
Sistemas Operativos: Limited Direct
Execution

Pedro F. Souto (pfs@fe.up.pt)

February 27, 2020

Multiprocess Execution

A

B

C

D

D

C

B

A

Process

switch

One program counter
Four program counters

P
ro

ce
ss

Time

B C DA

(a) (b) (c)

I The processor is time shared among processes
I The OS provides the illusion that each process executes in its

own processor, i.e. each process executes in a virtual
processor.

Kernel Data Structures (xv6 toy-OS)

src: Arpaci-Dusseau & Arpaci-Dusseau

Multiprocess Execution: Challenges

Performance How to implement virtualization efficently?

Protection How to protect the OS from processes and processes
from one another?

Approach Limited Direct Execution

Multiprocess Execution: Challenges

Performance How to implement virtualization efficently?
Protection How to protect the OS from processes and processes

from one another?

Approach Limited Direct Execution

Multiprocess Execution: Challenges

Performance How to implement virtualization efficently?
Protection How to protect the OS from processes and processes

from one another?
Approach Limited Direct Execution

Direct Execution

I Just run the program directly on the CPU:
OS Program
Create entry for process list

Allocate memory for program
Setup stack with argc/argv
Clear registers
Call main()

Run main()
Return from main()

Free memory of process
Remove entry from process list

Direct Execution

I Just run the program directly on the CPU:
OS Program
Create entry for process list
Allocate memory for program

Setup stack with argc/argv
Clear registers
Call main()

Run main()
Return from main()

Free memory of process
Remove entry from process list

Direct Execution

I Just run the program directly on the CPU:
OS Program
Create entry for process list
Allocate memory for program
Setup stack with argc/argv

Clear registers
Call main()

Run main()
Return from main()

Free memory of process
Remove entry from process list

Direct Execution

I Just run the program directly on the CPU:
OS Program
Create entry for process list
Allocate memory for program
Setup stack with argc/argv
Clear registers

Call main()
Run main()
Return from main()

Free memory of process
Remove entry from process list

Direct Execution

I Just run the program directly on the CPU:
OS Program
Create entry for process list
Allocate memory for program
Setup stack with argc/argv
Clear registers
Call main()

Run main()
Return from main()

Free memory of process
Remove entry from process list

Direct Execution

I Just run the program directly on the CPU:
OS Program
Create entry for process list
Allocate memory for program
Setup stack with argc/argv
Clear registers
Call main()

Run main()

Return from main()
Free memory of process
Remove entry from process list

Direct Execution

I Just run the program directly on the CPU:
OS Program
Create entry for process list
Allocate memory for program
Setup stack with argc/argv
Clear registers
Call main()

Run main()
Return from main()

Free memory of process
Remove entry from process list

Direct Execution

I Just run the program directly on the CPU:
OS Program
Create entry for process list
Allocate memory for program
Setup stack with argc/argv
Clear registers
Call main()

Run main()
Return from main()

Free memory of process

Remove entry from process list

Direct Execution

I Just run the program directly on the CPU:
OS Program
Create entry for process list
Allocate memory for program
Setup stack with argc/argv
Clear registers
Call main()

Run main()
Return from main()

Free memory of process
Remove entry from process list

Direct Execution: Issues

1. How can the OS prevent a process from doing something it
does not want the process to do?

I If a process is allowed to access the entire disk, then it will not
be possible to protect files from access by non-authorized
users

I And yet, processes usually need to access files on disk
2. In particular, how does the OS stop a process and context

switch to another process?
I This is necessary to ensure that all processes are able to run
I But, to ensure efficiency it is important to run processes

directly on the HW.

Direct Execution: Issues

1. How can the OS prevent a process from doing something it
does not want the process to do?
I If a process is allowed to access the entire disk, then it will not

be possible to protect files from access by non-authorized
users

I And yet, processes usually need to access files on disk
2. In particular, how does the OS stop a process and context

switch to another process?
I This is necessary to ensure that all processes are able to run
I But, to ensure efficiency it is important to run processes

directly on the HW.

Direct Execution: Issues

1. How can the OS prevent a process from doing something it
does not want the process to do?
I If a process is allowed to access the entire disk, then it will not

be possible to protect files from access by non-authorized
users

I And yet, processes usually need to access files on disk

2. In particular, how does the OS stop a process and context
switch to another process?
I This is necessary to ensure that all processes are able to run
I But, to ensure efficiency it is important to run processes

directly on the HW.

Direct Execution: Issues

1. How can the OS prevent a process from doing something it
does not want the process to do?
I If a process is allowed to access the entire disk, then it will not

be possible to protect files from access by non-authorized
users

I And yet, processes usually need to access files on disk
2. In particular, how does the OS stop a process and context

switch to another process?

I This is necessary to ensure that all processes are able to run
I But, to ensure efficiency it is important to run processes

directly on the HW.

Direct Execution: Issues

1. How can the OS prevent a process from doing something it
does not want the process to do?
I If a process is allowed to access the entire disk, then it will not

be possible to protect files from access by non-authorized
users

I And yet, processes usually need to access files on disk
2. In particular, how does the OS stop a process and context

switch to another process?
I This is necessary to ensure that all processes are able to run

I But, to ensure efficiency it is important to run processes
directly on the HW.

Direct Execution: Issues

1. How can the OS prevent a process from doing something it
does not want the process to do?
I If a process is allowed to access the entire disk, then it will not

be possible to protect files from access by non-authorized
users

I And yet, processes usually need to access files on disk
2. In particular, how does the OS stop a process and context

switch to another process?
I This is necessary to ensure that all processes are able to run
I But, to ensure efficiency it is important to run processes

directly on the HW.

Processor Modes (Privilege Levels)

How can the OS prevent a process from doing what it should not?

User mode when the CPU executes in this mode:
I It is not allowed to execute privileged instructions, such as

I/O
I It is not allowed to access the entire memory, in particular

the region that contains kernel code and data, i.e. kernel
space

Kernel mode when the CPU executes in this mode:
I It is allowed to execute all instructions, including privileged

instructions;
I It is allowed to access the entire memory.

The kernel always executes in kernel mode (hence the name)
Issue How can a user process do I/O?

I Via system calls

Processor Modes (Privilege Levels)

How can the OS prevent a process from doing what it should not?

User mode when the CPU executes in this mode:

I It is not allowed to execute privileged instructions, such as
I/O

I It is not allowed to access the entire memory, in particular
the region that contains kernel code and data, i.e. kernel
space

Kernel mode when the CPU executes in this mode:
I It is allowed to execute all instructions, including privileged

instructions;
I It is allowed to access the entire memory.

The kernel always executes in kernel mode (hence the name)
Issue How can a user process do I/O?

I Via system calls

Processor Modes (Privilege Levels)

How can the OS prevent a process from doing what it should not?

User mode when the CPU executes in this mode:
I It is not allowed to execute privileged instructions, such as

I/O

I It is not allowed to access the entire memory, in particular
the region that contains kernel code and data, i.e. kernel
space

Kernel mode when the CPU executes in this mode:
I It is allowed to execute all instructions, including privileged

instructions;
I It is allowed to access the entire memory.

The kernel always executes in kernel mode (hence the name)
Issue How can a user process do I/O?

I Via system calls

Processor Modes (Privilege Levels)

How can the OS prevent a process from doing what it should not?

User mode when the CPU executes in this mode:
I It is not allowed to execute privileged instructions, such as

I/O
I It is not allowed to access the entire memory, in particular

the region that contains kernel code and data, i.e. kernel
space

Kernel mode when the CPU executes in this mode:
I It is allowed to execute all instructions, including privileged

instructions;
I It is allowed to access the entire memory.

The kernel always executes in kernel mode (hence the name)
Issue How can a user process do I/O?

I Via system calls

Processor Modes (Privilege Levels)

How can the OS prevent a process from doing what it should not?

User mode when the CPU executes in this mode:
I It is not allowed to execute privileged instructions, such as

I/O
I It is not allowed to access the entire memory, in particular

the region that contains kernel code and data, i.e. kernel
space

Kernel mode when the CPU executes in this mode:

I It is allowed to execute all instructions, including privileged
instructions;

I It is allowed to access the entire memory.
The kernel always executes in kernel mode (hence the name)

Issue How can a user process do I/O?
I Via system calls

Processor Modes (Privilege Levels)

How can the OS prevent a process from doing what it should not?

User mode when the CPU executes in this mode:
I It is not allowed to execute privileged instructions, such as

I/O
I It is not allowed to access the entire memory, in particular

the region that contains kernel code and data, i.e. kernel
space

Kernel mode when the CPU executes in this mode:
I It is allowed to execute all instructions, including privileged

instructions;

I It is allowed to access the entire memory.
The kernel always executes in kernel mode (hence the name)

Issue How can a user process do I/O?
I Via system calls

Processor Modes (Privilege Levels)

How can the OS prevent a process from doing what it should not?

User mode when the CPU executes in this mode:
I It is not allowed to execute privileged instructions, such as

I/O
I It is not allowed to access the entire memory, in particular

the region that contains kernel code and data, i.e. kernel
space

Kernel mode when the CPU executes in this mode:
I It is allowed to execute all instructions, including privileged

instructions;
I It is allowed to access the entire memory.

The kernel always executes in kernel mode (hence the name)

Issue How can a user process do I/O?
I Via system calls

Processor Modes (Privilege Levels)

How can the OS prevent a process from doing what it should not?

User mode when the CPU executes in this mode:
I It is not allowed to execute privileged instructions, such as

I/O
I It is not allowed to access the entire memory, in particular

the region that contains kernel code and data, i.e. kernel
space

Kernel mode when the CPU executes in this mode:
I It is allowed to execute all instructions, including privileged

instructions;
I It is allowed to access the entire memory.

The kernel always executes in kernel mode (hence the name)
Issue How can a user process do I/O?

I Via system calls

Processor Modes (Privilege Levels)

How can the OS prevent a process from doing what it should not?

User mode when the CPU executes in this mode:
I It is not allowed to execute privileged instructions, such as

I/O
I It is not allowed to access the entire memory, in particular

the region that contains kernel code and data, i.e. kernel
space

Kernel mode when the CPU executes in this mode:
I It is allowed to execute all instructions, including privileged

instructions;
I It is allowed to access the entire memory.

The kernel always executes in kernel mode (hence the name)
Issue How can a user process do I/O?

I Via system calls

Traps to the Kernel
I Upon a system call, the CPU must change from user mode

to kernel mode
I Once in kernel mode, it can perform privileged instructions
I Upon returning from a system call, the CPU must change back

to user mode

I To support this, modern CPUs provide special instructions:
trap (to kernel) jumps to the kernel code and raises the

privilege level to kernel mode:
1. Save CPU state (PC and a few registers)
I On the x86, the CPU pushes the PC and some other registers to

a per-process kernel stack
Some of this must be done by HW, rest may be done by SW.

2. Raise privilege level to kernel mode
3. Jump to appropriate trap-handler

return-from-trap returns to the calling user process:
1. Lowers the privilege level to user mode (may be done by 2)
2. Restores the CPU state from before the system call
3. Jumps to the instruction after the trap in user code

Traps to the Kernel
I Upon a system call, the CPU must change from user mode

to kernel mode
I Once in kernel mode, it can perform privileged instructions
I Upon returning from a system call, the CPU must change back

to user mode
I To support this, modern CPUs provide special instructions:

trap (to kernel) jumps to the kernel code and raises the
privilege level to kernel mode:

1. Save CPU state (PC and a few registers)
I On the x86, the CPU pushes the PC and some other registers to

a per-process kernel stack
Some of this must be done by HW, rest may be done by SW.

2. Raise privilege level to kernel mode
3. Jump to appropriate trap-handler

return-from-trap returns to the calling user process:
1. Lowers the privilege level to user mode (may be done by 2)
2. Restores the CPU state from before the system call
3. Jumps to the instruction after the trap in user code

Traps to the Kernel
I Upon a system call, the CPU must change from user mode

to kernel mode
I Once in kernel mode, it can perform privileged instructions
I Upon returning from a system call, the CPU must change back

to user mode
I To support this, modern CPUs provide special instructions:

trap (to kernel) jumps to the kernel code and raises the
privilege level to kernel mode:

1. Save CPU state (PC and a few registers)
I On the x86, the CPU pushes the PC and some other registers to

a per-process kernel stack
Some of this must be done by HW, rest may be done by SW.

2. Raise privilege level to kernel mode
3. Jump to appropriate trap-handler

return-from-trap returns to the calling user process:
1. Lowers the privilege level to user mode (may be done by 2)
2. Restores the CPU state from before the system call
3. Jumps to the instruction after the trap in user code

Trap Table

Issue How does the kernel know which code to run upon a trap?
I The caller must not provide the specific address (like in a

function call)

Solution Use a table which is initialized by the kernel at boot-time
OS @ boot
(kernel mode)

Hardware

initialize trap table
remember address of
syscall handler

I This is similar to an interrupt table
I Upon handling a HW interrupt, the CPU also switches to

kernel mode
I Usually, the interrupt handler needs to do I/O

I On the x86, Linux uses the software interrupt instruction
INT as trap instruction (x86 offers other trap instructions)

Trap Table

Issue How does the kernel know which code to run upon a trap?
I The caller must not provide the specific address (like in a

function call)
Solution Use a table which is initialized by the kernel at boot-time

OS @ boot
(kernel mode)

Hardware

initialize trap table

remember address of
syscall handler

I This is similar to an interrupt table
I Upon handling a HW interrupt, the CPU also switches to

kernel mode
I Usually, the interrupt handler needs to do I/O

I On the x86, Linux uses the software interrupt instruction
INT as trap instruction (x86 offers other trap instructions)

Trap Table

Issue How does the kernel know which code to run upon a trap?
I The caller must not provide the specific address (like in a

function call)
Solution Use a table which is initialized by the kernel at boot-time

OS @ boot
(kernel mode)

Hardware

initialize trap table
remember address of
syscall handler

I This is similar to an interrupt table
I Upon handling a HW interrupt, the CPU also switches to

kernel mode
I Usually, the interrupt handler needs to do I/O

I On the x86, Linux uses the software interrupt instruction
INT as trap instruction (x86 offers other trap instructions)

Trap Table

Issue How does the kernel know which code to run upon a trap?
I The caller must not provide the specific address (like in a

function call)
Solution Use a table which is initialized by the kernel at boot-time

OS @ boot
(kernel mode)

Hardware

initialize trap table
remember address of
syscall handler

I This is similar to an interrupt table
I Upon handling a HW interrupt, the CPU also switches to

kernel mode
I Usually, the interrupt handler needs to do I/O

I On the x86, Linux uses the software interrupt instruction
INT as trap instruction (x86 offers other trap instructions)

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)

Create entry for process list
Allocate memory for program
Load program into memory
Setup stack with argc/argv
Fill kernel stack with reg/PC

move to user mode
restore regs from kernel stack
(jump to main)

Run main()
...
Call system call
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handlerHandle trap

Do work of syscall
return-from-trap

move to user mode
restore regs from kernel stack
(jump to PC after trap)

...
Return from main()
trap (via exit())

Free memory of process
Remove entry from process list

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)
Create entry for process list

Allocate memory for program
Load program into memory
Setup stack with argc/argv
Fill kernel stack with reg/PC

move to user mode
restore regs from kernel stack
(jump to main)

Run main()
...
Call system call
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handlerHandle trap

Do work of syscall
return-from-trap

move to user mode
restore regs from kernel stack
(jump to PC after trap)

...
Return from main()
trap (via exit())

Free memory of process
Remove entry from process list

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)
Create entry for process list
Allocate memory for program

Load program into memory
Setup stack with argc/argv
Fill kernel stack with reg/PC

move to user mode
restore regs from kernel stack
(jump to main)

Run main()
...
Call system call
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handlerHandle trap

Do work of syscall
return-from-trap

move to user mode
restore regs from kernel stack
(jump to PC after trap)

...
Return from main()
trap (via exit())

Free memory of process
Remove entry from process list

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)
Create entry for process list
Allocate memory for program
Load program into memory

Setup stack with argc/argv
Fill kernel stack with reg/PC

move to user mode
restore regs from kernel stack
(jump to main)

Run main()
...
Call system call
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handlerHandle trap

Do work of syscall
return-from-trap

move to user mode
restore regs from kernel stack
(jump to PC after trap)

...
Return from main()
trap (via exit())

Free memory of process
Remove entry from process list

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup stack with argc/argv

Fill kernel stack with reg/PC

move to user mode
restore regs from kernel stack
(jump to main)

Run main()
...
Call system call
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handlerHandle trap

Do work of syscall
return-from-trap

move to user mode
restore regs from kernel stack
(jump to PC after trap)

...
Return from main()
trap (via exit())

Free memory of process
Remove entry from process list

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup stack with argc/argv
Fill kernel stack with reg/PC

move to user mode
restore regs from kernel stack
(jump to main)

Run main()
...
Call system call
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handlerHandle trap

Do work of syscall
return-from-trap

move to user mode
restore regs from kernel stack
(jump to PC after trap)

...
Return from main()
trap (via exit())

Free memory of process
Remove entry from process list

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup stack with argc/argv
Fill kernel stack with reg/PC

move to user mode

restore regs from kernel stack
(jump to main)

Run main()
...
Call system call
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handlerHandle trap

Do work of syscall
return-from-trap

move to user mode
restore regs from kernel stack
(jump to PC after trap)

...
Return from main()
trap (via exit())

Free memory of process
Remove entry from process list

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup stack with argc/argv
Fill kernel stack with reg/PC

move to user mode
restore regs from kernel stack

(jump to main)
Run main()
...
Call system call
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handlerHandle trap

Do work of syscall
return-from-trap

move to user mode
restore regs from kernel stack
(jump to PC after trap)

...
Return from main()
trap (via exit())

Free memory of process
Remove entry from process list

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup stack with argc/argv
Fill kernel stack with reg/PC

move to user mode
restore regs from kernel stack
(jump to main)

Run main()
...
Call system call
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handlerHandle trap

Do work of syscall
return-from-trap

move to user mode
restore regs from kernel stack
(jump to PC after trap)

...
Return from main()
trap (via exit())

Free memory of process
Remove entry from process list

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup stack with argc/argv
Fill kernel stack with reg/PC

move to user mode
restore regs from kernel stack
(jump to main)

Run main()

...
Call system call
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handlerHandle trap

Do work of syscall
return-from-trap

move to user mode
restore regs from kernel stack
(jump to PC after trap)

...
Return from main()
trap (via exit())

Free memory of process
Remove entry from process list

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup stack with argc/argv
Fill kernel stack with reg/PC

move to user mode
restore regs from kernel stack
(jump to main)

Run main()
...

Call system call
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handlerHandle trap

Do work of syscall
return-from-trap

move to user mode
restore regs from kernel stack
(jump to PC after trap)

...
Return from main()
trap (via exit())

Free memory of process
Remove entry from process list

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup stack with argc/argv
Fill kernel stack with reg/PC

move to user mode
restore regs from kernel stack
(jump to main)

Run main()
...
Call system call

trap into OS
save regs to kernel stack
move to kernel mode
jump to trap handlerHandle trap

Do work of syscall
return-from-trap

move to user mode
restore regs from kernel stack
(jump to PC after trap)

...
Return from main()
trap (via exit())

Free memory of process
Remove entry from process list

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup stack with argc/argv
Fill kernel stack with reg/PC

move to user mode
restore regs from kernel stack
(jump to main)

Run main()
...
Call system call
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handlerHandle trap

Do work of syscall
return-from-trap

move to user mode
restore regs from kernel stack
(jump to PC after trap)

...
Return from main()
trap (via exit())

Free memory of process
Remove entry from process list

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup stack with argc/argv
Fill kernel stack with reg/PC

move to user mode
restore regs from kernel stack
(jump to main)

Run main()
...
Call system call
trap into OS

save regs to kernel stack

move to kernel mode
jump to trap handlerHandle trap

Do work of syscall
return-from-trap

move to user mode
restore regs from kernel stack
(jump to PC after trap)

...
Return from main()
trap (via exit())

Free memory of process
Remove entry from process list

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup stack with argc/argv
Fill kernel stack with reg/PC

move to user mode
restore regs from kernel stack
(jump to main)

Run main()
...
Call system call
trap into OS

save regs to kernel stack
move to kernel mode

jump to trap handlerHandle trap
Do work of syscall

return-from-trap

move to user mode
restore regs from kernel stack
(jump to PC after trap)

...
Return from main()
trap (via exit())

Free memory of process
Remove entry from process list

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup stack with argc/argv
Fill kernel stack with reg/PC

move to user mode
restore regs from kernel stack
(jump to main)

Run main()
...
Call system call
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handler

Handle trap
Do work of syscall

return-from-trap

move to user mode
restore regs from kernel stack
(jump to PC after trap)

...
Return from main()
trap (via exit())

Free memory of process
Remove entry from process list

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup stack with argc/argv
Fill kernel stack with reg/PC

move to user mode
restore regs from kernel stack
(jump to main)

Run main()
...
Call system call
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handlerHandle trap

Do work of syscall
return-from-trap

move to user mode
restore regs from kernel stack
(jump to PC after trap)

...
Return from main()
trap (via exit())

Free memory of process
Remove entry from process list

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup stack with argc/argv
Fill kernel stack with reg/PC

move to user mode
restore regs from kernel stack
(jump to main)

Run main()
...
Call system call
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handlerHandle trap

Do work of syscall

return-from-trap

move to user mode
restore regs from kernel stack
(jump to PC after trap)

...
Return from main()
trap (via exit())

Free memory of process
Remove entry from process list

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup stack with argc/argv
Fill kernel stack with reg/PC

move to user mode
restore regs from kernel stack
(jump to main)

Run main()
...
Call system call
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handlerHandle trap

Do work of syscall
return-from-trap

move to user mode
restore regs from kernel stack
(jump to PC after trap)

...
Return from main()
trap (via exit())

Free memory of process
Remove entry from process list

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup stack with argc/argv
Fill kernel stack with reg/PC

move to user mode
restore regs from kernel stack
(jump to main)

Run main()
...
Call system call
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handlerHandle trap

Do work of syscall
return-from-trap

move to user mode

restore regs from kernel stack
(jump to PC after trap)

...
Return from main()
trap (via exit())

Free memory of process
Remove entry from process list

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup stack with argc/argv
Fill kernel stack with reg/PC

move to user mode
restore regs from kernel stack
(jump to main)

Run main()
...
Call system call
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handlerHandle trap

Do work of syscall
return-from-trap

move to user mode
restore regs from kernel stack

(jump to PC after trap)
...
Return from main()
trap (via exit())

Free memory of process
Remove entry from process list

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup stack with argc/argv
Fill kernel stack with reg/PC

move to user mode
restore regs from kernel stack
(jump to main)

Run main()
...
Call system call
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handlerHandle trap

Do work of syscall
return-from-trap

move to user mode
restore regs from kernel stack
(jump to PC after trap)

...
Return from main()
trap (via exit())

Free memory of process
Remove entry from process list

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup stack with argc/argv
Fill kernel stack with reg/PC

move to user mode
restore regs from kernel stack
(jump to main)

Run main()
...
Call system call
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handlerHandle trap

Do work of syscall
return-from-trap

move to user mode
restore regs from kernel stack
(jump to PC after trap)

...

Return from main()
trap (via exit())

Free memory of process
Remove entry from process list

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup stack with argc/argv
Fill kernel stack with reg/PC

move to user mode
restore regs from kernel stack
(jump to main)

Run main()
...
Call system call
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handlerHandle trap

Do work of syscall
return-from-trap

move to user mode
restore regs from kernel stack
(jump to PC after trap)

...
Return from main()

trap (via exit())
Free memory of process
Remove entry from process list

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup stack with argc/argv
Fill kernel stack with reg/PC

move to user mode
restore regs from kernel stack
(jump to main)

Run main()
...
Call system call
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handlerHandle trap

Do work of syscall
return-from-trap

move to user mode
restore regs from kernel stack
(jump to PC after trap)

...
Return from main()
trap (via exit())

Free memory of process
Remove entry from process list

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup stack with argc/argv
Fill kernel stack with reg/PC

move to user mode
restore regs from kernel stack
(jump to main)

Run main()
...
Call system call
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handlerHandle trap

Do work of syscall
return-from-trap

move to user mode
restore regs from kernel stack
(jump to PC after trap)

...
Return from main()
trap (via exit())

Free memory of process

Remove entry from process list

Limited Direct Execution Protocol
Assumption: Upon switching into/out of the kernel, the CPU

saves/restores its registers in a per process kernel stack
OS (kernel mode) Hardware Program (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup stack with argc/argv
Fill kernel stack with reg/PC

move to user mode
restore regs from kernel stack
(jump to main)

Run main()
...
Call system call
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handlerHandle trap

Do work of syscall
return-from-trap

move to user mode
restore regs from kernel stack
(jump to PC after trap)

...
Return from main()
trap (via exit())

Free memory of process
Remove entry from process list

System Call Implementation

ordinary
return

ordinary
call

trap
return

user program

C library function

system call

trap

user space

kernel space

I Uses special HW instructions, e.g. (call
gates ou sw interrupts, in the case of the
x86) that switch automatically from one
privilege mode to another

I For a programmer it is as if it had invoked
a C library function:
I Actually, that is what s/he does

System Call Implementation

ordinary
return

ordinary
call

trap
return

user program

C library function

system call

trap

user space

kernel space

I Uses special HW instructions, e.g. (call
gates ou sw interrupts, in the case of the
x86) that switch automatically from one
privilege mode to another

I For a programmer it is as if it had invoked
a C library function:
I Actually, that is what s/he does

ssize_t read(int fd, void *buffer,
size_t nbytes)

Return to caller

4
10

6

0

9

7 8

3
2
1

11

Dispatch
Sys call

handler

Address

0xFFFFFFFF

User space

Kernel space

 (Operating system)

Library

procedure

read

User program

calling read

Trap to the kernel
Put code for read in register

Increment SP
Call read
Push fd
Push &buffer
Push nbytes

5

read() Execution Steps

1, 2, 3 push the arguments onto the stack;
4 call C library function read();
5 setup register with system call #
6 switch CPU execution mode
7 dispatch to appropriate handler ;
8 execute handler ;
9 return back to the C library;

10 return from the C library function read();
11 adjust stack.

LDE Issue # 2: Stopping a Running Process

Issue When a process is running the kernel is not

Alternatives
Cooperative Provide a system call, e.g. yield

I By calling yield a process allows the kernel to run and
switch to another process.

I Someone (?Tanenbaum?) wrote that nice is the least
used Unix command

I Malicious or buggy processes may prevent other
processes from running

Non-cooperative Use timer interrupts
I Program a timer device to interrupt periodically (typically,

a few ms)
I Upon an interrupt (by the timer or otherwise):
I The currently running process is suspended
I A pre-configured interrupt handler (IH) runs
I At this point the kernel runs and can do what it wants

LDE Issue # 2: Stopping a Running Process

Issue When a process is running the kernel is not
Alternatives

Cooperative Provide a system call, e.g. yield
I By calling yield a process allows the kernel to run and

switch to another process.
I Someone (?Tanenbaum?) wrote that nice is the least

used Unix command
I Malicious or buggy processes may prevent other

processes from running

Non-cooperative Use timer interrupts
I Program a timer device to interrupt periodically (typically,

a few ms)
I Upon an interrupt (by the timer or otherwise):
I The currently running process is suspended
I A pre-configured interrupt handler (IH) runs
I At this point the kernel runs and can do what it wants

LDE Issue # 2: Stopping a Running Process

Issue When a process is running the kernel is not
Alternatives

Cooperative Provide a system call, e.g. yield
I By calling yield a process allows the kernel to run and

switch to another process.
I Someone (?Tanenbaum?) wrote that nice is the least

used Unix command
I Malicious or buggy processes may prevent other

processes from running
Non-cooperative Use timer interrupts

I Program a timer device to interrupt periodically (typically,
a few ms)

I Upon an interrupt (by the timer or otherwise):
I The currently running process is suspended
I A pre-configured interrupt handler (IH) runs
I At this point the kernel runs and can do what it wants

Limited Direct Execution Protocol: Timer Interrupt

I At boot time, the kernel must:

I initialize the interrupt table, with the interrupt handlers,
including the timer interrupt

I configure the timer to interrupt every X ms
I start the timer

I Upon an interrupt, the HW must:
I Save the state of the process that is running (at least processor

registers)
I Process must be able to resume in the point it was, once the

kernel has handled the interrupt
I This is very similar to what is done upon a system call

No wonder, Linux uses the INT instruction

Limited Direct Execution Protocol: Timer Interrupt

I At boot time, the kernel must:
I initialize the interrupt table, with the interrupt handlers,

including the timer interrupt
I configure the timer to interrupt every X ms
I start the timer

I Upon an interrupt, the HW must:
I Save the state of the process that is running (at least processor

registers)
I Process must be able to resume in the point it was, once the

kernel has handled the interrupt
I This is very similar to what is done upon a system call

No wonder, Linux uses the INT instruction

Limited Direct Execution Protocol: Timer Interrupt

I At boot time, the kernel must:
I initialize the interrupt table, with the interrupt handlers,

including the timer interrupt
I configure the timer to interrupt every X ms
I start the timer

I Upon an interrupt, the HW must:

I Save the state of the process that is running (at least processor
registers)

I Process must be able to resume in the point it was, once the
kernel has handled the interrupt

I This is very similar to what is done upon a system call
No wonder, Linux uses the INT instruction

Limited Direct Execution Protocol: Timer Interrupt

I At boot time, the kernel must:
I initialize the interrupt table, with the interrupt handlers,

including the timer interrupt
I configure the timer to interrupt every X ms
I start the timer

I Upon an interrupt, the HW must:
I Save the state of the process that is running (at least processor

registers)
I Process must be able to resume in the point it was, once the

kernel has handled the interrupt
I This is very similar to what is done upon a system call

No wonder, Linux uses the INT instruction

Context Switch

I The kernel, or better the scheduler decides:
1. Whether to allow the currently running process to continue
2. Or to suspend it (move it to the READY state) and run another

process instead.

I In case 2, the kernel must do a context switch:
I Save the state of the currently running process

I So that it can be resumed later, as if it had not been preempted
I Restore the state of the soon-to-be-running process

I By switching the kernel stacks, the kernel exits to the context
of a process different of the one that was executing when of
the call to the switch code

I When the kernel executes the return-from-trap instruction, the
soon-to-be-running process becomes the currently running
process

Context Switch

I The kernel, or better the scheduler decides:
1. Whether to allow the currently running process to continue
2. Or to suspend it (move it to the READY state) and run another

process instead.
I In case 2, the kernel must do a context switch:

I Save the state of the currently running process
I So that it can be resumed later, as if it had not been preempted

I Restore the state of the soon-to-be-running process

I By switching the kernel stacks, the kernel exits to the context
of a process different of the one that was executing when of
the call to the switch code

I When the kernel executes the return-from-trap instruction, the
soon-to-be-running process becomes the currently running
process

Context Switch

I The kernel, or better the scheduler decides:
1. Whether to allow the currently running process to continue
2. Or to suspend it (move it to the READY state) and run another

process instead.
I In case 2, the kernel must do a context switch:

I Save the state of the currently running process
I So that it can be resumed later, as if it had not been preempted

I Restore the state of the soon-to-be-running process
I By switching the kernel stacks, the kernel exits to the context

of a process different of the one that was executing when of
the call to the switch code

I When the kernel executes the return-from-trap instruction, the
soon-to-be-running process becomes the currently running
process

Context Switch

I The kernel, or better the scheduler decides:
1. Whether to allow the currently running process to continue
2. Or to suspend it (move it to the READY state) and run another

process instead.
I In case 2, the kernel must do a context switch:

I Save the state of the currently running process
I So that it can be resumed later, as if it had not been preempted

I Restore the state of the soon-to-be-running process
I By switching the kernel stacks, the kernel exits to the context

of a process different of the one that was executing when of
the call to the switch code

I When the kernel executes the return-from-trap instruction, the
soon-to-be-running process becomes the currently running
process

Limited Direct Execution Protocol: Timer Interrupt
OS @ boot
(kernel mode)

Hardware Program (user mode)

initialize trap table
remember addresses of

syscall handler
timer handler

start interrupt timer
start timer
interrupt CPU every x ms

OS @ run
(kernel mode)

Hardware Program (user mode)

Process A
. . .

timer interrupt
save regs(A) to k-stack(A)
switch to kernel mode
jump to trap handlerHandle the trap

Call switch
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)

switch to k-stack(B)
return-from-trap (into B)

move to user mode
restore regs(B) from k-stack(B)
(jump to B’s PC)

Process B
. . .

Limited Direct Execution Protocol: Timer Interrupt
OS @ boot
(kernel mode)

Hardware Program (user mode)

initialize trap table

remember addresses of
syscall handler
timer handler

start interrupt timer
start timer
interrupt CPU every x ms

OS @ run
(kernel mode)

Hardware Program (user mode)

Process A
. . .

timer interrupt
save regs(A) to k-stack(A)
switch to kernel mode
jump to trap handlerHandle the trap

Call switch
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)

switch to k-stack(B)
return-from-trap (into B)

move to user mode
restore regs(B) from k-stack(B)
(jump to B’s PC)

Process B
. . .

Limited Direct Execution Protocol: Timer Interrupt
OS @ boot
(kernel mode)

Hardware Program (user mode)

initialize trap table
remember addresses of

syscall handler
timer handler

start interrupt timer
start timer
interrupt CPU every x ms

OS @ run
(kernel mode)

Hardware Program (user mode)

Process A
. . .

timer interrupt
save regs(A) to k-stack(A)
switch to kernel mode
jump to trap handlerHandle the trap

Call switch
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)

switch to k-stack(B)
return-from-trap (into B)

move to user mode
restore regs(B) from k-stack(B)
(jump to B’s PC)

Process B
. . .

Limited Direct Execution Protocol: Timer Interrupt
OS @ boot
(kernel mode)

Hardware Program (user mode)

initialize trap table
remember addresses of

syscall handler
timer handler

start interrupt timer

start timer
interrupt CPU every x ms

OS @ run
(kernel mode)

Hardware Program (user mode)

Process A
. . .

timer interrupt
save regs(A) to k-stack(A)
switch to kernel mode
jump to trap handlerHandle the trap

Call switch
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)

switch to k-stack(B)
return-from-trap (into B)

move to user mode
restore regs(B) from k-stack(B)
(jump to B’s PC)

Process B
. . .

Limited Direct Execution Protocol: Timer Interrupt
OS @ boot
(kernel mode)

Hardware Program (user mode)

initialize trap table
remember addresses of

syscall handler
timer handler

start interrupt timer
start timer

interrupt CPU every x ms

OS @ run
(kernel mode)

Hardware Program (user mode)

Process A
. . .

timer interrupt
save regs(A) to k-stack(A)
switch to kernel mode
jump to trap handlerHandle the trap

Call switch
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)

switch to k-stack(B)
return-from-trap (into B)

move to user mode
restore regs(B) from k-stack(B)
(jump to B’s PC)

Process B
. . .

Limited Direct Execution Protocol: Timer Interrupt
OS @ boot
(kernel mode)

Hardware Program (user mode)

initialize trap table
remember addresses of

syscall handler
timer handler

start interrupt timer
start timer
interrupt CPU every x ms

OS @ run
(kernel mode)

Hardware Program (user mode)

Process A
. . .

timer interrupt
save regs(A) to k-stack(A)
switch to kernel mode
jump to trap handlerHandle the trap

Call switch
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)

switch to k-stack(B)
return-from-trap (into B)

move to user mode
restore regs(B) from k-stack(B)
(jump to B’s PC)

Process B
. . .

Limited Direct Execution Protocol: Timer Interrupt
OS @ boot
(kernel mode)

Hardware Program (user mode)

initialize trap table
remember addresses of

syscall handler
timer handler

start interrupt timer
start timer
interrupt CPU every x ms

OS @ run
(kernel mode)

Hardware Program (user mode)

Process A
. . .

timer interrupt
save regs(A) to k-stack(A)
switch to kernel mode
jump to trap handlerHandle the trap

Call switch
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)

switch to k-stack(B)
return-from-trap (into B)

move to user mode
restore regs(B) from k-stack(B)
(jump to B’s PC)

Process B
. . .

Limited Direct Execution Protocol: Timer Interrupt
OS @ boot
(kernel mode)

Hardware Program (user mode)

initialize trap table
remember addresses of

syscall handler
timer handler

start interrupt timer
start timer
interrupt CPU every x ms

OS @ run
(kernel mode)

Hardware Program (user mode)

Process A
. . .

timer interrupt
save regs(A) to k-stack(A)
switch to kernel mode
jump to trap handlerHandle the trap

Call switch
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)

switch to k-stack(B)
return-from-trap (into B)

move to user mode
restore regs(B) from k-stack(B)
(jump to B’s PC)

Process B
. . .

Limited Direct Execution Protocol: Timer Interrupt
OS @ boot
(kernel mode)

Hardware Program (user mode)

initialize trap table
remember addresses of

syscall handler
timer handler

start interrupt timer
start timer
interrupt CPU every x ms

OS @ run
(kernel mode)

Hardware Program (user mode)

Process A
. . .

timer interrupt

save regs(A) to k-stack(A)
switch to kernel mode
jump to trap handlerHandle the trap

Call switch
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)

switch to k-stack(B)
return-from-trap (into B)

move to user mode
restore regs(B) from k-stack(B)
(jump to B’s PC)

Process B
. . .

Limited Direct Execution Protocol: Timer Interrupt
OS @ boot
(kernel mode)

Hardware Program (user mode)

initialize trap table
remember addresses of

syscall handler
timer handler

start interrupt timer
start timer
interrupt CPU every x ms

OS @ run
(kernel mode)

Hardware Program (user mode)

Process A
. . .

timer interrupt
save regs(A) to k-stack(A)

switch to kernel mode
jump to trap handlerHandle the trap

Call switch
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)

switch to k-stack(B)
return-from-trap (into B)

move to user mode
restore regs(B) from k-stack(B)
(jump to B’s PC)

Process B
. . .

Limited Direct Execution Protocol: Timer Interrupt
OS @ boot
(kernel mode)

Hardware Program (user mode)

initialize trap table
remember addresses of

syscall handler
timer handler

start interrupt timer
start timer
interrupt CPU every x ms

OS @ run
(kernel mode)

Hardware Program (user mode)

Process A
. . .

timer interrupt
save regs(A) to k-stack(A)
switch to kernel mode

jump to trap handlerHandle the trap
Call switch

save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)

switch to k-stack(B)
return-from-trap (into B)

move to user mode
restore regs(B) from k-stack(B)
(jump to B’s PC)

Process B
. . .

Limited Direct Execution Protocol: Timer Interrupt
OS @ boot
(kernel mode)

Hardware Program (user mode)

initialize trap table
remember addresses of

syscall handler
timer handler

start interrupt timer
start timer
interrupt CPU every x ms

OS @ run
(kernel mode)

Hardware Program (user mode)

Process A
. . .

timer interrupt
save regs(A) to k-stack(A)
switch to kernel mode
jump to trap handler

Handle the trap
Call switch

save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)

switch to k-stack(B)
return-from-trap (into B)

move to user mode
restore regs(B) from k-stack(B)
(jump to B’s PC)

Process B
. . .

Limited Direct Execution Protocol: Timer Interrupt
OS @ boot
(kernel mode)

Hardware Program (user mode)

initialize trap table
remember addresses of

syscall handler
timer handler

start interrupt timer
start timer
interrupt CPU every x ms

OS @ run
(kernel mode)

Hardware Program (user mode)

Process A
. . .

timer interrupt
save regs(A) to k-stack(A)
switch to kernel mode
jump to trap handlerHandle the trap

Call switch
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)

switch to k-stack(B)
return-from-trap (into B)

move to user mode
restore regs(B) from k-stack(B)
(jump to B’s PC)

Process B
. . .

Limited Direct Execution Protocol: Timer Interrupt
OS @ boot
(kernel mode)

Hardware Program (user mode)

initialize trap table
remember addresses of

syscall handler
timer handler

start interrupt timer
start timer
interrupt CPU every x ms

OS @ run
(kernel mode)

Hardware Program (user mode)

Process A
. . .

timer interrupt
save regs(A) to k-stack(A)
switch to kernel mode
jump to trap handlerHandle the trap

Call switch

save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)

switch to k-stack(B)
return-from-trap (into B)

move to user mode
restore regs(B) from k-stack(B)
(jump to B’s PC)

Process B
. . .

Limited Direct Execution Protocol: Timer Interrupt
OS @ boot
(kernel mode)

Hardware Program (user mode)

initialize trap table
remember addresses of

syscall handler
timer handler

start interrupt timer
start timer
interrupt CPU every x ms

OS @ run
(kernel mode)

Hardware Program (user mode)

Process A
. . .

timer interrupt
save regs(A) to k-stack(A)
switch to kernel mode
jump to trap handlerHandle the trap

Call switch
save regs(A) to proc-struct(A)

restore regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)

move to user mode
restore regs(B) from k-stack(B)
(jump to B’s PC)

Process B
. . .

Limited Direct Execution Protocol: Timer Interrupt
OS @ boot
(kernel mode)

Hardware Program (user mode)

initialize trap table
remember addresses of

syscall handler
timer handler

start interrupt timer
start timer
interrupt CPU every x ms

OS @ run
(kernel mode)

Hardware Program (user mode)

Process A
. . .

timer interrupt
save regs(A) to k-stack(A)
switch to kernel mode
jump to trap handlerHandle the trap

Call switch
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)

switch to k-stack(B)
return-from-trap (into B)

move to user mode
restore regs(B) from k-stack(B)
(jump to B’s PC)

Process B
. . .

Limited Direct Execution Protocol: Timer Interrupt
OS @ boot
(kernel mode)

Hardware Program (user mode)

initialize trap table
remember addresses of

syscall handler
timer handler

start interrupt timer
start timer
interrupt CPU every x ms

OS @ run
(kernel mode)

Hardware Program (user mode)

Process A
. . .

timer interrupt
save regs(A) to k-stack(A)
switch to kernel mode
jump to trap handlerHandle the trap

Call switch
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)

switch to k-stack(B)

return-from-trap (into B)

move to user mode
restore regs(B) from k-stack(B)
(jump to B’s PC)

Process B
. . .

Limited Direct Execution Protocol: Timer Interrupt
OS @ boot
(kernel mode)

Hardware Program (user mode)

initialize trap table
remember addresses of

syscall handler
timer handler

start interrupt timer
start timer
interrupt CPU every x ms

OS @ run
(kernel mode)

Hardware Program (user mode)

Process A
. . .

timer interrupt
save regs(A) to k-stack(A)
switch to kernel mode
jump to trap handlerHandle the trap

Call switch
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)

switch to k-stack(B)
return-from-trap (into B)

move to user mode
restore regs(B) from k-stack(B)
(jump to B’s PC)

Process B
. . .

Limited Direct Execution Protocol: Timer Interrupt
OS @ boot
(kernel mode)

Hardware Program (user mode)

initialize trap table
remember addresses of

syscall handler
timer handler

start interrupt timer
start timer
interrupt CPU every x ms

OS @ run
(kernel mode)

Hardware Program (user mode)

Process A
. . .

timer interrupt
save regs(A) to k-stack(A)
switch to kernel mode
jump to trap handlerHandle the trap

Call switch
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)

switch to k-stack(B)
return-from-trap (into B)

move to user mode

restore regs(B) from k-stack(B)
(jump to B’s PC)

Process B
. . .

Limited Direct Execution Protocol: Timer Interrupt
OS @ boot
(kernel mode)

Hardware Program (user mode)

initialize trap table
remember addresses of

syscall handler
timer handler

start interrupt timer
start timer
interrupt CPU every x ms

OS @ run
(kernel mode)

Hardware Program (user mode)

Process A
. . .

timer interrupt
save regs(A) to k-stack(A)
switch to kernel mode
jump to trap handlerHandle the trap

Call switch
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)

switch to k-stack(B)
return-from-trap (into B)

move to user mode
restore regs(B) from k-stack(B)

(jump to B’s PC)
Process B
. . .

Limited Direct Execution Protocol: Timer Interrupt
OS @ boot
(kernel mode)

Hardware Program (user mode)

initialize trap table
remember addresses of

syscall handler
timer handler

start interrupt timer
start timer
interrupt CPU every x ms

OS @ run
(kernel mode)

Hardware Program (user mode)

Process A
. . .

timer interrupt
save regs(A) to k-stack(A)
switch to kernel mode
jump to trap handlerHandle the trap

Call switch
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)

switch to k-stack(B)
return-from-trap (into B)

move to user mode
restore regs(B) from k-stack(B)
(jump to B’s PC)

Process B
. . .

Limited Direct Execution Protocol: Timer Interrupt
OS @ boot
(kernel mode)

Hardware Program (user mode)

initialize trap table
remember addresses of

syscall handler
timer handler

start interrupt timer
start timer
interrupt CPU every x ms

OS @ run
(kernel mode)

Hardware Program (user mode)

Process A
. . .

timer interrupt
save regs(A) to k-stack(A)
switch to kernel mode
jump to trap handlerHandle the trap

Call switch
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)

switch to k-stack(B)
return-from-trap (into B)

move to user mode
restore regs(B) from k-stack(B)
(jump to B’s PC)

Process B
. . .

Limited Direct Execution Protocol: Timer Interrupt
OS @ boot
(kernel mode)

Hardware Program (user mode)

initialize trap table
remember addresses of

syscall handler
timer handler

start interrupt timer
start timer
interrupt CPU every x ms

OS @ run
(kernel mode)

Hardware Program (user mode)

Process A
. . .

timer interrupt
save regs(A) to k-stack(A)
switch to kernel mode
jump to trap handlerHandle the trap

Call switch
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)

switch to k-stack(B)
return-from-trap (into B)

move to user mode
restore regs(B) from k-stack(B)
(jump to B’s PC)

Process B
. . .

Context Switch

I Note that there are 2 types of register saves/restores
Upon the timer-interrupt the hardware saves the user

registers of the running process onto the kernel stack of
that process
I On the IA32 architecture, this happens every time the

processor moves into kernel mode

On context switching the kernel
1. saves the current values of the registers of the running

process into the process structure of that process
2. restores the previously saved values of the registers of the

soon-to-run process from the process structure of that
process

Context Switch: xv6 code
1 # void swtch(struct context **old, struct context *new);
2 #
3 # Save current register context in old
4 # and then load register context from new.
5 .globl swtch
6 swtch:
7 # Save old registers
8 movl 4(%esp), %eax # put old ptr into eax
9 popl 0(%eax) # save the old IP

10 movl %esp, 4(%eax) # and stack
11 movl %ebx, 8(%eax) # and other registers
12 movl %ecx,12(%eax)
13 movl %edx,16(%eax)
14 movl %esi,20(%eax)
15 movl %edi,24(%eax)
16 movl %ebp,28(%eax)
17
18 # Load new registers
19 movl 4(%esp), %eax # put new ptr into eax
20 movl 28(%eax), %ebp # restore other registers
21 movl 24(%eax), %edi
22 movl 20(%eax), %esi
23 movl 16(%eax), %edx
24 movl 12(%eax), %ecx
25 movl 8(%eax), %ebx
26 movl 4(%eax), %esp # stack is switched here
27 pushl 0(%eax) # return addr put in place
28 ret # finally return into new ctx

Kernel Data Structures (xv6 toy-OS)

src: Arpaci-Dusseau & Arpaci-Dusseau

