
Sistemas Operativos: VM Paging

Pedro F. Souto (pfs@fe.up.pt)

May 6, 2020



Memory Virtualization

Idea
Goal Illusion that each process has its own memory (address

space)
Mechanism Address translation

I On every memory access, the VM subsystem maps the
virtual address to a physical address

Early Implementations (HW based)

Base and Bounds
+ Fast and simple
- Wastes lots of physical memory

Segmentation
+ Still, fast and simple
- Mainly external fragmentation

I But also, internal fragmentation



Paging

Idea
1. Divide address space into fixed-size (2n) units: pages

I Typically 4KiB, but also 8KiB or even 1 MiB (super-pages)

2. Divide physical memory in same size units: physical pages
or page frames

3. Map virtual pages to page frames
I Relocate each page independently in memory.

P1 P2 P3

Virtual
memory

Physical
memory

src: Andrea Arpaci-Dusseau



Paging: Address Translation
Question How to translate virtual address to physical address?
Answer Map the virtual page number (VPN) to the page frame

number (PFN)
I Virtual pages and page frames have the same size

High order bits of VA specify the page number
Low order bits of VA specify the offset within page

page number page offset

frame number

20 bits 12 bits 32 bits

Logical addresses

Physical addresses

No addition needed; just append bits correctly

translate

page offset

src: Andrea Arpaci-Dusseau



Paging: Address Translation
Page size

16 bytes -> log2(16) = 4 bits for offset
Address space

64 bytes -> log2(64) = 6 bits for address -> 2 bits for VPN

VPN offset

0 1 0 1 1 1 VPN offset

translated not translated

LD 0x17,R1

Virtual page number (VPN) used to compute the page frame
number (PFN)

Offset append it to the PFN, without any translation



Virtual Page Number to Page Frame Number Mapping
Page size 16 bytes
Physical memory 8

page frames

Address space 64 bytes, i.e. 4 pages. Let:
I page 0 for code, page 1 for heap, page

3 for stack
I page 2, unused

Address Space

Code 0
0x00

Heap 1
0x10

2
0x20

Stack 3
0x30

VPN Physical Memory

OS 0
0x00

1
0x10

2
0x20

Page 0 3
0x30

PFN

4
0x40

5
0x50

6
0x60

Page 1 7
0x70

Page 3

Mapping
VPN = 0 => PFN = 3
VPN = 1 => PFN= 7
VPN = 2 => INVALID
VPN = 3 => PFN = 2



Virtual Page Number to Page Frame Number Mapping

VPN

0 0 01 1 1

0 01 1111 0

VPN Mapper

offset

offsetPFN

The number of bits of the
virtual address does not
need to equal the number of
bits of the physical address

src: Andrea Arpaci-Dusseau

Question What data structure should we use for translating VPN
to PPN?

Answer An array: the page table



Virtual Page Number to Page Frame Number Mapping

VPN

0 0 01 1 1

0 01 1111 0

VPN Mapper

offset

offsetPFN

The number of bits of the
virtual address does not
need to equal the number of
bits of the physical address

src: Andrea Arpaci-Dusseau

Question What data structure should we use for translating VPN
to PPN?

Answer An array: the page table



Page Table: Examples
P1 P2 P3

Virtual
memory

Physical
memory

4

40 1 2 3 5 6 8 9 10 117

P1 P2 P3

1

8

3
2

7

6

9

Page tables:

src: Andrea Arpaci-Dusseau

IMP. There must be a page-table per process.



Page Table Entries (PTE)

PT Info (other than Page Frame Number (PFN))

Valid bit allows the address space to have holes
I An attempt to access to an invalid page generates a

"Segmentation fault"
Supervisor bit whether may be accessed in user mode
Protection bits whether it is possible to read, write or execute
Present bit to be discussed later
Reference bit to be discussed later
Dirty bit to be discussed later

Note
I Usually the format of a PTE is determined by the HW

I Although, in some RISC architectures, the HW delegates to the
OS the handling of paging.



Page Table: Where to store it?
Question How big is a typical page table?
Assume

I a 32-bit address space
I a 4KiB page
I a 4 byte page table entry (PTE)

Answer
I Page table size = Num entries * size of PTE
I Num entries = num virtual pages = 2bits for VPN

I Bits for VPN = 32 - number of bits for page offset
= 32 - log2(4KiB) = 32 -12 = 20

I Num entries = 220 = 1Mi
I Page table size = Num entries * 4 bytes = 4 MiB

Where is the PT Stored?

In memory
I Each process has its own PT
I HW finds PT using a register: the PT base register (PTBR)

(e.g., CR3 on x86)



Page Table: Where to store it?
Question How big is a typical page table?
Assume

I a 32-bit address space
I a 4KiB page
I a 4 byte page table entry (PTE)

Answer
I Page table size = Num entries * size of PTE
I Num entries = num virtual pages = 2bits for VPN

I Bits for VPN = 32 - number of bits for page offset
= 32 - log2(4KiB) = 32 -12 = 20

I Num entries = 220 = 1Mi
I Page table size = Num entries * 4 bytes = 4 MiB

Where is the PT Stored? In memory
I Each process has its own PT
I HW finds PT using a register: the PT base register (PTBR)

(e.g., CR3 on x86)



Virtual Address to Physical Address Translation: HW
Implementation

1. Extract VPN from virtual address
VPN = VA >> PAGE_SHIFT

2. Compute address of PTE
PTBR + VPN

3. Read PTE from PT (in memory)
4. Extract PFN (if PTE valid)
5. Extract offset from virtual address

OFFSET = VA & OFFSET_MASK
6. Concatenate offset to PFN

PA = PFN | OFFSET

Issue Address translation requires one memory access (to the
PTE) – step 3
I Assuming, the PT is a huge array
I So, for every memory reference, paging requires one

additional memory reference



OS & HW Involvement

Hardware
On every memory access address translation

OS
Upon process creation allocate page frames and create and

initialize page table
Upon context switch save PT base register to process control

block (PCB) of process previously running, and load PT base
register from PCB of dispatched process

Upon process AS "grow" allocate free page frames and add
entries to page table

Upon process termination free all page frames and the page table



Paging vs. Segmentation

Pros
No external fragmentation

I Any page can be placed in any frame in physical memory
Fast to allocate and free

I Just use a bitmap of free/allocated page frames

Cons
Slow translating an address requires a memory access

I To the corresponding page table
Large storage requirements

I Each process has its own PT
I For a 32 bit AS, with 4KiB, PT size can be as large as 4 MiB

I Even if the process uses only a few pages



Virtual Address Format

Question How does the format of an address affect the number of
pages and the size of pages?

No. of bits used to specify the VPN determines the number of
pages

No. of bits used to specify the offset determines the size of a page
Example 1 Consider a virtual address with 32 bits

Page size of 4 KiB i.e. 12 LSB for offset
I Then, 20 (=32-12) MSB are used for the VPN, i.e. the

address space has 1 Mi pages
What if page size of 1 MiB?


	Virtual Memory: Concept

