
Sistemas Operativos: Concurrency
Locks

Pedro F. Souto (pfs@fe.up.pt)

March 18, 2020



Roadmap

Locks Usage

Implementation



Using locks to prevent race conditions

Question Is there a systematic way to prevent race conditions?
Answer The closest is the concept of monitor

I Use abstract data types (ADT), a kind of class, to structure
your code;

I Add a lock to ensure mutual exclusion in the execution of
the functions of the ADT:
I The first step in each function is to acquire that lock
I The last step in each function is to release that lock



The Counter ADT



The Counter Monitor



Monitors

I This is not the only way to design thread-safe programs
I Actually, the use of monitors may raise some modularity

issues
I Namely deadlocks as we will see later

I Furthermore, the performance may not be the best
I If code uses several ADTs, may need to acquire the locks on

all of them
I Nevertheless, this is a rather useful pattern

I java.util.concurrent is a Java package, i.e. library, that
provides thread-safe versions of many classes in the
java.util package

I Its implementation relies on the concept of monitor
I Problem 2 of this week’s problem set asks you to develop a

thread-safe stack using this pattern



Roadmap

Locks Usage

Implementation



Implementation Goals

Mutual exclusion that is the main purpose of locks
Fairness threads should have a fair chance to acquire a lock

I This is not always desired
I But at least threads should not starve

Performance There many facets of this
Without contention
With contention On uniprocessors vs.

multiprocessors/multicores



Approaches

I Software-based solutions
I More of an intellectual exercise: they are not efficient

I Controlling Interrupts
I Atomic read-modify-write instructions



Controlling Interrupts

Idea Disable interrupts upon entering a critical section and
re-enable them upon exit

void lock() {
DisableInterrupt();
}
void unlock() {
EnableInterrupt();
}

Rationale By disabling interrupts, the thread will execute without
interruption the critical section.

Advantage This is a simple solution that works



Controlling Interrupts: Issues
Requires the OS to trust applications If the application does not

call unlock() the OS will not be able to regain control
I The only way out is to restart the system

Reduces responsiveness while the interrupts are disabled, the
system cannot respond to interrupts
I May lead to lost interrupts, e.g. of the timer

Only works on uniprocessors
I Nothing prevents threads executing on other cores from

entering interfering critical sections
I Furthermore, disabling interrupts operates on a single core;

Low performance
I On modern HW, interrupt-related instructions are slower

than atomic read-modify-write instructions
Concluding On modern OSs controlling interrupts is done only at

the kernel, mostly to prevent interrupt handling code from being
interrupted.



Attempt to Implement Locks with Ordinary Instructions

Issues
Performance threads must busy wait
Correctness i.e. does not ensure mutual exclusion always – can

you see why?



Attempt to Implement Locks with Ordinary Instructions

Issues
Solution Use atomic read-modify-write instructions



Atomic Exchange (Test-And-Set)

I This is the simplest atomic read-modify-write instruction: in
the Intel32 ISA it is known as xchg

int TestAndSet(int *old_ptr, new) {
int old = *old_ptr;

*old_ptr = new;
return old;

}

I Remzi called it TestAndSet() because it allows testing the
value and possibly modifying it (but there are instructions that
do exactly that, Remzi calls them CompareAndSwap())

I The key is that this instruction is atomic:
I The reading and the modification of the memory whose

address is old_ptr is done in an indivisible way

Question How can we use this instruction to solve the problem
with our last attempt?



Spin-Lock Implementation with Atomic TestAndSet

Analysis

Entering a CS when the lock is not held
Entering a CS when the lock is held by another thread



Spin-Lock with Atomic TestAndSet: Evaluation

Correctness as long as the scheduler is preemptive
Fairness there is no guarantee

I Depends on the scheduler
Performance

Uniprocessor Poor
I While a thread spins waiting, other threads cannot run

Multiprocessor May be good, if:
I There is low contention
I Lock is held by a thread on another core/processor
I Critical section is short



Spin-Lock Performance Issues

I If the thread inside a CS is preempted/interrupted
I The thread trying to enter the CS will be forced to spin

I Possibly until it is preempted

I The higher the contention, i.e. the higher the number of
threads trying to enter the CS, the worse the performance.

Solution (first try) Yield the CPU if lock is held by another thread



Lock with yield()

Issues
Performance On high contention

I Too many yield()’s
Fairness depends on the scheduler



Locks: Avoiding Busy-Waiting

I Need more control on which thread gets the lock
I Requires OS support

I E.g. Solaris offers two system-calls:
park() similar to sleep()
unpark() kind of wakeup

Idea Before "parking" add the thread to a queue of threads waiting
for the lock
I Upon unlocking, "unpark" the thread at the head of the

queue



Lock with qeues and park()

I But this has a race-condition known as lost-wakeup



Fixing the lost-wakeup or wakeup/waiting race

I Use the setpark() system call:
I It tells the OS that the thread is about to call park() (may be

prepare_park() would be clearer)
queue_add(m->q, gettid());
setpark(); // tell the kernel thread is about to call park()
m->guard = 0;
park();

I If there is a call to unpark() between setpark() and
park(), the latter returns immediately

I park()/unpark()/setpark() are OS-specific
I Linux offers the futex() system call with the same purpose:

futex_wait(address, expected) blocks the thread, if
the value @ address is expected (otherwise,
does not block);

futex_wake(address) wakes one thread that is waiting on
address



mutex_lock() with futex (lowlevellock.h)


	Locks Usage
	Implementation

