
Sistemas Operativos: VM Paging
Page Faults

Page Faults

Pedro F. Souto (pfs@fe.up.pt)

May 6, 2020

Memory Virtualization

Idea
Goal Illusion that each process has its own memory (address

space)
Mechanism Address translation

I On every memory access, the VM subsystem maps the
virtual address to a physical address

Issue What if the total memory used by all the processes in the
system is larger than the physical memory?
I A process has lots of data
I Many processes executing simultaneously

Paging

Idea
1. Divide address space into fixed-size (2n) units: pages

I Typically 4KiB, but also 8KiB or even 1 MiB (super-pages)

2. Divide physical memory in same size units: physical pages
or page frames

3. Map virtual pages to page frames
I Relocate each page independently in memory.

P1 P2 P3

Virtual
memory

Physical
memory

src: Andrea Arpaci-Dusseau

Paging: Too Small Physical Memory

Issue What if the total memory used by all the processes in the
system is larger than the physical memory?

Solution Keep in:
Physical memory only the pages that are being actively

accessed;
Disk the remaining pages

Code including shared libraries, is already stored on files
Heap and Stack stored in swap space

Requirements
Mechanisms to keep track of where is each valid page of the

address space, i.e. in main memory or in disk
Policies to determine which pages are in main memory (and

which are in disk)

How to keep track of where is each valid page?

Use the PT
I Add a Present bit, P, to each PTE

P=1 page is present (in main memory)
P=0 page is absent, i.e. is in disk

Where on disk is the page, if P = 0
I The book suggests to use the field of the PTE used to store

the PFN
I Since the page is not in memory, that field is not used

I Linux uses another data structure: the address space map
$cat /proc/<proc_no>/map

or, more readable, but with less information:
$pmap <proc_no>

Virtual Address Translation: HW Implementation

1. Extract VPN from virtual address
2. Check TLB

If TLB hit
I Extract PFN from TLB entry (page is in memory)

Else (TLB miss)
I Read PTE from PT (in memory)

If not valid raise SEGMENTATION FAULT
If no permission raise PROTECTION FAULT
If present

2.1 Read PTE and insert it in TLB
2.2 Retry instruction

else (page absent) raise PAGE FAULT (should be PAGE MISS)

Page Fault Handler (belongs to OS)

1. Find free page frame
I If no page frame found (all page frames in use)

I Select page in memory to replace
I Update PTE of victim page (reset present bit)
I Write victim page out to disk, if modified (need dirty bit to PTE)

2. Read referenced page from disk into page frame found
3. Update PTE of referenced page with PFN

I Set present bit

4. Resume instruction execution

IMP. Handling a page fault requires going to disk. Scheduler:
1. Changes the state of faulting process to WAITING

2. Picks a READY process to run

HW Support for Resuming Faulting Instruction
I Want page fault to be transparent to user
I Page fault may have occurred in middle of instruction

I When instruction is being fetched
I When data is being loaded or stored

I Requires HW support
Precise interrupts stop CPU pipeline such that instructions

before faulting instruction have completed, and those after
can be restarted. Complexity depends on:
Instruction set imagine the instruction faults after changing

some memory positions, e.g. IA32/x64 "move string
instructions"

Processor implementation
I E.g. on IA32/x64 these instructions change registers, so that

it is fairly easy to resume them
Note This is not a requirement unique to page fault handling

I This is important for handling other exceptions as well as
interrupts, as hinted by the name of the mechanism

Virtual Memory: Policies

Goal Minimize the number of page faults
I Page faults require milliseconds to handle (reading and

possibly writing to disk)
I There is plenty of time for OS to make a good decision

OS has two decisions to make
Which resident page/s in memory should be moved to disk?
When should a page/s on disk be brought into memory?

When to bring a page from disk into memory?

Demand paging Only upon a page fault
Intuition Wait until page must absolutely be in memory

I When a process starts, no pages are loaded in memory
Problem Pay cost of page fault for every newly accessed page

Prepaging (prefetching) In anticipation of a reference to a page
I OS predicts future accesses and brings pages into memory

early "in background"
I Processes do not suffer disk access delays

I Works well for some access patterns (e.g., sequential)
I Costs of guessing wrong?

Hints Combine above with "program"-supplied hints about page
references
I "Program" indicates: "may need page in future", "don’t need

this page anymore", or "sequential access pattern", ...
I Example: madvise() in Unix (and Linux)

Which page to move out to disk (replace)?
OPT (Optimal) Replace page not used for longest time in future

Pros Guaranteed to minimize number of page faults
Cons Requires OS to predict the future!!!

LRU (Least-Recently used) Replace page not used for longest
time in past
Rationale Use the past to predict the future
Pros With locality, LRU approximates OPT
Cons Hard to implement

I Action required on every memory access
FIFO Replace page that has been in memory the longest

Rationale First referenced a long time ago, done with it by
now

Pros Fair (all pages receive equal treatment) and easy to
implement

Cons Some pages may always be needed
Random Pick any page in memory and evict it to disk

OPT

Page access sequence 1, 2, 3, 4, 1, 2 , 5, 1, 2, 3, 4, 5
of frames 4

1 2 3 4 51 2 1 2 3 4 5

1

2

3

4

4

5

of page faults 4 + 2 = 6
Usefulness Provides optimal results, i.e. minimum number of

page-faults
I Used as a benchmark for the evaluation of other page

replacement algorithms

LRU

Page access sequence 1, 2, 3, 4, 1, 2 , 5, 1, 2, 3, 4, 5
of frames 4

1 2 3 4 51 2 1 2 3 4 5

2

5

1

4

3

3

4

5

page faults 4 + 4 = 8
Hard to implement

I HW implementation would require too many resources
I SW implementation would require too much time
I In practice, use an approximation (see clock algorithm,

below)

FIFO
Page access sequence 1, 2, 3, 4, 1, 2 , 5, 1, 2, 3, 4, 5
of frames 4

1 2 3 4 51 2 1 2 3 4 5

1

2

3

4

5

1

2

3

4

5

page faults 4 + 6 = 10
What if the # of frames is 3?

1 2 3 4 5

1

2

1 2 1 2 3 4 5

1

2

3

4 5

3

4

page faults 3 + 6 = 9, i.e. less than for 4 frames

FIFO
Page access sequence 1, 2, 3, 4, 1, 2 , 5, 1, 2, 3, 4, 5
of frames 4

1 2 3 4 51 2 1 2 3 4 5

1

2

3

4

5

1

2

3

4

5

page faults 4 + 6 = 10
What if the # of frames is 3?

1 2 3 4 5

1

2

1 2 1 2 3 4 5

1

2

3

4 5

3

4

page faults 3 + 6 = 9, i.e. less than for 4 frames

Belady’s Anomaly

Intuitively the larger the number of frames, the less page faults a
system should experience
I Hence, the larger the main memory, faster the system

However some algorithms, like FIFO, incur more page faults when
the number of frames increases – this is known as the Belady’s
anomaly

Stack algorithms are page replacement algorithms where:

M(n, r) ⊆ M(n + 1, r), ∀n, r

where M(f , r) is the memory contents with f frames after r
memory references.
I Thus, algorithms of this class, e.g. LRU, do not suffer from

the Belady’s anomaly

LRU Implementation

Software
I OS maintains list of physical pages ordered by reference

time
I When page is referenced, move it to the head of the list
I When need a victim: pick the page in the last position

Hardware
I Associate a timestamp with each page
I When page is referenced, update page timestamp (fast)
I When need a victim: scan through the timestamps to find

oldest (slow)
In practice Approximate LRU

I After all, LRU is an approximation of OPT

LRU Approximation: The Clock Algorithm

Hardware
I use/reference bit in the PTE
I Upon memory reference to page, HW sets use/reference bit

OS
Idea replace pages with use/reference bit cleared
Implementation

I Keep a pointer to the last valid PTE examined
I Scan PTEs circularly
I If use bit is set, clear it
I If use bit is cleared, replace page

Clock: Looking for a page (1/3)

Phys. Mem. 0 1 2 3
Use bit 1 1 10

clock hand
Event running process has a page fault
OS which page to evict?

Clock: Looking for a page (2/3)

Phys. Mem. 0 1 2 3
Use bit 1 1 10

clock hand

1. Clear bit for frame 0 and advance clock hand

Phys. Mem. 0 1 2 3
Use bit 0 1 10

clock hand
2. Clear bit for frame 1 and advance clock hand

Phys. Mem. 0 1 2 3
Use bit 0 10

clock hand

0

3. Evict page in frame 2: its use bit is cleared
4. Load the faulting page to frame 2 and advance clock hand

Phys. Mem. 0 1 2’ 3
Use bit 0 10

clock hand

0

Clock: Looking for a page (2/3)

Phys. Mem. 0 1 2 3
Use bit 1 1 10

clock hand
1. Clear bit for frame 0 and advance clock hand

Phys. Mem. 0 1 2 3
Use bit 0 1 10

clock hand

2. Clear bit for frame 1 and advance clock hand

Phys. Mem. 0 1 2 3
Use bit 0 10

clock hand

0

3. Evict page in frame 2: its use bit is cleared
4. Load the faulting page to frame 2 and advance clock hand

Phys. Mem. 0 1 2’ 3
Use bit 0 10

clock hand

0

Clock: Looking for a page (2/3)

Phys. Mem. 0 1 2 3
Use bit 1 1 10

clock hand
1. Clear bit for frame 0 and advance clock hand

Phys. Mem. 0 1 2 3
Use bit 0 1 10

clock hand
2. Clear bit for frame 1 and advance clock hand

Phys. Mem. 0 1 2 3
Use bit 0 10

clock hand

0

3. Evict page in frame 2: its use bit is cleared
4. Load the faulting page to frame 2 and advance clock hand

Phys. Mem. 0 1 2’ 3
Use bit 0 10

clock hand

0

Clock: Looking for a page (2/3)

Phys. Mem. 0 1 2 3
Use bit 1 1 10

clock hand
1. Clear bit for frame 0 and advance clock hand

Phys. Mem. 0 1 2 3
Use bit 0 1 10

clock hand
2. Clear bit for frame 1 and advance clock hand

Phys. Mem. 0 1 2 3
Use bit 0 10

clock hand

0

3. Evict page in frame 2: its use bit is cleared
4. Load the faulting page to frame 2 and advance clock hand

Phys. Mem. 0 1 2’ 3
Use bit 0 10

clock hand

0

Clock: Looking for a page (3/3)

Phys. Mem. 0 1 2’ 3
Use bit 0 10

clock hand

0

5. Access to paged in page (HW sets use bit)

Phys. Mem. 0 1 2’ 3
Use bit 0 11

clock hand

0

6. New page fault
7. Clear bit 1 of page in frame 3 and advance clock hand

Phys. Mem. 0 1 2’ 3
Use bit 0 01

clock hand

0

1. Evict page in frame 0: its use bit is cleared
2. Load the faulting page to frame 0 and advance clock hand

Phys. Mem. 0’ 1 2’ 3
Use bit 0 01

clock hand

0

Clock: Looking for a page (3/3)

Phys. Mem. 0 1 2’ 3
Use bit 0 10

clock hand

0

5. Access to paged in page (HW sets use bit)

Phys. Mem. 0 1 2’ 3
Use bit 0 11

clock hand

0

6. New page fault
7. Clear bit 1 of page in frame 3 and advance clock hand

Phys. Mem. 0 1 2’ 3
Use bit 0 01

clock hand

0

1. Evict page in frame 0: its use bit is cleared
2. Load the faulting page to frame 0 and advance clock hand

Phys. Mem. 0’ 1 2’ 3
Use bit 0 01

clock hand

0

Clock: Looking for a page (3/3)

Phys. Mem. 0 1 2’ 3
Use bit 0 10

clock hand

0

5. Access to paged in page (HW sets use bit)

Phys. Mem. 0 1 2’ 3
Use bit 0 11

clock hand

0

6. New page fault
7. Clear bit 1 of page in frame 3 and advance clock hand

Phys. Mem. 0 1 2’ 3
Use bit 0 01

clock hand

0

1. Evict page in frame 0: its use bit is cleared
2. Load the faulting page to frame 0 and advance clock hand

Phys. Mem. 0’ 1 2’ 3
Use bit 0 01

clock hand

0

Clock: Looking for a page (3/3)

Phys. Mem. 0 1 2’ 3
Use bit 0 10

clock hand

0

5. Access to paged in page (HW sets use bit)

Phys. Mem. 0 1 2’ 3
Use bit 0 11

clock hand

0

6. New page fault
7. Clear bit 1 of page in frame 3 and advance clock hand

Phys. Mem. 0 1 2’ 3
Use bit 0 01

clock hand

0

1. Evict page in frame 0: its use bit is cleared
2. Load the faulting page to frame 0 and advance clock hand

Phys. Mem. 0’ 1 2’ 3
Use bit 0 01

clock hand

0

The Clock Algorithm: Extensions

Replace multiple pages at once
Issue Expensive to run replacement algorithm and to write

single page to disk
Fix Evict multiple victims each time and track free list

Second/third/... chance
Issue Use bit can be crude
Fix Use a sofware counter (chance)

If use bit is cleared increment the chance counter
If the chance counter exceeds bound replace page

Use dirty bit
Issue Dirty pages are more expensive to replace

I They must be written to disk
Fix Replace first pages that have both the use and the dirty

bits cleared

Thrashing
Working-set set of pages that a process actively accesses

I When the working set is in memory, there are no page-faults
I Initially, the page-fault rate of a process is relatively high,

since its working set is not in memory
I The working set changes (slowly) with time, thus, even with

lots of memory, a process has a residual page-fault
When there is not enough memory i.e. the sum of the working

sets of all processes exceeds the size of physical memory, the
system starts thrashing, and processes slow down or even halt
I To get a free frame for a page to bring into memory, the OS

pages out a page that it will have to bring in soon
I It will be accessed by the process to which it belongs

Fixes
Buy more memory as long as your page replacement algorithm

does not suffer from the Belady’s anomaly
Reduce the multiprogramming degree i.e. the number of

running processes

	Virtual Memory: Concept

