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This paper presents a method for the identification of nonlinear partial least square (NPLS) models
embedded in macroscopic material balance equations with application to bioprocess modeling. The
proposed model belongs to the class of hybrid models and consists of a NPLS submodel, which mimics
the cellular system, coupled to a set of material balance equations defining the reactor dynamics. The
method presented is an analog to the non-iterative partial least square (NIPALS) algorithm where the
PLS inner model is trained using the sensitivity method. This strategy avoids the estimation of the target
fluxes from measurements of metabolite concentrations, which is rather unrealistic in the case of sparse
and noisy off-line measurements.

The method is evaluated with a simulation case study on the fed-batch production of a recombinant
protein, and an experimental case study of Bordetella pertussis batch cultivations. The results show that
the proposed method leads to more consistent models with higher statistical confidence, better calibra-

tion properties and reinforced prediction power when compared to other dynamic (N)PLS structures.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Partial least square (PLS) (also called projection to latent struc-
tures) and nonlinear PLS (NPLS) have been shown to be powerful
regression methods for static processes when the data is noisy
and highly correlated. There are numerous applications of PLS
and NPLS in biotechnology (Clementschitsch & Bayer, 2006;
Henneke, Hagedorn, Budman, & Legge, 2005; Soons, Streefland,
van Straten, & van Boxtel, 2008). The difference between PLS and
NPLS lies in the inner models which correlate the latent variables.
In PLS the inner model is based on linear regression, whereas in
most NPLS the inner model is nonlinear, mimicked by quadratic
functions (Wold, Kettaneh-Wold, & Skagerberg, 1989), artificial
neural networks (Qin & McAvoy, 1992), radial basis functions
(Baffi, Martin, & Morris, 2000) or support vector machines (Wang
& Yu, 2004).

Many biotechnological processes are inherently dynamic and
the PLS structure cannot be directly applied. Several attempts in
the literature were made in order to extend the static PLS models
for dynamical systems (Baffi et al., 2000; Lakshminarayanan, Shah,
& Nandakumar, 1997; Ljung, 1991; Qin, 1993; Ricker, 1988). In
most cases modeling of dynamic systems has been achieved
through the augmentation of the inputs with lagged values of input
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and output data (Baffi et al., 2000; Ljung, 1991; Qin, 1993; Ricker,
1988). One-step-ahead prediction was developed inspired on the
series—parallel identification scheme (Eykhoff, 1974) and recurrent
training schemes (Qin & McAvoy, 1992; Werbos, 1988) or parallel
identification schemes were used (Qin & McAvoy, 1996) for long
term predictions. In the paper by Baffi et al. (2000) NPLS with dif-
ferent inner nonlinear models is successfully applied for modeling
of nonlinear dynamical systems.

A bioprocess is ruled by a large number of complex physical,
chemical and biological constraints, which are associated with
both the cellular system and the bioreactor system. The above
mentioned PLS models completely disregard such constraints since
they are empirical data based techniques.

The dynamic nature of a bioprocess can be established by mac-
roscopic material balances of the compounds with capacity to
influence the physiological state of a cell. Thus an alternative
way to add dynamics to a PLS model is to combine a static
(N)PLS submodel with material balance equations in a hybrid
dynamical structure. This type of strategy has been extensively re-
ported in the literature for artificial neural networks (Lee, Vanrol-
leghem, & Park, 2005; Oliveira, 2004; Peres, Oliveira, & Feyo de
Azevedo, 2001; Preusting & Noordover, 1996; Schubert, Simutis,
Dors, Havlik, & Luebbert, 1994a; Schubert, Simutis, Dors, Havlfk,
& Luebbert, 1994b; Simutis, Oliveira, Manikowski, de Azevedo, &
Luebbert, 1997) but very rarely for (N)PLS (Henneke et al., 2005;
Lee et al., 2005).
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In this paper, a generic nonlinear dynamic PLS approach is
developed within the hybrid modeling framework, i.e. by combin-
ing a (N)PLS submodel with material balance equations. There are
two possible strategies to develop such a model. The probably sim-
plest way is to estimate the reaction rates from the material bal-
ance equations and from the concentrations’ measurements and
then to run a static NPLS model with the rates as target outputs
and the state space vector as the inputs (Henneke et al., 2005;
Lee et al., 2005). The difficulty of using this method arises when
dealing with a limited number of observations and noisy measure-
ments. The conjugation of these two factors is frequent in a real
application, leading to very inaccurate estimation of the reaction
rates. The second alternative, which is explored in this paper, fol-
lows the simultaneous parameter estimation strategy, using the
well known sensitivity method (Oliveira, 2004; Peres et al., 2001;
Preusting & Noordover, 1996; Schubert et al., 1994a; Schubert
et al., 1994b; Simutis et al., 1997).

The paper is organized as follows: in Section 2 the proposed
semi-parametric hybrid model, the parameter identification algo-
rithm and model performance criteria are described; Section 3 pre-
sents the application, results and discussion of the proposed
method for two complementary case studies — one case with sim-
ulation data, specifically a model on protein synthesis, also known
as the Park Ramirez model (Park & Ramirez, 1988), and another
case comprising sparse, infrequent experimental data of Bordetella
pertussiss cultures; then, in Section 4, the conclusions are drawn.

2. The semi-parametric hybrid model

The semi-parametric hybrid structure here developed can also
be referred to as an intrinsically dynamic NPLS model, which con-
sists of two parts, namely material balances and a nonparametric/
parametric submodel. The general hybrid model structure is de-
scribed in the first subsection. The integration of the nonparamet-
ric model, a nonlinear partial least square model, is explained in
the second subsection and a novel parameter identification algo-
rithm is presented in the third subsection. The question of choos-
ing the best model structure is finally addressed.
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2.1. The general semi-parametric hybrid model structure

The general hybrid model structure proposed is depicted in
Fig. 1. The concept is an evolution of the semi-parametric hybrid
model proposed originally by Oliveira (2004). The structure is
based on a bioreactor dynamic model, consisting of n material bal-
ances represented in vectorial terms as:

%:f:r(Lx,wA)—Dm—i-u, (1)
where c is the vector of concentrations, D is the dilution rate, u is a
vector of volumetric control inputs and r is the vector of kinetic
rates, i.e. the reaction term mimicking the cell system, which is
modeled with a nonparametric/parametric submodel, using the
vector of parameters wa.

The nonparametric/parametric submodel reads as:

re, Ly wa) = K- (¢(0) x pyllawa)) @)

with K being a n x m matrix of yield coefficients, ¢being m kinetic
functions and p(L,,w,) being unknown kinetic functions which in-
clude w4 and the inputs L,. These unknown kinetic functions are
modeled with nonparametric techniques, such as artificial neural
networks (Oliveira, 2004; Peres et al., 2001; Preusting & Noordover,
1996; Psichogios & Ungar, 1992; Schubert et al., 1994a; Schubert
et al., 1994b; Simutis et al., 1997; Thompson & Kramer, 1994) or,
as presented in the following, by a Nonlinear Partial Least Square
alike model.

The hybrid model can either be classified as a one-step or a mul-
ti-step ahead predictor. This is due to the unknown kinetic func-
tions, p(Ly,wa), in Eq. (2), more precisely the inputs, L,. When,
the inputs cover only measured inputs at discrete time points,
equivalent to a finite impulse response (FIR) model, then the hy-
brid model functions behave as a one-step ahead predictor. When,
alternatively, L, comprises only the estimates of the model at dis-
crete time points, equivalent to an AutoRegression (AR) model,
then the hybrid model is a multi-step ahead predictor. It should
be pointed out that the combination of measured and estimated

c mes,l..n

xmr.f.l..k—n

L'-' k Pim
»submodel 1 -

|

submodel 2

pu,ln m
submodel o —PO

Nonparametric (NPLS) model

Cre.tﬁdum‘ i

..n

submodel i
W\'.{‘ 1.k W

| AOFi
=0F; >

Mo,

im

Fig. 1. Diagram of the general semi-parametric hybrid model structure and of the incorporated submodels (mathematical symbols as in the text).
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data for L,, equivalent to an AutoRegression eXogenous (ARX) mod-
el, results in a one-step ahead predictor.

2.2. The nonparametric model

The proposed nonparametric submodel, hereafter referred to as
nonparametric model, is the key feature of the novel hybrid model.
The structure is the one of a NPLS model, which is embedded into
the hybrid framework, as reported to have been successfully ap-
plied in many areas, (Baffi et al., 2000; Henneke et al., 2005; Lee
et al., 2005; Qin & McAvoy, 1996). In fact the structure exhibits
all (N)PLS features, such as maximization of the covariance be-
tween input and output variables, minimization of redundant
information of the inputs and identification of a minimal number
of latent variable models. In the method here proposed the estima-
tion of the unknown kinetic rates from noisy and sparse concentra-
tion measurement data is circumvented.

2.2.1. The nonparametric model structure

The nonparametric model, for each component, j, of the vector
of unknown kinetic functions, p;(Ly,wa), is composed of o separate
latent variable models (referred to as submodels i=1,...,0, see
Fig. 1), such that:

Pj(Lx, W) = ZP;‘J‘(LX7WA)7J =1,...,m, 3)
i1

where the index i denotes latent variable i. Note that in the follow-
ing the term “latent variable model” is relaxed to latent variable.

Each submodel can further be divided into two parts, an outer
and an inner model (Fig. 1): the outer model firstly linearly com-
presses the respective high dimensional input, by the use of input
loadings, to one inner latent variable; the inner model then
correlates, (non) linearly, the input latent variable, t; to the output
latent variable, u;; and subsequently the outer model decom-
presses the outer latent variable, u;, through the use of the output
loadings, into the respective outer vector p; j(Ly, wa) (for details see
Baffi et al., 2000; Qin & McAvoy, 1992). In Baffi et al. (2000), ANN
and RBF were used as inner models, which proved to be successful.
In this approach an ANN model is applied. Mathematically this
nonparametric model is expressed as follows:

P1.mi(Le;Wa) = Wy - (Wai - g(Wri - h(Wii - Lix_ k) + b1i) + ba,),
(4)

where W, ; and W,,; are the compression factors of the outer model,
also called loadings, w,; and wy; are parameters of the ANN inner
model, b,; and by ; are the biases of the ANN inner model, h(-) and
g(-) are transfer functions, here linear and tangential, and L;;
comprises all inputs 1 to k to the model.

For i =1 the vector of inputs comprises the estimated state vari-
ables or/and additional measured data Xmes1...n, as illustrated in
Fig. 1.

For i> 1, the vector of inputs, L;1. x is the difference between
the previous input vector and the information captured by the pre-
vious input latent variable, i.e. mathematically:

Livk=Livix—Wyit-Livisx Wi, (5)

The arising advantage when compared to the so far used nonpara-
metric model is that high numbers of redundant experimental data
can be considered as inputs to the nonparametric model. In contrast
to (N)PLS models the advantage for the identification of the in-
volved parameters is that the kinetic rates do not need to be known
explicitly, and that the hybrid structure is inherently dynamic. It
should however be stressed that while the structure is a relevant
prerequisite, the parameter identification method is essential for
the success of the overall procedure.
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2.2.2. Identification of the nonparametric model parameters

The identification of the nonparametric model parameters pro-
posed in this paper differs from the NIPALS identification proce-
dure, but the general idea of this algorithm is kept. This idea is
somehow identical to a twofold objective optimization, where both
the covariance between inputs and outputs and the captured var-
iance of the input are maximized. The maximizations are accom-
plished by the application of the sensitivity approach (Frank,
1978; Oliveira, 2004; Peres et al., 2001; Simutis et al., 1997), as it
was shown to be preferable over the error-prone initial estimation
of the kinetic rates with sequent parameter identification for ANNs
(e.g. see Oliveira, 2004).

2.2.2.1. Maximization of the covariance between inputs and out-
puts. The maximization of the covariance between the inputs and
outputs is analogous to the minimization of a weighted least-
square error function of the state variables, ¢, which reads as:

n N 2
n‘-}vin {El — PlTn XP: Z (Cmes-](t) cf](tv WA)) }7 (6)
=1

Coj

and where wy are the model parameters, Cmes 1...n iS the vector of
measured-known state variables, and ¢, is the standard variance
of the experimentally measured concentration.

This objective function requires the determination of the num-
ber of latent variables prior to application, which is in contrast to
(N)PLS models where consecutive latent variables are added till
the desired level of abstraction is reached.

2.2.2.2. Maximization of the captured input variance. The first objec-
tive function E; serves only to maximize the covariance between
the inputs and outputs, while the NIPALS algorithm also provides
orthogonality of the latent variables that span the subspace (Baffi
et al., 2000). This feature is important, because parameter identifi-
cation problems arising from redundant input information are pre-
vented and the dimension of the solution space is reduced. As for
(N)PLS structures, redundant information is minimized on one
hand by the compression of the input dimensions and on the other
hand by subtraction of the information covered by the respective
latent variable from the input information, Eq. (5), i.e. capturing
the variance of the inputs. In analogy to this intrinsic feature of
the NIPALS algorithm, the objective defined in the following seeks
to account for such.

Capturing the variance of the inputs is analogous to the minimi-
zation of the residual of the inputs, i.e. minimizing:

Lresik =Lotke =Y Wait - Listak- Waict. (7)
i

A direct application of this equation for optimization is not feasible
as uncorrelated inputs hinder the convergence of the optimization.
In order to circumvent this problem the following procedure was
developed:

(i) The first step therein is to regress the matrix of inputs L; ;.
with the input scores, t;, in order to obtain the input loadings
in a PCA manner, i.e.:
Lij k-t
th-
The obtained solution is then normalized to unit length:

Wx.i,lin.un
||Wx.i‘lin.un H

(ii) The second step is the calculation of the residual between
the input loading which is incorporated in the system of

Wx,i.lin,un = (8)

Wx,i.lin = (9)
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model equations, W,;, and the one obtained from Eqgs. (8)
and (9), Wy jin- The minimization of this residual is thought
to be similar to the minimization of Eq. (7). For the minimi-
zation a least square error function is adopted, i.e.:

. 1 < 2
min {Ez = oxk > (Waitin = Wai) } (10)

i=1

In such a way the inputs that are not correlated to other in-
puts or to the outputs are taken into account.
For the maximization of the error functions, E; and E,, the sen-
sitivity equations are employed. This means that the objective
functions are differentiated with respect to the parameters wa.

2.2.2.3. Sensitivity equations for E;. The sensitivity equations are ob-
tained by differentiating Eq. (6) with respect to wy,, which in gen-
eral implies the derivation of Eq. (1) with respect to wp.

For the inner models, i.e. the ANN’s, this reduces to the deriva-
tion of Eq. (1) with respect to wy ; and w,; ( embodied in the follow-
ing by w ) resulting in:

d dc of dc of

dt dw~oc dw " ow’ (an
where the first term on the right hand side of Eq. (11) is due to the
optional consideration of estimated state variables as inputs to the
nonparametric model, as displayed in Fig. 1.

For the outer models the sensitivity equations are similarly ob-
tained by differentiating Eq. (6) with respect to the input and out-
put loadings W,; and W, ; (which are in the following embodied by
Wyyyi). Not yet mentioned, but essential to report in this context is
the normalization of the loadings Wy, ;. This normalization carried
out by analogy with the NIPALS algorithm facilitates mathematical

operations since Wy, ; = Wy, ;, where:
Wy

Wiy =722 (12)
‘ Wx/y.iH

with W7 ; being the vector of parameters obtained from the

optimization procedure.

For the derivation of the sensitivity equation, Eq. (12) is
accounted for by the chain rule, i.e. the chain factor resulting from
Eq. (12) reads:

<‘ Wi Wi W > (—W“P oW )
x/yi X/yil1 " x/yiln X/yil 1 U x/yilp
5 - ANLLALL L
) wep ) wep
X/yi x/yi
Wyyyi ) )
aww : i
X/yi
(—W“P oW ) () WP WP WP )
x/yil1 x/y.igq.1 x/yi x/yigp x/y.iq.p
WElLVA o 5
weP . ) weP
x/y.i x/y.i

(13)

The sensitivity equations can then, similarly to Eq. (11), be ob-
tained by differentiating Eq. (1) with respect to W7 . which for the
output loadings results in:

d dc of dc of dw,;

a. -9, : , (14)
dt dw;f; ac dW}‘_‘; oW, dW}’_‘,?

and for the input loadings gives:

d dc of dc of dWy; of dLij., dWy; (15)

dt dw® ~oc dW® T oW, dW® oLk dWy dW®-

The sensitivity equations of the input loadings, Eq. (15), bare the
specialty that the subtraction of the covered information from the
input information, namely Eq. (5), must be taken into account,
what is accomplished by the third term on the right hand side in
Eq. (15) (for details see the Appendix A). The derivation of df/dc
and offow, is straightforward and similar to the nonparametric
structure given e.g. in Oliveira (2004) wherefore they are not de-
scribed in detail.

2.2.2.4. Sensitivity equations for E,. The sensitivity equations for the
second objective function, E,, are obtained by the differentiation of
Eq. (10) with respect to wj (i.e. the in-output loadings and the ANN
parameters). In the case of W, the derivative is obtained in a rel-
atively straight forward way, resulting in Eq. (13) for the input
loadings, while being zero for the output loadings and ANN param-
eters. In contrast, deriving the gradients of W, i, with respect to
wy is operose. The chain rule can be applied using Eq. (13) to ac-
count for Eq. (9) and differentiating Eq. (12) with respect to wy
(i.e. the input loadings, output loadings and ANN parameters), as
shown in the Appendix A.

The least square problem functions, E; and E,, are optimized
simultaneously by using the “Isqnonlin” MATLAB function, which
uses a subspace trust region method and is based on the interior-
reflective Newton method (MATLAB Optimization toolbox), there-
fore gradient based, i.e. the sensitivity equations are required.
However, when estimates of the state space variables are consid-
ered as inputs, then all parameters of the nonparametric model
are also used to maximize the captured input variance, which is
not desirable.

In order to account for this, first the simultaneous parameter
identification is carried out and then, when the best parameter of
the respective structure are identified as described below, only w
and W,,; are further optimized subject only to the first objective
function E;.

In any case, the sensitivity equations are integrated along with
the model equations, namely the system of equations comprised
by Eq. (1). In this study an Euler integration scheme is adapted. Ini-
tial values of sensitivity equations are zero, because the initial state
variables are independent of the parameters.

2.2.2.5. Additional challenges for parameter identification. Parameter
identification of nonparametric structures, especially when gradi-
ent based, exhibit a few additional challenges, namely restoring
of the model generalization capabilities and avoiding local minima.
The first challenge is usually overcome by (i) splitting the data set
into two partitions: the training set that contains about 2/3 of the
data; and the validation set, which comprises about 1/3; and (ii)
terminating the parameter optimization when a certain level of
sophistication is reached (Bishop, 1995; Haykin, 1998; Oliveira,
2004).

The second challenge, namely local minima, arises from the
shape of the solution space spanned by the objective functions
and the parameters (Bishop, 1995; Haykin, 1998). The consistency
of the minima obtained for various random initiations of the
parameters (in this study at least four) is on one hand a measure
of the quality of the solution obtained, and on the other hand a
measure of the problem formulation quality. Notice that the larger
the number of random initializations, the larger is the statistical
confidence of the solution (Bishop, 1995; Haykin, 1998).

2.3. Model performance criteria

In order to identify the best hybrid model, both a measure of
model performance must be defined, i.e. a model performance cri-
teria and a suitable set of model structure variations must be con-
sidered. As outlined above, in Section 2.2.2, the identification of the
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best hybrid model structure goes along with the identification of
the number of latent variables. Besides this variation in the num-
ber of latent variables, the architecture of the ANN structure usu-
ally involves the variation of the number of layers and the
number of nodes in these layers.

In this work, a number of decisions were taken, in order to
downsize the degrees of freedom, namely: (i) a selection of three
layers (input, hidden and output layer) was decided, which is
usually sufficient if nonlinear continuous functions are sought to
be modeled (Haykin, 1998); (ii) the number of nodes for the hidden
layers of the ANN is fixed to be one; (iii) the number of nodes for
the input and output layers for each submodel is fixed as one, as
it results from the (N)PLS structure. What remains is then the
evaluation of the variation of numbers of submodels, i.e. the
variation of the number of latent variables, for each hybrid model
set-up.

One criterion for model performance is the residual, also ad-
dressed as the goodness of fit of the model estimates regarding
the data, which can be assessed through the Mean Square Error,
MSE, where MSE is defined as:

MSE = P]Tn . Z Z (Cmesj(t) - Cj(tva)>' (16)
P j=1

Evaluation and comparison of model concepts and structures
cannot however be only built up on the estimation error obtained
for the training, validation or test set, in form of the residual
(Bishop, 1995; Haykin, 1998). It is known that as model complexity
grows, i.e. the number of parameters grows, the quality of fit may
apparently improve, but often at the expense of robustness and
generalization capabilities, (Bishop, 1995; Haykin, 1998). With re-
spect to these issues the Akaike Information Criteria, AIC, is a suit-
able and widely applied criteria, but according to Leonard and Hsu
(1999), Burnham and Anderson (2004), Peres, Oliveira, and de
Azevedo (2008), the Bayesian information criteria (BIC), is more
appropriate for the applications which this approach addresses.
Therefore the BIC is applied for the model comparison and selec-
tion in this study.

The Bayesian information criteria (BIC) is defined as:

BIC = (niP-ln <Z > [emes(6) - Cf(t’WA)r»

(0(5)

where the term in the first bracket is the logarithmic maximum
likelihood and n,, is the total number of parameters/weights. In
terms of the BIC, the model to be selected is the one that exhibits
the larger BIC value for the validation set (Burnham & Anderson,
2004; Leonard & Hsu, 1999; Peres et al., 2008).

3. Application, results and discussion

In this section the application, results and discussion of the
proposed hybrid model and of reference dynamic (N)PLS models
are reported for two complementary case studies. The first study
focuses on the process dynamics and the identification of the num-
ber of latent variables. The second study concentrates on the model
identification from typical noisy, sparse and infrequent experimen-
tal data, a case which hinders the direct application of the refer-
ence dynamic (N)PLS models. The results obtained for the hybrid
model are rigorously analyzed and benchmarked against reference
dynamic (N)PLS models.
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3.1. Case studies

3.1.1. A protein synthesis, the Park Ramirez model

3.1.1.1. The protein synthesis process. The method proposed in
Section 2 is evaluated in this subsection with simulation data of
protein synthesis in a fed-batch reactor, also known as the
Park-Ramirez model, as originally proposed by Park and Ramirez
(1988). This model found wide application, for similar model struc-
tures to the one proposed here, e.g. in Kulkarni, Chaudhary, Nandi,
Tambe, and Kulkarni (2004) for the evaluation of their principal
component analysis - general regression neural network model,
or in Oliveira (2004) for the evaluation of the traditional semi-
parametric hybrid model. The reactor model comprises material
balances of the secreted and total protein/product, the biomass,
the substrate and the volume. The model dynamics, i.e. the offset
between formation of secreted and total protein on the one side
and biomass growth and substrate uptake on the other, poses some
challenge, which is one reason for the application of this model in
this study. Also, this model finds application because the number
of latent variables therein is expected to be larger than one, but
smaller than four as analytically at least two kinetic rates (sub-
strate uptake and biomass growth) are linearly dependent and
such accounts for the model capability of identifying the underly-
ing latent variables.

In this paper the model equations, the feeding profile, the varia-
tion of the initial concentrations and the corruption of the generated
simulation data with a Gaussian error of 5%, were applied for simu-
lation case data generation, as described in Kulkarni et al. (2004).
Normal and abnormal (in the sense of initial data outside the usual
range, as defined by Kulkarni et al. (2004)) fed-batch data were gen-
erated, through variations in the initial values of concentrations,
which significantly influence the concentrations dynamics. Three
sets were defined, comprising 12 normal plus 4 abnormal fed-
batches for the training data set, 2 plus 2 for the validation set and
2 plus 2 for the test set, respectively. After generation, the sets were
corrupted with 5% Gaussian noise, except for the feeding and volume
data which were corrupted with 1.5% Gaussian noise.

3.1.1.2. The reference models. As reference for comparison with the
proposed dynamic hybrid models, (N)PLS models which account
for the dynamics by the augmentation of the inputs in the sense
of finite impulse response (FIR) or AutoRegression (AR) are used
(as in most cases: Baffi et al., 2000; Ljung, 1991; Qin, 1993; Ricker,
1988). The model structure identification of such dynamic (N)PLS
models comprises the identification of inputs to the models,
namely the number, type and time-points, in the sense of FIR or
AR, and the identification of the number of latent variables, i.e.
the structure is adapted in order to obtain the smallest mean
square prediction error in the validation set. In the following (see
Table 1) they will be referred to as FIR-(N)PLS and AR-(N)PLS,
respectively. The NPLS models contain the same ANN inner model
functions as the hybrid models, which are described in more detail
in Section 2.

3.1.1.3. The hybrid models. In this study four different hybrid mod-
els are investigated.

In the hybrid structures (A) and (B) no mechanistic knowledge
of the process is considered. The model equations for concentra-
tions of secreted protein, total protein, biomass and substrate,
read:

Psec rPsec (Lx) Psec
i Ptot _ er (Lx) _D. Ptot 7 (18)
dt| X W(Ly) X
S rs(Ly) (S—5Sm)
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Table 1

Values of model performance criteria over model types and structural parameters — simulation case study on the protein synthesis, also called the Park Ramirez simulation case.
Model type BIC train BIC valid BIC test MSE train MSE valid MSE test
FIR-PLS (Iv* = 4; nt®=1) -1930 —477 —348 0.0334 0.0812 0.0295
AR-PLS (Ivi=4; nt"=1) —-2074 -519 —433 0.0408 0.0893 0.0456
FIR-NPLS (Iv? = 4; nt®=1) —1945 —458 —383 0.0343 0.0699 0.0388
AR-NPLS ( Ivi=4; nt°=1) —-1994 —486 —433 0.0349 0.0691 0.0456
Hybrid structure A —1248 -219 —337 0.0134 0.0228 0.0610
Hybrid structure B -1189 —140 —222 0.0119 0.0118 0.0235
Hybrid structure C -1962 -379 —402 0.0595 0.0869 0.1055
Hybrid structure D —1083 -135 -93 0.0095 0.0114 0.0080

2 lv: number of latent variables.
b nt: number of time series elements.

respectively. This corresponds to the bioreactor dynamic model
structure represented by Eqs. (1) and (2), where the matrices K
and ¢ are identity matrices.

The hybrid structures (C) and (D) consider some basic knowl-
edge about the process, and the system of equations is generally
represented by

Pecc (Pt —Piec) 0 0 07 [rp.(Ly) Pyec
d|Po| 0 X 00| [rpgl Piot
| x |~ 0 0X 0| |uL | — |x

S 0 00 X] Lrs(Ly (S—Si)

(19)

While structures (A) and (C) are one-step-ahead predictor mod-
els, structures (B) and (D) are multi-step-ahead predictor models,
i.e. while the input vector L, (see Eq. (2)) contains the measured
values of substrate, biomass, total and secreted product concentra-
tions for (A) and (C), it contains only estimated values of sub-
strate, biomass, secreted and total product concentration for (B)
and (D).

The only remaining undetermined structural feature is thus the
number of latent variables. This was identified, in all cases, by an
heuristic search of the number of latent variables that produces
the best performance in terms of BIC (Eq. (17)) for the validation
data.

These hybrid structures can directly be compared to their dy-
namic (N)PLS counterpart in terms of one-step or multi-step ahead
prediction. By doing so, it is possible to evaluate the different struc-
tures regarding their statistical confidence, their calibration prop-
erties and the model estimation errors.

In advance it should be pointed out that the one-step ahead pre-
dictor hybrid models (A) and (C), are expected to perform worse
than the multi-step ahead predictor hybrid models (B) and (D), be-
cause: (i) the uncertainty, i.e. noise, in the input data is directly
passed to the estimates in the case of one-step ahead predictors;
(ii) uncertainty in an estimate is passed to all future estimates
due to the numerical integration; and (iii) the one-step ahead pre-
dictor hybrid models (A) and (C), in contrast to the multi-step
ahead predictor hybrid models (B) and (D), have no feedback of
the actual state estimates to the nonparametric model, wherefore
the nonparametric model can neither identify nor correct for errors
in the actual state estimates.

3.1.2. An experimental case study: B. pertussis

3.1.2.1. The B. pertussis process. The experimental study published
by Soons et al. (2008, 2008) is the basis for the second case study
of the present paper. The challenge here is to examine a dynamic
process where only typically infrequent, sparse experimental data
is available. Soons, Streefland et al. (2008) reported runs in batch
mode and variations to the process conditions, such as in pH, Tem-
perature and dissolved oxygen. Their measurements of the concen-

trations of lactate, glutamate and biomass over time for eight
batches were reported as PABO003, PAB0004, PABO005, PABO006-
1, PAB0006-2, PABO007, PAB0009-1, and PABO009-2.

In order to identify and avoid bias from possible measurement
errors, two sets of studies were carried out in the present paper:

In Set 1 - batches PAB0O003, PAB0O005, PAB0O006-1, PABO006-2
and PAB0009-2 were employed for training and batches PABO007
and PAB0009-1 used for validation.

In Set 2 - batches PAB0O003, PAB0O005, PAB0O006-1, PABOO06-2
and PAB0009-1 were employed for training, and PABO007 and
PAB0009-2 for validation.

It should be pointed out that batch PABO007 is an “abnormal”
batch, where a dissolved oxygen limitation and a lowered pH from
0 to 9 h occurred, whereas batches PAB009-1 or PAB009-2 can be
taken as “normal” (Soons, Streefland et al., 2008). By doing so, it
is guaranteed that in both sets a “normal” and an “abnormal” batch
were used in the validation step. The measured biomass concentra-
tion of batch PAB0004, was used as final test data, in order to pro-
vide a final assessment of the generalization capabilities of the
models.

3.1.2.2. The reference models. The reference models in this case
study are, as before described for the other case study, (N)PLS mod-
els which account for the dynamics by augmentation of the inputs.
Beside the augmentation of the inputs in the sense of FIR, the in-
puts here are also augmented using the AutoRegressive eXogenous
(ARX) approach. As before the model structure identification of
such dynamic (N)PLS models comprises the identification of the
number of latent variables and of inputs to the models, namely
the number, type and time-points, in the sense of FIR or ARX, i.e.
the structure is adapted in order to obtain the smallest mean
square prediction error in the validation set. In both schema a time
lag of 1 h and a maximum number of 4 equidistant lags for each in-
put were investigated. In the context of sparse and infrequent mea-
surements the application of these specifications requires that the
measurements are pretreated, i.e. in this study the (N)PLS model
inputs at the specific time instances were obtained through a cubic
smoothing spline (MATLAB routine: csaps). However, this manda-
tory procedure must be accounted for when analysing the results,
since on one hand the smoothing of the data can be expected to en-
hance the model performance while on the other hand the data
interpolation might diminish the same. The NPLS models contain
the same ANN inner model functions as the hybrid models, which
are described in more detail in Section 2.

3.1.2.3. The hybrid models. The hybrid model in this case contains
mechanistic knowledge about the process, which was reported in
Soons et al. (2008). This results in improved convergence of the
parameter identification and into less random initiations for the
parameters in order to obtain consistent results. The system of
model equations reads:
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d Lac Lac-X 0 0 TLac Lac

I Glu| = 0 Glu-X 0 Teu | =D- | Glu|, (20)
X 0 0 X u X

where Lac, Glu and X are the concentrations of Lactate, glutamate
and biomass, respectively and 1., iy and p are the respective un-
known kinetic functions which are obtained by the nonparametric
model.

The input vector L, of the nonparametric model in this study
contains the estimates of all concentrations, pH, temperature and
the percentage of dissolved oxygen, as reported to be responsible
for the process variations (Soons, Streefland et al., 2008). A gain,
as reported in the previous case study, the only remaining undeter-
mined structural feature is the number of latent variables. This was
as well identified, in all cases, by an heuristic search of the number
of latent variables that produces the best performance in terms of
BIC (Eq. (17)).

3.2. Issues of hybrid model development and implementation

The proposed semi-parametric hybrid model might be under-
stood as a dynamic NPLS model wherein the dynamics are modeled
by material balances. In the following the dynamics and the perfor-
mance of the hybrid model are rigorously analyzed.

3.2.1. Performance criteria

3.2.1.1. Statistical confidence — the BIC. In comparison to reference
dynamic (N)PLS approaches, such as AR(X)- or FIR-(N)PLS models,
it was observed that the hybrid methodologies possess way fewer
model parameters, i.e. latent variables. This is a qualitative obser-
vation which is reflected in both presented simulation cases by the
significantly larger BIC values obtained for the hybrid models when
compared to the values obtained for the comparative dynamic
(N)PLS models (see Tables 1 or 2). It should be pointed out that
the dynamic (N)PLS approaches, namely the AR(X)- and FIR-
(N)PLS models, are disadvantaged in terms of BIC, due to: (i) the
higher number of latent variables; and (ii) the dynamic structure
itself which increases the number of parameters on the input side.
From the BIC definition, Eq. (17), the model to prefer is the one
with the larger BIC value, i.e. the one which for equal residual
and number of data, has fewer parameters, in this way penalizing
complex models (Bishop, 1995). In general, models with higher
numbers of parameters are thought to be less robust and to exhibit
worse generalization capabilities than models that offer similar re-
sidua, but with smaller number of parameters. Thus the BIC is a
measure of the statistical confidence of the model performance
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and therefore the proposed hybrid models exhibit a higher statis-
tical confidence than the comparative dynamic (N)PLS approaches.

3.2.1.2. Performance under the MSE criterion. The statistical confi-
dence observed for the hybrid models is in agreement with the
performance of such models observed and evaluated in terms of
the MSE criteria, as shown in Tables 1 and 2.

It was observed that the proposed hybrid method most times
exhibits significantly better and only rarely worse performance
than the other evaluated dynamic (N)PLS models.

Cases in which the hybrid method exhibited a worse performance
in terms of MSE values than the comparative methods were graphi-
cally analyzed. As example, for the Park-Ramirez case study, Figs. 2
and 3, it was observed that the highest deviations are to be found
in the substrate concentrations for hybrid structures (A) and (C).

When seeking for an explanation it must be kept in mind that:
(i) both hybrid models, (A) and (C), are one-step ahead predictor
models, in the sense of FIR; and (ii) the estimations by these hybrid
models are sensitive to noise in the feeding rate data, as outlined in
sub Section 3.1.1.

In the case of the feeding rates, the hybrid model cannot ac-
count for the uncertainty therein, because neither the feeding rate
data are inputs to the nonparametric model nor the state estimates
are feedback to the nonparametric model. That those uncertainties
can partially be accounted for when the state estimates are inputs
to the nonparametric model, is demonstrated by the excellent per-
formance of hybrid structures (B) and (D). However for the best
performance by hybrid model (D), those uncertainties are still ob-
servable in form of the slightly bumpy estimations of biomass and
substrate and in form of the bumpy estimations of secreted and to-
tal protein towards the end of the abnormal fed-batch, shown in
Fig. 3.

For the experimental case study it is observed in Table 2, that
the performance, in terms of MSE, for the hybrid models on data
Sets 1 and 2, is non-coherent: using as example the hybrid model
with 3 latent variables, the MSE values obtained for the training
data of data Set 1, are half as big when compared to the MSE values
on the training data of data Set 2. In order to identify the reason for
this contradiction an additional analysis, reported below, was car-
ried out on the influences which errors in the initial concentration
values have on the whole dynamics. However, observations for the
MSE values of the test data for both sets, wherein the performance
of the hybrid models are found to be significantly better than the
ones of dynamic (N)PLS models, show the excellent generalization
capabilities of the hybrid models.

Table 2

Values of model performance criteria over model types and structural parameters - experimental case study on Bordetella pertussis cultivation data.
Model type Structure Set© BIC train BIC valid BIC test MSE train MSE valid MSE test
FIR-PLS [Iv®=5,nt®=3] 1 —486 -168 - 0.1486 0.0736 -
ARX-PLS [Iv?=6,nt"=3] 1 —549 —209 —55 0.1567 0.0703 0.3996
FIR-NPLS [Iv?=5,nt"=3] 1 —473 -173 - 0.1318 0.0831 -
ARX-NPLS [Iv*=6,nt" = 3] 1 -516 224 —41 0.1142 0.1028 0.0488
Hybrid-NPLS [lv?=1] 1 —430 -103 9 0.2884 0.1397 0.0160
Hybrid-NPLS [lv?=2] 1 -330 -88 10 0.1020 0.0836 0.0106
Hybrid-NPLS [lv?=3] 1 -317 -96 9 0.0842 0.0910 0. 0094
FIR-PLS [Iv*=5,nt"=3] 2 —478 -163 - 0.1483 0.0568 -
ARX-PLS [Iv?=6,nt"=3] 2 —542 —204 -52 0.1573 0.0540 0.2361
FIR-NPLS [Iv*=2,nt"=3] 2 —402 -115 - 0.1509 0.0737 -
ARX-NPLS [Iv?=2,nt® = 4] 2 —410 -134 -14 0.1328 0.0782 0.0511
Hybrid-NPLS [lv?=1] 2 -416 -79 -3 0.2694 0.0687 0.0878
Hybrid-NPLS [lv?=2] 2 -357 =79 13 0.1420 0.0609 0.0075
Hybrid-NPLS [lv?=3] 2 -393 -82 16 0.1882 0.0582 0.0037

2 lv: number of latent variables.
b nt: number of time series elements.

¢ Set: Set 1 or 2 refer to the grouping of batches the respective model has been trained and validated on.
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Fig. 2. Park-Ramirez case study - plots of secreted protein, total protein, substrate and biomass concentrations, over time: predictions of hybrid structures A (dashed dotted

blue line) and B (grey line), and of the best reference FIR-PLS model (dashed green line, Table 1) vs. the process simulation data (red dots), for a ‘normal’ validation run. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Park-Ramirez case study - plots of secreted protein, total protein, substrate and biomass concentrations, over time: predictions of hybrid structures C (dashed dotted

blue line) and D (grey line), and of the best reference NPLS-AR model (dashed green line, Table 1) vs. the process simulation data (red dots), for an ‘abnormal’ test run. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3.2.2. Model structures and error propagation issues

In the case studies presented several sources of errors can be
identified, namely: (i) noises in input measurements, (ii) errors
inherent to model structures, (iii) errors in estimated inputs and/
or in estimated parameters, and (iv) errors associated to ‘defective’

initial values. These are representative of essentially all experimen-
tal applications.

Leaving aside the trivial, though in practice often difficult, is-
sues of error propagation due to the nature of numerical integra-
tion methods employed, it is relevant to analyze the issues
associated to the nature of model structures chosen.

3.2.2.1. Error propagation due to state feedback to the nonparametric
model. One way of propagation of the error in the estimates occurs
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in all those model structures in which the state estimate is a non-
parametric model input, e.g. hybrid structures (B) and (D) in the
Park Ramirez case study, or the ARX-(N)PLS model in the experi-
mental case study. However, the form of the time evolution of
the sensitivity equations, Eqgs. (11), (14), (15), in hybrid structures
where state feedback is embedded, tend to have a damping effect
on such error propagation. This can be excellently seen by the en-
hanced performances, in terms of MSE, through hybrid structures
(B) and (D) in contrast to the ones for (A) and (C) which are all-to-
gether shown in Table 1.

3.2.2.2. Error propagation due to state feedback to the parametric
model. Another way in which the error is propagated arises when
mechanistic knowledge, namely knowledge about the kinetics, in
form of the model estimates, is incorporated, such as in hybrid
structures (C) and (D).

The incorporation of the estimates is somewhat identical to the
case when the inputs to the nonparametric model comprise the
estimates, with the significant difference that an error in the esti-
mation (e.g. from noisy feeding rates as in hybrid structure (C)),
depending on the arithmetic operator, (e.g. a multiplication sign
for hybrid structures (C)) might amplify the error (e.g. rather large
deviations in the substrate concentrations, Fig. 3, and a rather large
MSE value, Table 1, are obtained for hybrid structure (C)).

The excellent performance observed with hybrid structure (D),
whose mechanistic knowledge is equivalent to (C), is explained
by the damping qualities of the nonparametric model.

3.2.2.3. Errors in the Initial values, a special case. A relevant issue in
all model analysis is that of the 'condition’ of the model structures
proposed.

As addressed above, the results of the experimental case study
in Table 2, of applying the hybrid models to data Sets 1 and 2, show
some inconsistency (see Section 3.1.2). In order to find the reason
for such, an additional analysis of the experimental data was
carried out, namely a PCA. It was observed that the correlations
for the initial values of concentrations in some of the batches vary
significantly from the correlations obtained for the whole data set,
which is in line with the eye observations made. When (i) correct-
ing the initial values in the validation and test batches of data Set 1
by using PCA and (ii) applying on these sets the hybrid model with
two latent variables and the ARX-PLS, which both were prior
trained on Set 1, then (iii) the results shown in Table 3 are
obtained. Therein it can be seen that the performance in terms of
both BIC and MSE values obtained for the hybrid model is
significantly better than the performance of the ARX-PLS model.
The performance of the hybrid model in Table 3 compared to the
very same hybrid model in Table 2 led to more than 50% reduction
in the MSE values of the validation and test batches.

This outlines the sensitivity of the proposed hybrid model to a
high noise to signal ratio, which is in line to the observations made
for the hybrid structures (A) and (C), i.e. the noise in the measure-
ments enters directly the nonparametric model, leading to
deviations of the estimations regarding the simulation data. In
particular, defective initial values due to noise effects constitutes

Table 3
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a special case, as those values are the base for the integration
and as such are a significant source of misprediction.

3.3. Challenges of the Park Ramirez case study

The challenges offered by the Park Ramirez simulation case are
on the model dynamics and on the identification of the number of
latent variables.

3.3.1. The first challenge: the model dynamics

The dynamic delay between formation of secreted and total
protein on one hand and biomass growth and substrate uptake
on the other hand, varies depending on the initial values of concen-
trations. This dynamic feature was very well modeled by all
applied hybrid structures, apart from the slightly “bumpy” shape
of the trajectories, which were ascribed to the error propagation
in the discussion above.

Small deviations between estimates and reference values of
concentrations can be observed, especially for the one-step ahead
predictor hybrid structures (A) and (C), but the general dynamic
state behavior is well predicted, as can e.g. be seen in Fig. 3 for
the substrate concentration.

Even the dynamics of the abnormal fed-batches are very well
predicted by the hybrid structures, in contrast to the observations
made for the reference dynamic (N)PLS approaches, as illustrated
in Fig. 3. For these special batches it can be concluded that the
proposed hybrid models, in comparison to the other dynamic
(N)PLS models, even when applied to “regions” where they have
been poorly trained on, offer smaller deviations from the simula-
tion data, which confirms the higher statistical confidence of the
estimates from such models.

The preceding also means that even if the training set does not
contain all possible variations, which can occur during the process,
still the performances of the proposed hybrid model for different
operating conditions, can be expected to be superior to the one
of the comparative dynamic (N)PLS models. These conclusions
are according with the findings reported by Thompson and Kramer
(1994), Oliveira (2004).

3.3.2. The second challenge: the number of latent variables

The second challenge of the Park Ramirez simulation case is the
identification of the number of latent variables for both, the hybrid
and the reference (N)PLS models.

Analytically, it is clear that at least two kinetic rates, namely the
substrate and biomass rates, are linearly correlated. However, from
observations made on the simulation data it might be concluded
that also the rates of secreted and total protein are linearly corre-
lated, which in total then sums up to two independent latent vari-
ables. This number is observed for the identified hybrid model
structures, where it was found that the best hybrid structures al-
ways comprised only two latent variables.

In contrast, identification of the best model structure for refer-
ence dynamic (N)PLS models always revealed four latent variables.
Partially this is due to the fact that linear correlations of the kinetic
rates do not necessarily mean that the respective concentrations

Values of model performance criteria over model types and structural parameters - corrected initial value data of data Set 1 of the experimental case study on the Bordetella

pertussis cultivation.

Model type Structure BIC train BIC valid BIC test MSE train MSE valid MSE test
ARX-PLS [Iv® =6, nt® = 3] -550 -213 -53 0.1582 0.0784 0.3047
Hybrid-NPLS [lva=2] -329 —54 22 0.1019 0.0371 0.0018

2 lv: number of latent variables.
b nt: number of time series elements.
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are linearly correlated in the same way, because the initial value of
the concentrations poses a bias.

In such context it has to be kept in mind that prior to the
application of the chemometric tools the data are, as usual, zero-
mean-centred and scaled by the standard variance, which might
also contribute to the bias. Hence, three latent variables would
be justifiable in the identification of the reference (N)PLS models.

The extra latent variable in these structures might be thought to
account for the dynamics, which however is for the cost of a higher
number of parameters involved, with the subsequent cost of lower
BIC value.

In general, it is worth noting that for the identification of the
number of latent variables for the hybrid model the kinetic dimen-
sions with or without mechanistic knowledge incorporation can be
reduced to two independent rates, which might suggest that any
additional kinetic rate of the simulation model may be redundant.

3.4. Challenges of the experimental case study

The challenge in this case study onB. pertussis, arises mainly from
the typical infrequent, sparse and noisy experimental concentration
data available. The main objective was to show that the developed
hybrid model is under these circumstances competitive with the
reference dynamic (N)PLS models. The number of latent variables
was unknown a priori and such was also subject of the study.

3.4.1. The “best” number of latent variables

The BIC values of the hybrid models were significantly better
when compared to the ones of the reference dynamic (N)PLS ap-
proaches, this being mainly due to the smaller number of modeling
parameters involved in the former.

For both data sets of this study (Section 3.1.2) the BIC values ob-
tained on the application of the hybrid models to the validation
batches suggest the selection of two latent variables, which is par-
tially in agreement with the reference (N)PLS structures identified
(see Table 2). It has been seen that due to defective initial values,
the MSE values obtained for the same validation batches were
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inconsistent among themselves, but the BIC values obtained for
the corrected files nevertheless reinforce the selection of two latent
variables.

For the case of the reference dynamic (N)PLS models, it was ob-
served that in general five to six latent variables are necessary to
obtain model performances which are, in terms of the MSE, in
the same range than those of the hybrid models. Exceptions to this
observation exhibit the performances of the dynamic NPLS models
of Set 2 (Table 2), which both only comprise two latent variables. It
seems that nonlinear inner functions are capable to account better
for the general process dynamics than linear ones. This assumption
is further supported by the observation that the MSE values of the
test data obtained for the nonlinear models are significant smaller
than the ones obtained for the linear models.

3.4.2. General performance
The following observations hold concerning general model
performance:

(i) The MSE values obtained for the hybrid structures are seen

to be significantly better than the ones obtained with the
(N)PLS structures for the test set, as presented in Table 2.
The correction of those initial values of the substrate con-
centrations in the test batch (initial data corrected as
described in Section 3.2.2), have lead to further improved
performance in terms of MSE for the hybrid model, as
expressed in Table 3.
Considering that only the initial substrate concentrations
were corrected, it can be further concluded that the hybrid
model captures well the known fact that the estimation of
the biomass concentration is sensitive to the initial substrate
concentration.

(ii) The MSE values obtained with the application of the hybrid
structure to the “corrected” validation batches (initial data
corrected as described in Section 3.2.2) were significantly
better than those of the reference ARX-PLS model.

In the context of this analysis, it should be pointed out that

Glutamate (-)
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Fig. 4. Bordetella pertussis experimental case study - plots of concentrations of lactate, glutamate and biomass concentrations over time for the validation batch PAB0O0071
(red dots): predictions of the NPLS hybrid model with 2 latent variables (dashed dotted blue line) and 3 latent variables (grey line), vs. estimates of a ARX-PLS, with 3 latent
variables (dashed green line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the ARX-PLS reference model exhibit a rather low sensitivity
to initial values. This can be observed in the difference
between the MSE values of the corrected and uncorrected
test batch, which is of the order 0.0081, about eleven percent
of the respective MSE value.

(iii) The good performance of the hybrid models for the estima-
tion of the biomass concentration is also observed in Fig. 4.
The superior performance of the hybrid models is strength-
ened by comparing, in the same figure, the shape of the tra-
jectories, which are rather bumpy for the (N)PLS model
against rather smooth trajectories for the hybrid models
(especially for the one with three latent variables). In the
case of the dynamic (N)PLS models, the mandatory pretreat-
ment of the data, i.e. the application of a cubic smoothing
spline (Section 3.1.2), therefore does not seem to act
smoothing on the estimates, but instead the error intro-
duced through the data interpolation seems to board the
predictions.

3.5. Complementary features of the hybrid model

In the Park Ramirez case study, it was observed that the identi-
fication of the nonparametric model parameters exhibited a faster
convergence, a higher consistency of the results and an improved
performance, e.g. in form of the MSE criteria in Table 1, when com-
paring between hybrid models with and without mechanistic
knowledge, in favor of the former. Thus, the incorporation of mech-
anistic knowledge into the hybrid structure leads to a better model
performance, which is in line with observations in Psichogios and
Ungar (1992), Oliveira (2004).

It is known that for (N)PLS models the analysis of the input and
output scores represents a relevant source of information concern-
ing characteristics and features of the processes and of model per-
formance. This important feature of (N)PLS structures is present in
the hybrid model developed in this study. For instance, and as
illustration with the experimental case study, the plot of scores

u, over t (Fig. 5) shows a singularity of behavior for batch
PABO0003 (see red crosses). This batch, employed in the training
stage, distinguishes from the others by (1) having the smallest ini-
tial values for all concentrations, namely lactate, glutamate and
biomass; (2) exhibiting the highest concentration of biomass in
the end of the batch; and (3) comprising a defect in the DO signal
towards the end of the batch.

Finally, and still for the experimental case study, the fairly lin-
ear inner model functions, which can be seen in Fig. 5, might ex-
plain for the fast convergence and the consistency of the hybrid
model performance, as in general the optimal parameters of linear
models are unique.

4. Conclusion

A novel methodology consisting of a hybrid dynamic (N)PLS
model together with an algorithm for parameter identification is
proposed for bioprocess modeling. The model consists of a set of
macroscopic material balance equations in which the kinetic rates
(the reaction terms) are mimicked by a nonlinear partial least
square (NPLS) submodel and wherefore the global approach be-
longs to the class of hybrid models.

This methodology was benchmarked against reference dynamic
(N)PLS models (in which the dynamics are modeled by the
augmentation of the inputs by lagged variables, such as FIR or
AR(X)) through the application to two complementary case
studies; (i) a simulation case study, also called the Park Ramirez
simulation case after (Park & Ramirez, 1988); and (ii) an experi-
mental case study of a B. pertussis cultivation, as published by
Soons et al. (2008, 2008).

The following has been observed and can be stated:

(i) The novel approach, due to its inherent dynamics, exhibits,
in general, fewer model parameters which results in a higher
statistical confidence, observed in form of higher BIC values,
when compared to the reference dynamic (N)PLS models.
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(ii) In the application to validation data, the model performance,
observed in terms of the MSE criterion, was generally signif-
icantly better.

(iii) Better calibration properties can be observed, expressed in
terms of extrapolation capabilities to broader process condi-
tions (e.g. predictions concerning the abnormal fed-batch
data).

(iv) The application of the proposed model to typical infrequent,
sparse and noisy experimental data leads to realistic, smooth
trajectory estimations of the process states and does not
require data interpolation as necessary in the reference
dynamic (N)PLS methods.

(v) The integration of mechanistic knowledge into the proposed
framework was identified to have a significant impact on the
good results obtained, which is in line with the findings of
Psichogios and Ungar (1992), Oliveira (2004).

(vi) The novel proposed nonparametric structure and the related
parameter identification algorithm exhibit PLS features such
as dimension reduction and the opportunity to interpret the
plot of scores:

(a) The Park Ramirez case study involves four kinetic rates,
where two of which are linearly correlated. The hybrid
model revealed that only two independent latent variables
are already sufficient to model the process, in contrast to
mostly four obtained by the reference (N)PLS models.

In general fewer latent variables were required regarding
the same process than by the reference dynamic models.

(b) For the B. pertussis case study, from the analysis of the
score plots, it was shown that unusual variations in the
process conditions could be identified.

(vii) Several sources of errors were identified: (a) noise in the
input measurements to the nonparametric model; (b) noise
in the measurements of the feeding rates (in the Park
Ramirez case study); (c) errors inherent to the feedback
nature of the models (where applicable); or (d) defective ini-
tial values.

(viii) For all sources of errors, except for the case of defective
initial values, it was observed that state feedback to the
nonparametric model had a damping effect on error
propagation.

(ix) For cases of defective initial values, it was shown that cor-
rective action on such errors has led to improved perfor-
mance of the hybrid approach in comparison to the
reference dynamic (N)PLS models (e.g. a more than twofold
improvement of the MSE value in the experimental case
study on a B. pertussis cultivation).

In all, it can be stated that the application of a suitable hybrid
(N)PLS model structure leads to significantly enhanced process
estimations when compared to the reference dynamic (N)PLS
models.
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Appendix A
A.1. The calculation of the input and output scores

The input and output scores are an inherent component of the
proposed nonparametric structure, Eq. (5). The scores, in analogy
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to (N)PLS models, give an insight into the information captured
by the respective submodel and are further suitable to identify
“abnormal” process behavior.

The input scores, also called input latent variable, are directly
obtained from multiplication of the input vector L;;  x (see
Eq. (5)) with the input loadings, W,;, i.e.:

ti=Wyi- Ltk (A1)

The output scores are obtained by processing the input scores, t;,
with the ANN inner model, such that:

Ui = (Wa-g(wii- h(t) +bii) +baj), (A2)

using the weights, biases and functions defined in Section 2.2.1.
A.2. The sensitivity equations

The derivative of Eq. (10) can be split into the derivative of
dW,i1in/dws and in dW,;/dw,, where wy, the vector of parameters,
comprises Wy ;, W, ; and w. The latter derivative is straight forward
as described above, Section 2.2.2. Considering Eq. (9), the deriva-
tive dWy 1in/dwa can be extended to:

AWyiin  dWyitin  dWyitinun

_ . , A3
dw, AWyitinun — dwa (A3)

making use of the chain rule. The first term on the right hand side is
equivalent to Eq. (13). The second term on the right hand side is the
derivative of Eq. (8) with respect to wa. This term can be reformu-
lated using the quotient rule to:
d(Liq gt (el
dWx.i,lin.un _ (tlT : ti) . ( d1w: ) - (Li=1~~~k : ti) . (dWA) (A 4)
A -0’

The first derivative in the numerator can be split up, applying the
chain rule again, to:

d(Lizx - t) dLiq k dt;
awe ti- awa + Ltk e (A.5)
The second derivative can equivalently be treated, giving:
d(th - t;) dt;
Wﬁz.t’udwx (A.6)

The derivative dt;/dw, emerges in (A.5) and (A.6), which, consid-
ering Eq. (A.1) and applying the chain rule, can be formulated to:

dt; dLiq.k dW,y;

dWA - ij . dWA dWA '

+Li1 k-

(A7)

Noting that w} = [W,;, W,;, w], then the derivative correspond-
ing to the second term on the right hand side is a matrix compris-
ing the identity submatrix for the derivative of W, ; with respect to
W, and zero elsewhere.

The derivative in the first term on the right side, namely dL;; x/
dwy, also appears in Eq. (A.5) and is reformulated using Eq. (5) to:

dliv.x _ dliqax AWyt -Livnik Waia)
dWA o dWA dWA

: (A.8)

where the second term on the right side can be simplified by using
the chain rule, a straightforward solution and therefore not carried
out here.

The only remaining derivative is dL; ;1. _,/dw,s, which is calcu-
lated sequentially, starting with dL; ;. x/dwa. It should be noted
that only the partition of entries of Ly corresponding to the
feedback of model estimates into the nonparametric model
(Fig. 1) depend on wy. As such those derivatives reduce to dc/dw,
which are nothing else than the derivatives given by Egs. (11),
(14), (15).
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