#pragma omp task depend(in:a) 2 dependences
{..} RaW
#pragma omp task depend(in:a) -
{..} 7%

*
#pragma omp taskwait
}

}

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 36

Computing task dependences (3)

Computing dependences between n-readers and one writer

#pragma omp parallel
#pragma omp single
{

#pragma omp task

{

#pragma omp task depend(in:a)

{..}

#pragma omp task depend(in:a)

{..}

#pragma omp task depend(out:a)

{..}

#pragma omp taskwait

}

}

dependences

domain ‘ O

O

© i

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024

®,

2 anti-dependences

600} =

Porto, June 21st, 2024

37

Computing task dependences (4)

Computing dependences between 2 writers

#pragma omp parallel dependences
fpragma omp single domain
#pragma omp task
{ .0 Q‘
#pragma omp task depend(out:a) ." ".
& *
{..} ’ 4 ‘s
?pra;gma omp task depend(out:a) O output-dependence
#pragma omp taskwait Waly
} .O 0“
|

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 38

Using task dependences (cont.)

The depend clause of the task construct

#pragma omp task depend(dependence-type: list)
{structured-block}

Restrictions on list items

— list items used in depend clauses of the same task or sibling tasks must indicate identical
storage or disjoint storage

— list items used in depend clauses cannot be zero-length array sections

— a variable that is part of another variable (such as a field of a structure) but is not an array
element or an array section cannot appear in a depend clause

t#tdefine N 100

#pragma omp task depend(out: a[0:N])
{..}

#pragma omp task depend(in: a[25:50]) x
{..}

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 39

Example: matrix multiply (dependences)

void matmul block (int N, int BS, float *A, float *B, float *C) ; — avoid “blocks” to be written

// Assume BS divides N perfectly .before read . .
void matmul (int N, int BS, float A[N][N], float B[N]J[N], float c[N][N]) — INnput deps useless in this
{ particular example (still
#pragma omp parallel recommended)
ingl :
{pragma S — example on a matrix of 2x2
S o Tk blocks:

for (i =0; i< N; i+=BS) {

for (j = 95 j < N; j+=BS) {

for (k = 95 k < N; k+=BS) { @@@@

#pragma omp task depend (in:A[i:BS][k:BS],B[k:BS][j:BS])\
depend (inout:C[i:BS][j:BS])
matmul_block (N, BS, &A[i][k], &B[k][jl, &C[i]l[3j]);

¥

} clelelc
¥

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 40

WWW.bsc.es

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Taskloop construct

Highly Efficient Accel. and Reconfigurable
Tech. (HEART) - 2024 Porto, June 21st, 2024

Task loop: motivation

Loop (worksharing) construct restrictions
— all threads (in the current team) must reach the worksharing construct
— taskloop constructs comes to break this specific restriction (using tasks)

So if we are executing a single or a section...

#include "synthetic.h“

void main (void)
{
#pragma omp parallel
#pragma omp sections
{
#pragma omp section
synthetic_phasel();
#pragma omp section
synthetic_phase2();
#pragma omp section
synthetic_phase3();

#include "synthetic.h”

void synthetic_phase2()
{

#pragma omp for
for(i=0;i<N;i++){...}
}

#include "synthetic.h”

void synthetic_phase2()
{

#pragma omp taskloop
for(i=0;i<N;i++){...}
}

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024

Porto, June 21st, 2024

42

The taskloop construct

Deferring several units of work (exec. for any team member)
— always attached to a “for” loop (“do” in Fortran)

#pragma omp taskloop [clause[[,] clause]...]
{structured-block: loop}

Where clause:

— grainsize(grain-size) and num_tasks(num-tasks)
— collapse(n)
— nogroup

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 43

Using grainsize in taskloop construct

The grainsize clause of the taskloop construct

#fpragma omp taskloop grainsize (<grain-size>)

{structured-block: loop}

— allow to specify the grain size of the generated chunks (tasks)
» greater or equal than min(grain-size, iters)

» less than two times grain-size (2 x grain-size) ~ .‘\\
4 \
-,
. . . -]
— cannot be combined with num_tasks clause Rasaliel epiae Ay
#include "synthetic.h” ,” TP
I/ Task pool
void synthetic_phase2() { :
#pragma omp taskloop grainsize(10) |‘
for(i=0;i<N;i++){...} \\
} e

Philosophy: amount of work that is worthy to execute as a task

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 44

Using num_tasks in taskloop construct

The num_tasks clause of the taskloop construct

#ipragma omp taskloop num_tasks (<num-tasks>)
{structured-block: loop}

— allow to specify the number of chunks (tasks)
» greater or equal than min(num-tasks, iters)

» each task should have as minimum one iteration /’— .\\
4
-
— cannot be combined with the grainsize clause Rasaliel epiae -
”— -~ V2
#include "synthetic.h” ,/ ~-__—/
II Task pool
void synthetic_phase2() { |’
#pragma omp taskloop num_tasks(10) |‘
for (i=0;i<N;i+){...} \
\
} e

Philosophy: amount of parallelism we want to create

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 45

The collapse clause

Allows to distribute work from a set of n-nested loops
— loops must be perfectly nested (no instruction in between)

— the nest must traverse a rectangular iteration space (triangular also allowed)
— combines both iteration spaces to create a single one

Using the collapse clause over two loops

#define N ?7? — useful when first loop (or both) have only a few
ttdefine M ??? . .
iterations (e.g., N = 64)
void main (void) { — increase the amount of created parallelism
inti, j;
#pragma omp parallel
#pragma omp single
{ #pragma omp taskloop num_tasks(128)
#pragma omp taskloop collapse(2) num_tasks(128) . for (idx = 0 idx < (N * M); idx ++) {
USRS OISRl o 11750 e
for (j=0;j<M;j++) 1 }
foo (i,j);
}
}

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 46

Taskgroup associated with a taskloop

#include "synthetic.h” #include "synthetic.h”
void synthetic_phase2() void synthetic_phase2()
{ {
#pragma omp taskloop #pragma omp taskloop nogroup
f i=0;i<N;i++){... f i=0;i<N;i++){... .
or (i i i++){...} or (i [i++){...} waltfor...
foo(); foo(); -
bar(); bar(); O
} }

The nogroup clause of the taskloop construct

#pragma omp taskloop nogroup
{structured-block: loop}

— allow to continue the execution of the encountering task without waiting for all created tasks

Highly Efficient Accel. and Reconfigurable Tech. (HEART) - 2024 Porto, June 21st, 2024 47

WWW.bsc.es

Barcelona
Supercomputing

Center
Centro Nacional de Supercomputacion

Thank you!

For further information please visit/contact

http://www.linkedin.com/in/xteruel
xavier.teruel@bsc.es

Intellectual Property Rights Notice: The User may only download, make and retain a copy of the materials for his/her use for
non-commercial and research purposes. The User may not commercially use the material, unless has been granted prior written consent by
the Licensor to do so; and cannot remove, obscure or modify copyright notices, text acknowledging or other means of identification or
disclaimers as they appear. For further details, please contact BSC-CNS.

Porto, June 21st, 2024

