
Sistemas Operativos: VM Paging
TLB

Pedro F. Souto (pfs@fe.up.pt)

May 6, 2020



Paging

Idea
1. Divide address space into fixed-size (2n) units: pages

I Typically 4KiB, but also 8KiB or even 1 MiB (super-pages)

2. Divide physical memory in same size units: physical pages
or page frames

3. Map virtual pages to page frames
I Relocate each page independently in memory.

P1 P2 P3

Virtual
memory

Physical
memory

src: Andrea Arpaci-Dusseau



Paging: Address Translation

Question How to translate virtual address to physical address?
Answer Map the virtual page number (VPN) to the page frame

number (PFN)
I Virtual pages and page frames have the same size

High order bits of VA specify the page number
Low order bits of VA specify the offset within page

page number page offset

frame number

20 bits 12 bits 32 bits

Logical addresses

Physical addresses

No addition needed; just append bits correctly

translate

page offset

src: Andrea Arpaci-Dusseau



Virtual Addresss to Physical Address Translation: HW
Implementation

1. Extract VPN from virtual address
VPN = VA >> PAGE_SHIFT

2. Compute address of PTE
PTBR + VPN

3. Read PTE from PT (in memory)
4. Extract PFN (if PTE valid)
5. Extract offset from virtual address

OFFSET = VA & OFFSET_MASK
6. Concatenate offset to PFN

PA = PFN | OFFSET

Issue Address translation requires one memory access (to the
PTE) – step 3

How to avoid it?



Solution: Cache Previous Translations

Translation
Cache

CPU
Page Table

RAM

memory interconnect
src: Andrea Arpaci-Dusseau

Translation Lookaside Buffer cache of previous translations
I Poor name for the address translation cache

Rationale memory access locality
Spatial future accesses will be to nearby addresses
Temporal in the near future the same address will be used



TLB
VPN PFN other

32, 64, ..., 512 entries

Other
Supervisor can be accessed only in privileged/supervisor mode
Valid is the entry valid
Protection for quick protection check
I This is similar to main memory cache

I It is content addressable:
I via the VPN field

I It is fast
I Register-like speed
I Parallel search

I Usually fully-associative
I Translation for every VPN can be anywhere



Virtual Addresss Translation: HW Implementation

1. Extract VPN from virtual address
VPN = VA >> PAGE_SHIFT

2. Check TLB
If TLB hit

2.1 Extract PFN from TLB entry
Else (TLB miss)

2.1 Compute address of PTE: PTBR + VPN
2.2 Read PTE from PT (in memory)
2.3 Extract PFN (if PTE valid)

3. Extract offset from virtual address
OFFSET = VA & OFFSET_MASK

4. Concatenate offset to PFN
PA = PFN | OFFSET

Requirement Most programs exhibit memory access locality so
that on average address translation costs close to 0 memory
accesses



Who handles TLB misses?

HW CPU must know where the page-tables are
I CR3 register on x86
I Page-table structure is determined by the HW
I HW "walks" the page-table and fills TLB

OS CPU traps into OS upon TLB miss
I "Software-managed TLB"
I OS may use a more convenient page-table structure
I OS updates TLB (with privileged instruction)

I Which replacement policy to use?
I Upon return from trap, the HW retries the instruction



TLB & Context Switch
Issue Each process has its own address space

I Same VPN of different processes are
most likely mapped to different PFNs

I The TLB contents stops to be valid
upon context switch

4

P1 P2 P3

1

8

3
2

7

6

9

Solution at least two
Flush the TLB, i.e. invalidate all entries
Track which entries are for which process

I Use an Address Space Identifier (ASID), e.g. 8 bits
I Tag each TLB entry with the ASID

VPN PFN otherASID

I ASID and VPN are both used to access the TLB


	Virtual Memory: Concept

