
1/36

Sistemas Operativos: File Systems
Disk Data Structures

Pedro F. Souto (pfs@fe.up.pt)

May 29, 2020



2/36

File System Implementation

Given An array of disk blocks
Challenge Store the contents of the files and directories of a file

system

0 7 8 15

16 23 24 31

32 39 40 47

48 55 56 63



3/36

File System Implementation: Goals and Constraints

Goals
Performance Disks are much slower than CPU or evem DRAM
Capacity Utilization 1 TB capacity appeared around 2010
Reliability Disks are relatively fragile. Users expect data on disk

to persist
Constraints

Technology HDD vs. SSD
Usage Pattern

I Most files have only a few KB
I Very large files take up a significant amount of a disk

capacity
I A significant number of accesses is to very large files
I Some files are accessed sequentially whereas others are

acessed randomly



4/36

Allocation Strategies

Different alternatives
I Contiguous
I Extent-based
I Linked
I File-allocation Tables
I Indexed
I Multi-level Indexed

Issues
I Amount of fragmentation (internal and external)

I Free space that cannot be used
I Ability to grow file over time
I Performance of sequential access
I Performance of random access
I Meta-data space overhead

I Meta-data must be stored persistently



5/36

Contiguous Allocation

Idea Allocate each file to contiguous sectors on disk
Meta-data First block and file size
Allocation Need to find sufficient free space

I Must predict future size of file
Example IBM OS/360 (mid 60s)

A A A B B B B C C C

Evaluation
Fragmentation - Horrible: needs periodic compaction
Ability to grow over time - May require moving
Sequential access (seek
time)

+ Excellent performance

Random access (speed
to caclulate)

+ Simple

Metadata overnead + Little overhead



6/36

Fixed Number of Extents

Idea Allocate multiple contiguous regions (extents) per file
Meta-data Small array (<10) for each file

Each entry: first block and size
Allocation Need to find sufficient free space for extent

B

A A A B B B B C C C

A A A B B B C C C B BD D D D
Evaluation

Fragmentation - Less fragmentation than contiguous
Ability to grow over time - Can grow (until run out of extents)
Sequential access (seek
time)

+ Still good performance (generally)

Random access (speed
to caclulate)

+ Still simple

Metadata overnead + Still small little overhead



7/36

Linked Allocation

Idea Link possibly scattered disk blocks with file contents
Meta-data Location of first block. In addition:

Each block contains pointer to the next block
Example Alto (first PC, mid-70s)

BA A A B B B C C C B B DD D D B D
Evaluation

Fragmentation + No external frag.; internal?
Ability to grow over time + Can grow easily
Sequential access (seek
time)

+/- Depends on data layout

Random access (speed
to caclulate)

- Horrible

Metadata overnead - One pointer per block
Trade-off Block size (does not need to equal sector size)



8/36

File-Allocation Table (FAT)

Idea Keep linked-list information for all files in on-disk table (FAT)
Meta-data Location of first block. In addition:

FAT table itself (1 entry per block)
Example DOS (but from the late 70s)

BA A A B B B C C C B B DD D D B D
Show Draw FAT
Evaluation Comparison with Linked Allocation

Advantage Easier and faster calculation for random access
Disadvantage One extra read (FAT) for each data read
Optimization Cache FAT in main memory

Advantage Improves both advantage and disadvantage
Issue Large file systems. Cache FAT partially?



9/36

Indexed Allocation

Idea Use fixed-length array of entries pointing to blocks per file
Meta-data Fixed-sized array of block pointers

Allocate array at file creation file

BA A A B B B C C C B B DD D D B D

Evaluation
Fragmentation + No external frag.; internal?
Ability to grow over time +/- Can grow easily up to max file size
Sequential access (seek
time)

+/- Depends on data layout

Random access (speed
to caclulate)

+ Easy

Metadata overnead - Large overhead for meta-data
Wastes space for unused pointers

Trade-off Block size (does not need to equal sector size)



10/36

Multi-Level Indexing
Idea Similar to multi-level page tables

I Dynamically allocate hierarchy of pointers to blocks

Meta-data Small number of pointers allocated statically
I Additional pointers to blocks of pointers

Example Unix FFS-based file systems (mid-80s), ext2, ext3

indirect double
indirect

indirect triple
indirect

indirect

Evaluation Comparison with indexed allocation
Advantage Does not waste space for unused pointers

I Still fast access for small files
Disadvantage Extra disk reads to access indirect blocks

I Keep indirect blocks cached in main memory



11/36

Variable Number of Extents

Idea Dynamically allocate extents
Meta-data Use a multi-level tree structure

I Each leaf onde: first block and extent length
Example NTFS (mid 90s)

Evaluation
Fragmentation + Both reasonable
Ability to grow over time + Can grow easily up to max file size
Sequential access (seek
time)

+ Still good performance

Random access (speed
to caclulate)

+/- Depends on the size

Metadata overnead Relatively small overhead



12/36

Multi-Level Indexed Implementation

On-disk Data Structures
Data block
Inode table
Indirect block
Directories
Data bitmap
Inode bitmap
Superblock



13/36

FS Structures: Empty disk

0 7 8 15

16 23 24 31

32 39 40 47

48 55 56 63

I Assume each block is 4 KB



14/36

FS Structures: Data Blocks

0 7 8 15

16 23 24 31

32 39 40 47

48 55 56 63

D D D D D D D D

D D D D D D D D D D D D D D D D

D D D D D D D D D D D D D D D D

D D D D D D D D D D D D D D D D

IMP. Actual layout may be different (see next lecture)



15/36

FS Structures: Inode

Inode Likely "index-node"
I Data structure with file metadata kept on disk

type (file or dir)
uid (owner)
rwx (permissions)
size (in bytes)
num blocks
time (access)
ctime (create)
links_counts (#paths)
addrs[N ] (N data blocks)



16/36

FS Structures: Inode Blocks

0 7 8 15

16 23 24 31

32 39 40 47

48 55 56 63

D D D D D D D D

D D D D D D D D D D D D D D D D

D D D D D D D D D D D D D D D D

D D D D D D D D D D D D D D D D

IIIII

IMP. Actual layout is different (see next lecture)



17/36

FS Structures: Inode Block

I Inode size: 256 bytes (may
be 128 bytes)
I 4KiB disk block size
I 16 inodes per block

Inode 16

Inode 17

Inode 18

Inode 19

Inode 20

Inode 21

Inode 22

Inode 23

Inode 24

Inode 25

Inode 26

Inode 27

Inode 28

Inode 29

Inode 30

Inode 31

Question How to find an inode on disk, given its number?



18/36

FS Structures: Inode Block Location (1/2)

Assumption 16 inodes/block
Question What is the location for inode with number 0?

0 7 8 15

16 23 24 31

32 39 40 47

48 55 56 63

D D D D D D D D

D D D D D D D D D D D D D D D D

D D D D D D D D D D D D D D D D

D D D D D D D D D D D D D D D D

IIIII

Block first inode + 0/16 = 3 + 0 = 3
Offset within block 0%16 x 256 = 0



19/36

FS Structures: Inode Block Location (2/2)

Assumption 16 inodes/block
Question What is location for inode with number 47?

0 7 8 15

16 23 24 31

32 39 40 47

48 55 56 63

D D D D D D D D

D D D D D D D D D D D D D D D D

D D D D D D D D D D D D D D D D

D D D D D D D D D D D D D D D D

IIIII

Block first inode + 47/16 = 5 + 0 = 5
Offset within block 47%16 x 256 = 15x256 = 0xF00



20/36

FS Structures: Single Level Pointer Table
Assumption Single level inode, i.e. only pointers to data blocks

inode

data
block

data
block

data
block

data
block

Question What is maximum file size?
Assumptions

Inode size 256 B
Block size 4KiB (all can be used for pointers)
Block address 4 B

Answer
256 / 4 = 64 pointers per block
64 x 4 KiB = 64 KiB

Question How to support larger files?



21/36

FS Structures: Balanced Tree

inode

indirect
block

indirect
block

indirect
block

indirect
block

Note Indirect blocks are stored in data blocks
I Indirect blocks contain only pointers to files

Question How to optimize for small files?



22/36

FS Structures: Unbalanced Tree (FFS)

Answer Use an unbalanced tree.

inode

indirect
block

data
block

data
block

data
block

Note FFS uses 2-level indirect blocks (i.e. an indirect block where
each entry points to an indirect block) and 3-evel indirect blocks



23/36

Directories Implementation

Observation Depends on the file system
Common design:

I Use an inode per directory
I A directory is a special type of file.

I Store directory entries in data blocks
I Large directories use multiple data blocks
I Use bit in inode to distinguish directories from files

Data structures for storing entries e.g.:
I Lists

valid name inode
1 . 124
1 .. 35
1 foo 80
1 bar 23

I B-trees



24/36

Allocation

Issue How do we find free data blocks or free inodes?
Alternatives Among others:

Free list
Bitmaps
Tradeoffs in next lecture...



25/36

Bitmaps? (1/2)

0 7 8 15

16 23 24 31

32 39 40 47

48 55 56 63

D D D D D D D D

D D D D D D D D D D D D D D D D

D D D D D D D D D D D D D D D D

D D D D D D D D D D D D D D D D

IIIII

Question Where to store them?



26/36

Bitmaps? (2/2)

0 7 8 15

16 23 24 31

32 39 40 47

48 55 56 63

D D D D D D D D

D D D D D D D D D D D D D D D D

D D D D D D D D D D D D D D D D

D D D D D D D D D D D D D D D D

IIIIIi d

Issue Possibility for inconsistency
I Bitmaps may not be in agreement with block usage



27/36

Superblock

Issue Need to know basic FS configuration
I block size
I # of inodes
I # of data blocks

Solution ...

store this in superblock

0 7 8 15

16 23 24 31

32 39 40 47

48 55 56 63

D D D D D D D D

D D D D D D D D D D D D D D D D

D D D D D D D D D D D D D D D D

D D D D D D D D D D D D D D D D

IIIIIi dS



27/36

Superblock

Issue Need to know basic FS configuration
I block size
I # of inodes
I # of data blocks

Solution ... store this in superblock

0 7 8 15

16 23 24 31

32 39 40 47

48 55 56 63

D D D D D D D D

D D D D D D D D D D D D D D D D

D D D D D D D D D D D D D D D D

D D D D D D D D D D D D D D D D

IIIIIi dS



28/36

On-disk Data Structures

Superblock
Inode bitmap
Data(block) bitmap
Inodes
Data blocks also used for:

Directories
Indirect blocks i.e. blocks with pointers to other blocks



29/36

Operations: open /foo/bar

data
bitmap

inode
bitmap

root
inode

foo
inode

bar
inode

root
data

foo
data

comment

read foo?
read foo?

read bar?
read bar?

read done



30/36

Operations: read /foo/bar

Assumption /foo/bar opened
bitmaps root

inode
foo
inode

bar
inode

root
data

foo
data

bar
data

com-
ment

read cache?
read data

write atime



31/36

Operations: write /foo/bar

Assumption /foo/bar opened
data
bitmap

root
inode

foo
inode

bar
inode

root
data

foo
data

bar
data

com-
ment

read cache?
read if ...
write if ...

write data
write

bar inode update:
I data pointers
I file size
I file timestamps



32/36

Operations: close /foo/bar

Assumption all data and metadata written directly to disk on other
calls

inode
bitmap

data
bitmap

root
inode

foo
inode

bar
inode

root
data

foo
data

bar
data

Thus nothing else to write



33/36

Operations: create /foo/bar

data
bitmap

inode
bitmap

root
inode

foo
inode

bar
inode

root
data

foo
data

com-
ment

read foo?
read foo?

read bar?
read bar?

read find
write set

write add
read ??
write initial.

write atime

Question Why read bar inode before writing it?



34/36

How to reduce file system I/O costs?
Issue Simple file system system calls require an unsuspecting

large number of disk accesses
open() requires at least two reads for each level in a

pathname
1. For reading the inode of the directory.
2. For reading that directory’s data block(s)

create() similar to open but it also requires:
I Read/write inode bitmap, to allocate inode for newly

created file
I Writing to the parent directory’s data block and inode

read() requires:
I Reading the file’s inode (to locate the data block)
I Reading the file’s data block
I Writing to the file’s inode to update last access time

write() similar to write, but may also require
I Reading and writing the data bitmap, to allocate a new

data block (if needed)
Challenge How can we reduce these costs?



35/36

Solution: Use caching

Idea store frequently accessed disk blocks in main memory.
I Use LRU to manage the cache

Fixed-size caches
I Upon booting the kernel reserves a fixed number of pages,

e.g. 10%, for storing disk blocks – static partitioning
I May waste main-memory space

Unified page cache
I Shared between the file system and virtual memory
I Allows dynamic partitioning

I I.e. the amount of pages used by the file system may vary
with time depending on the load



36/36

Performance improvements

Read buffering
I Opening a second file in the same directory as a previously

opened file, may be done without any disk I/O
I A sufficiently large cache could reduce disk reads almost to

zero
Write buffering may also reduce disk writes or reduce seek time.

By delaying writes, typically between 5 and 30 s, the OS can:
Batch multiple writes
Better schedule disk operations
Avoid disk writes altogether e.g. if a file is created and soon
after deleted.

Issue If the system crashes data that was not written to disk will
be lost
Trade-off performance vs. reliability
fsync() flushes to disk a file’s data in the buffer cache


	File System Implementation

