
Sistemas Operativos: Input/Output
I/O SW Layers

Pedro F. Souto (pfs@fe.up.pt)

April 9, 2019



Topics

Device Drivers

Device Independent Layer

User-Level Layer

Additional Reading



Topics

Device Drivers

Device Independent Layer

User-Level Layer

Additional Reading



I/O SW Layers

User-level I/O SW
Device-independent OS SW

Device drivers
Interrupt handlers

HW

I Each layer has a well defined interface to the adjacent
layers
I And provides a well defined service to the layer above it



Device Dependent Layers

User

space

Kernel

space

User process

User

program

Rest of the operating system

Printer

driver

Camcorder

driver

CD-ROM

driver

Printer controllerHardware

Devices

Camcorder controller CD-ROM controller

Device Drivers
I Comprises all the code that is device specific

I Code that interfaces with the device controller
I Including the interrupt handlers: code that is executed

upon interrupts from devices



Interrupt Handlers (1/2)

I Interrupts may occur as a result of:
1. Either an I/O operation iniciated by some process, e.g. a

read or a write from a disk;
2. Or as a result of an asynchronous event, e.g. the reception

of a key’s scancode from the keyboard
I In case 1) there is usually a process waiting for completion

of the I/O operation, e.g. by doing a down on a semaphore,
or a wait on a condition-variable
I Upon an interrupt, the handler does what it has to and then

wakes up the process
I In case 2) the kernel has usually to buffer the input data

until some process reclaims it
I Of course, a process may be blocked waiting for data



Interrupt Handlers (2/2)
I Sometimes (Linux) servicing of an interrupt is split in two

parts
Top half The first, is executed by the interrupt handler,

possibly with the interrupts disabled. Typically:
I Saves data to a device specific buffer
I Schedules the corresponding bottom half

Bottom half The second part, is executed outside of the
interrupt handler, with the interrupts enabled
I Initiates another I/O operation
I Does the required processing
I Unblocks processes

I Linux provides two mechanisms for implementing the
bottom half:
Tasklets The kernel guarantees that they are handled

always before the following clock tick
I But they cannot block

Workqueues The code can block, but the kernel may take
longer to schedule it



Device Driver

I Code that interfaces with I/O controllers
I Usually, each device driver handles:

I One device type, e.g. PS/2 mouse, AT Keyboard
I At most one class of devices, e.g. SATA disk driver

I Most DD are part of the kernel
I I/O access must be done by trusted code, which in most

OSs must be part of the kernel
I There are some OSs that allow DD to be implemented as

special privileged user processes
I This usually requires the kernel to export I/O related

operations, such as input/output operations and
enabling/disabling instructions

I Usually, device drivers are provided by the device’s
manufacturer
I device drivers are dynamically linked to the kernel
I the interface between a device driver and the kernel must

be well-defined



DD Interface
Problem How does a DD interfaces with the rest of the OS?

I There are so many different I/O devices that this may be
a real problem.

Solution Each OS defines a uniform programming interface for
all DDs. I.e.:
I A set of functions that a DD has to provide for I/O
I A set of functions provided by the kernel that can be

used by the DD

Operating system Operating system

Disk driver Printer driver Keyboard driver Disk driver Printer driver Keyboard driver

(a) (b)



Classes of I/O Devices (in Unix/Linux)
Block Devices such as disks, which support the I/O of data

blocks
I Whose size can be “large”, e.g. 512 bytes or even 4096

bytes
I Which can be accessed independently, i.e. randomly

rather than sequentially
Character Devices such as keyboards and audio cards, which

generate or accept a stream of bytes/characters
I Usually, support only sequential access

Network Interfaces such as Ethernet or Wifi, whose
characteristics are sufficiently different from characer and
from block devices

Video Cards which provide essentially a memory-mapped
interface for I/O
I Actually, modern video cards include a Graphic

Processing Unit with 100’s cores which can be
programmed not only for graphics processing but also
general processing



Character Device Programming Interface in Linux
I To simplify adding new devices, most devices are

implemented as kernel modules
init function called by the kernel when the module is

loaded into memory
cleanup/exit function called by the kernel when the module

is unloaded
I Character device specific functions include (they are

members of the file_operations structure)
open which is called everytime an application opens the

special/device file associated to the device
flush which is called everytime an application closes the

special/device file
release which is called on the last close of a file
read/write which are invoked for reading from/writing to

the device
ioctl which is used for “controlling” the device
I Most of these functions are invoked upon the invocation of

a corresponding system call on the device



Kernel Programming Interface
I To help the development of deviced drivers, the kernel

provides an extensive set of functions, including
kprintf, kmalloc, kfree which are similar to their

user-level counterparts
container_of a macro that returns the address of a

structure that contains a given address of one of its fields
module_init, module_exit macros for declaring the

module initialization and cleanup functions
copy_to_user, copy_from_user to copy data from

kernel space to user space and vice-versa
request_region/release_region for reserving and

releasing a region of the I/O address space
inb, outb for reading from/writing to the I/O address

space (there are also functions for larger operands)
I Functions specific to character devices include:

alloc_chrdev_region for dynamically allocating a
device major number, and its inverse
unregister_chrdev_region



Device Driver (DD): Error Handling and Logging

I Upon completion of an I/O operation (whether explicitly
requested or asynchronous) a DD has to check for errors

I Devices interface with the real world and errors are quite
frequent
I Damaged disk sectors
I Communication errors resulting from EMI

I Serial communication
I (Wireless)LAN
I Keyboard
I Mouse

I Removal of an hot pluggable device while an I/O request is
being processed

I Often these abnormal events have also to be logged
I Can be done with the help of a general OS logging service



Topics

Device Drivers

Device Independent Layer

User-Level Layer

Additional Reading



Device Independent Layer

User-level I/O SW
Device-independent OS SW

Device drivers
Interrupt handlers

HW

I Its functionality includes:
I Uniform interfacing for I/O
I Buffering
I Error reporting
I Allocating and releasing devices
I Providing a device-independent block size

I Sometimes, for reasons of efficiency, the device dependent
layer provides some of this functionality



Uniform Interfacing for I/O: Naming

I E.g. in Unix/Linux block and char devices are named using
file pathnames corresponding to entries of the /dev
directory, or its subdirectories
I Each entry contains the corresponding:

major device number which is used to locate the driver
minor device number which is driver specific, but usually

identifies the particular device
I Again, network devices and graphics cards use a different

naming scheme



Uniform Interfacing for I/O: API
I The integration of device names in the filesystem name

space makes it possible to use the filesystem interface
I An application can use the usual system calls to open,

read, write and close a device
I The computational model of block and char devices is very

close to that of a file, in particular before accessing a device
an application must open it

I In order to test your device driver you’ll have to develop
short test programs using the file system system calls

I Furthermore, Unix/Linux use the file system access control
mechanisms, and rules, also to protect the access to I/O
devices
I The system administrator can set the proper permissions

for each device according to a security policy
I The API for networking devices is different

I Usually, they are accessed via communication protocols
that are implemented at the kernel level

I Nevertheless, the BSD sockets API can also be used to
access at least partially the network interface card



Uniform Interfacing for I/O: Block Size

I Different block devices, i.e. disks, may have different sector
sizes

I The device-independent SW layer hides this fact by
providing a uniform block size to higher layers
I For example, by treating consecutive sectors as a logical

block
I Similar issues arise:

I In the case of networking devices
I The size of a network packet may vary

I And also for graphical cards
I Video cards may support different resolutions and number of

colors



Buffering
I Refers to the use of a buffer to temporarily hold the data

transferred from an I/O device
I Decouples the program that requests the I/O operation

from its execution
I Speed mismatch between processor and I/O devices
I Many I/O operations are asynchronous to user-process

execution

No buffering The data has to be transferred directly to the user
process
I Very inefficient, because the user process must read

one character/byte at a time leading to many context
switches



Buffering

In user space The user process allocates a buffer used to
transfer data directly to/from the I/O device
I Need to pin-down the page to prevent it from being

paged out. If too many pages are pinned down ...
In kernel space Data are transferred between the I/O device

and a buffer in kernel space
I And from that buffer to user space, sequentially

Double buffering Allows data to be transferred between the I/O
device and the kernel, and between the user and the kernel
simultaneously
I May use a buffer pool rather than just two buffers



Buffering and Networking
I For transmission, buffering allows the send() system call

to return immediately after copying the data to the kernel
I For reception, buffering allows the user processes to

operate asynchronously wrt communication

2

1 5

4

3

User process

Network

Network


controller

User


space

Kernel


space

I Buffering inside the network controller is essential
because the memory bus may be too busy, and DMA may
not be responsive enough to prevent the loss of data

I But each buffer in the chain adds some overhead
I Many tricks have been proposed to reduce this overhead



Buffering and Computer Graphics
I Use of a single buffer in computer graphics may lead to a

poor image with, among other artifacts:
I Flicker
I Tearing

This is because the application modifies the buffer with the
screen image (frame) while it is displayed by the video card

I Double buffering allows an application to modify the image
on one buffer while the video card displays the content on
another buffer
Problem The application may have to wait for the video

card before it starts a new frame
Solution Use triple buffering

I One buffer has the frame that is being displayed by the
video card

I A second frame has the frame that is being created by
the application

I The third frame has the most recent completed frame not
yet passed to the video card, if any



Error Handling and Reporting
I/O Errors These are errors that occur at the device level, e.g.

trying to read a damaged sector
I Usually, the device driver (DD) tries to handle these
I If the error persists, the DD has to report it to the device

independent layer
I Some actions that may be taken by the device

independent SW layer are:
I Retry the operation up to a maximum number of times
I Ignore the error or report it to the user level (via the

return value of the system call)
I Terminate the calling process
I Logging the error and shutdown, in extreme cases that

affect the entire system
Programming errors Such as:

I Invalid device, i.e. a device that does not exist
I Invalid operation, e.g. read from an output device
I Invalid operands, e.g. buffer address

In this case, the kernel just reports back an error code



Allocating and Releasing Dedicate Devices

I Some devices, e.g. CD-ROM recorders, can be used only
by a single process at any given moment

I It is up to the OS to ensure that. Some alternatives are:
I Require the process to call open on the device’s special file

that will return an error if the device is already being used
by another process

I A close will release the device
I Use some other mechanism to request/release such

devices
I And put a process in a waiting queue, if the request cannot

be satisfied immediately



Topics

Device Drivers

Device Independent Layer

User-Level Layer

Additional Reading



User-level Layer
User-level I/O SW

Device-independent OS SW
Device drivers

Interrupt handlers
HW

Library functions
System call stub functions e.g. read(), write()
Formatted output/input e.g. printf() and scanf()

Spoolers I.e. user processes that run in the background
(daemons) and manage devices whose access must be
done in mutual exclusion, such as a printer
I A process wishing to print a document creates a file with

the data to print in the printer’s spooling directory
I The print spooler reads these files and writes their

content to the printer
I It is the only process that can access the printer



Summary of the Functions of the I/O System Layers

I/O

request

Layer
I/O

reply I/O functions

Make I/O call; format I/O; spooling


Naming, protection, blocking, buffering, allocation


Set up device registers; check status


Wake up driver when I/O completed


Perform I/O operation

User processes

Device-independent

software

Device drivers

Interrupt handlers

Hardware



Synchronous vs. Asynchronous I/O
Synchronous I/O Can have two modes

Blocking The user process blocks until the operation is
completed.
I For some writing operations, the system call may

return immediately after copying the data to kernel
space and enqueueing the output request

Non blocking The user process does not block
I Not even in input operations: the call returns

immediately with whatever data is available at the
kernel

Asynchronous The system call just enqueues the I/O request
and returns immediately
I The user process may execute while the requested I/O

operation is being executed
I The user process learns about the termination of the I/O

operation
I either by polling
I or via event notification (signals in Unix/Linux)



POSIX Asynchronous I/O

I POSIX.1b specifies several functions for asynchronous I/O
int aio_read(struct aiocb *racbp);
int aio_write(struct aiocb *racbp);
int aio_cancel(int fd, struct aiocb *acbp);
ssize_t aio_return(const struct aiocb *acbp);
int aio_error(const struct aiocb *acbp);

I The asynchronous I/O operations are controlled by an AIO
control block stucture (struct aiocb)
struct aiocb {

int aio_fildes;
off_t aio_offset; /* no file position */
volatile void *aio_buf;
size_t aio_nbytes;
struct sigevent aio_sigevent; /* on completion */
int aio_lio_opcode; /* for list op. */
int aio_reqprio; /* AIO priority */

}



Asynchronous I/O: Operation Termination

Problem How does the user process learn that the operation
has terminated?

Solution There are two alternatives, which are specified in the
sigev_notify member of the struct sigevent:
Polling (SIGEV_NONE) The process can invoke
aio_error()

I It returns EINPROGRESS while it has not completed
Notification Here there are also some alternatives

Signal (SIGEV_SIGNAL) the signal is specified in field of
the struct sigevent of of the struct aiocb
argument

I Process must register the corresponding handler via
the sigaction() system call

Function (SIGEV_THREAD) to be executed by a thread
created for that purpose



Asynchronous I/O: struct sigevent

union sigval { /* Data passed with notification */
int sival_int; /* Integer value */
void *sival_ptr; /* Pointer value */

};
struct sigevent {

int sigev_notify; /* Notification method */
int sigev_signo; /* Notification signal */
union sigval sigev_value; /* Data passed with

notification */
void (*sigev_notify_function) (union sigval);

/* Function used for thread
notification (SIGEV_THREAD) */

void *sigev_notify_attributes;
/* Attributes for notification thread
(SIGEV_THREAD) */

pid_t sigev_notify_thread_id;
/* ID of thread to signal (SIGEV_THREAD_ID) */

};



Topics

Device Drivers

Device Independent Layer

User-Level Layer

Additional Reading



Additional Reading

Sistemas Operativos
I Section 11.2: Arquitectura das E/S
I Section 11.3: Modelo Computacional das E/S
I Section 11.4: Modelo de Acesso à Interface ...
I Section 11.5: Gestores de Periféricos
I Section 11.6: E/S no Unix

Modern Operating Systems, 2nd. Ed.
I Section 5.3: I/O Software Layers

Operating Systems Concepts, 7th. Ed.
I Section 13.3: Application I/O Interface
I Section 13.4: Kernel I/O Subsystem
I Section 13.5: Transforming I/O Requests to HW ...


	Device Drivers
	Device Independent Layer
	User-Level Layer
	Additional Reading

