
Sistemas Operativos: VM Introduction

Pedro F. Souto (pfs@fe.up.pt)

April 22, 2020



CPU Virtualization (Before Concurrency)

Goal Illusion that each process has its own CPU
Mechanism Limited Direct Execution

I Processes run directly on the HW (CPU)
I The OS intervenes only at critical points

I To prevent processes from interfering with other processes
or the OS

I To maintain control over the HW (interrupts, in particular
timer interrupts).



Memory Virtualization

Goal Illusion that each process has its own memory (address
space)

Mechanism Address translation
I On every memory access, the VM subsystem maps the

virtual address to a physical address
Requirements

Efficiency both in terms of time and space
Control processes must not access the address space of other

processes, unless allowed
Transparency processes are not aware that the physical

memory is shared among the OS and the running processes
To satisfy these requirements the OS needs help from the HW



Assumptions

1. The user’s address space is mapped contiguously in physical
memory

2. The size of the address space is smaller than the size of
physical memory

3. The size of the address space is the same for all processes
These unrealistic assumptions will be dropped as we go.



Process Virtual Address Space

I Each process has its own virtual address space
I Beginning at virtual address 0
I With a size of 16 KiB

I All program addresses are virtual and range
from 0 to 0x3FFF
I Let the code:

void func() {
int x;
x = x + 3; // this is line of code of interest

I It may be compiled to the following:
0x80: movl 0x0(%ebx), %eax ;load 0+ebx into eax
0x84: addl 0x03, %eax ; add 3 to eax register

0x87: movl %eax, 0x0 (%eax) ; store eax back to memory

I Assume that x is at address 0x3A00 (15KiB), as
shown



Physical Memory

I Assume that the computer has 64 KiB
of main memory
I And that the OS is loaded to the first

16 KiB
I When the OS loads that program to

run, it allocates a region of physical
memory that is not used by any other
program, e.g. starting at 32 KiB

Question How to relocate the process in
memory in a way that is transparent to
the process?
I I.e. give the illusion that the

process’s address space starts at 0,
when it is located at another
physical address.



Virtual Address Translation
Let the code:

0x80: movl 0x0(%ebx), %eax ;load 0+ebx into eax
0x84: addl 0x03, %eax ; add 3 to eax register
0x87: movl %eax, 0x0 (%eax) ; store eax back to memory

If mapped at 0x8000
Virtual addr. Physical addr. Comment

0x0080 −→ 0x8080 Fetch first instruction
0x3A00 −→ 0xBA00 Load value of x
0x0084 −→ 0x8084 Fetch second instruction
0x0087 −→ 0x8087 Fetch third instruction
0x3A00 −→ 0xBA00 Store new value of x

If mapped at 0x4000
Virtual addr. Physical addr. Comment

0x0080 −→ 0x4080 Fetch first instruction
0x3A00 −→ 0x7A00 Load value of x
0x0084 −→ 0x4084 Fetch second instruction
0x0087 −→ 0x4087 Fetch third instruction
0x3A00 −→ 0x7A00 Store new value of x



Dynamic Relocation (Base and bounds)

Idea Use two HW registers
Base which keeps the physical address to which virtual address

0x0 is mapped. E.g. 0x8000 (or 0x4000)
Bounds/limit which keeps the size of the virtual address space

I Allows relaxing the assumption that all address spaces
have the same size

Address Translation by HW on every memory access
Phys_Addr = [Base] + Virt_Addr

E.g.
0x8000 + 0x0080 −→ 0x8080

What is the bounds/limit register for?
Protection HW checks if the address is within bounds and

raises an exception if not
Exception handler belongs to OS and most likely kills

offending process



Dynamic Relocation (Base and bounds)

Idea Use two HW registers
Base which keeps the physical address to which virtual address

0x0 is mapped. E.g. 0x8000 (or 0x4000)
Bounds/limit which keeps the size of the virtual address space

I Allows relaxing the assumption that all address spaces
have the same size

Address Translation by HW on every memory access
Phys_Addr = [Base] + Virt_Addr

E.g.
0x8000 + 0x0080 −→ 0x8080

What is the bounds/limit register for?

Protection HW checks if the address is within bounds and
raises an exception if not
Exception handler belongs to OS and most likely kills

offending process



Dynamic Relocation (Base and bounds)

Idea Use two HW registers
Base which keeps the physical address to which virtual address

0x0 is mapped. E.g. 0x8000 (or 0x4000)
Bounds/limit which keeps the size of the virtual address space

I Allows relaxing the assumption that all address spaces
have the same size

Address Translation by HW on every memory access
Phys_Addr = [Base] + Virt_Addr

E.g.
0x8000 + 0x0080 −→ 0x8080

What is the bounds/limit register for?
Protection HW checks if the address is within bounds and

raises an exception if not
Exception handler belongs to OS and most likely kills

offending process



Dynamic Relocation: HW requirements



Dynamic Relocation: OS involvement



Dynamic Relocation: Evaluation

Pros
Fast
Simple
Little memory overhead

I Need only store the values of 2 registers, per process
Cons

Not flexible
I Hard to grow the size of the AS

Wastes memory Especially for large AS
I The space between the heap and the stack needs to be

allocated, even if it is not used



Segmentation: Idea

Observation with B&B, for large AS, there is a lot
of memory space that is not used but that is
allocated nevertheless

How to avoid this?

Observation rather than a single contiguous
memory region, an AS is usually composed
of several contiguous memory regions:
segments
I E.g. code, heap, stack
I Each of these can be relocated

independently
Idea use a pair of B&B register per segment.

I Again, for efficiency reasons address
translation is done by HW



Segmentation: Idea

Observation with B&B, for large AS, there is a lot
of memory space that is not used but that is
allocated nevertheless

How to avoid this?
Observation rather than a single contiguous

memory region, an AS is usually composed
of several contiguous memory regions:
segments
I E.g. code, heap, stack
I Each of these can be relocated

independently
Idea use a pair of B&B register per segment.

I Again, for efficiency reasons address
translation is done by HW



Segmentation: Independent Segment Relocation

I Only the space that is actually used
needs to be allocated

I The Memory Management Unit (MMU)
consists only of 3 base and bounds
registers pairs:



Segmentation: Issue
Issue How to determine which base/bounds pair to use?

Explicit Use some bits of the address to specify the segment.
The remaining are used for the offset.

Implicit E.g. if the address was formed using the PC then use
the "code segment", if the address was formed using the SP
then use the stack segment



Segmentation: Issue
Issue How to determine which base/bounds pair to use?

Explicit Use some bits of the address to specify the segment.
The remaining are used for the offset.

Implicit E.g. if the address was formed using the PC then use
the "code segment", if the address was formed using the SP
then use the stack segment



Segmentation: OS Involvement

New process Need to allocate physical memory for all segments
of the new process

Growth of segment Need to allocate more physical memory
I Preferrably, using free memory contiguously to the physical

memory already being used by the segment
I Alternatively, need to copy contents of segment to the newly

allocated physical memory
Context switch

1. For each segment of the process that was running, save in
the PCB the values of the pair of B&B registers

2. For each segment of the process selected to run, load from
the PCB the values of the pair of B&B registers



Segmentation: Evaluation

Pros
Fast
Simple
Little memory overhead

I Need only store the values of 2 registers per segment,
per process

Supports sparse AS efficiently
Fine-grained protection

I E.g., allow only read-execute on the code segment, and
only read-write on the heap and stack segments

Cons
Not flexible

I Hard to grow the size of the segments sometimes
Wastes memory

I Only external memory fragmentation



External Memory Fragmentation


	Introduction
	Dynamic Relocation
	Segmentation

