
Concurrency
Condition Variables

2o MIEIC

Pedro F. Souto (pfs@fe.up.pt)

March 24, 2020

Introduction

I Locking ensures mutual exclusion
I But sometimes all we need is synchronization

I E.g waiting for a thead to terminate

Synchronizing with Shared Variables

I But this requires busy-waiting
I In this case, it is OK not to use locks to access done

Sumário

Condition Variables

Bounded Buffer

A Solution: Condition Variables

Condition Variable is a queue on which the threads put
themselves while waiting for some condition
I When another thread changes the state so that the

condition is satisfied, it should wake up one (or more)
threads waiting on the condition

libpthread API

pthread_cond_t c = PTHREAD_COND_INITIALIZER;

pthread_cond_wait()
I The thread must hold the mutex, when calling

pthread_cond_wait()
I Upon waiting pthread_cond_wait() releases the lock
I Upon returning from pthread_cond_wait():

1. The thread holds the lock
2. But the condition may not be satisfied any more
I This is known as the Mesa semantics

pthread_cond_signal()
I Wakes up one thread waiting on the condition variable, if

any
pthread_cond_broadcast()

I Wakes up all threads waiting on the condition variable, if
any

Joining a Thread with Condition Variables

What if we did not use done?

I Can you see what may go wrong?

I pthread_cond_signal() has no effect if no thread is
waiting

I Condition variables are not counters

What if we did not use done?

I Can you see what may go wrong?
I pthread_cond_signal() has no effect if no thread is

waiting
I Condition variables are not counters

What if thr_exit() did not use mutexes?

1: void thr_exit() {
2: done = 1;
3: Pthread_cond_signal(&c);
5: }
6: void thr_join() {
7: Pthread_mutex_lock(&m);
8: while (done == 0)
9: Pthread_cond_signal(&c, &m);

10: Pthread_mutex_unlock(&m);
11: }

I Can you see what may go wrong?

I Note that the testing of done and the waiting are not atomic
anymore

I In is not always necessary to hold the lock while calling
pthread_cond_signal()
I In any case, holding the lock may be safer than not holding the

lock

What if thr_exit() did not use mutexes?

1: void thr_exit() {
2: done = 1;
3: Pthread_cond_signal(&c);
5: }
6: void thr_join() {
7: Pthread_mutex_lock(&m);
8: while (done == 0)
9: Pthread_cond_signal(&c, &m);

10: Pthread_mutex_unlock(&m);
11: }

I Can you see what may go wrong?
I Note that the testing of done and the waiting are not atomic

anymore

I In is not always necessary to hold the lock while calling
pthread_cond_signal()
I In any case, holding the lock may be safer than not holding the

lock

What if thr_exit() did not use mutexes?

1: void thr_exit() {
2: done = 1;
3: Pthread_cond_signal(&c);
5: }
6: void thr_join() {
7: Pthread_mutex_lock(&m);
8: while (done == 0)
9: Pthread_cond_signal(&c, &m);

10: Pthread_mutex_unlock(&m);
11: }

I Can you see what may go wrong?
I Note that the testing of done and the waiting are not atomic

anymore
I In is not always necessary to hold the lock while calling

pthread_cond_signal()
I In any case, holding the lock may be safer than not holding the

lock

Sumário

Condition Variables

Bounded Buffer

The Problem of the Bounded Buffer

I This is a classical problem in which:
Producer (one or more) threads "generate" data items and

put them on a queue/buffer
Consumer (one or more) threads grab data items from the

queue and "consume" them
I If the buffer has an unlimited capacity, the problem is known

as the producer/consumer problem
I If the buffer has limited capacity, the problem is known as the

bounded buffer
I Both problems are of very practical importance. E.g. consider

the multi-threaded implementation of a web server
I One of more threads receive the HTTP requests from the

clients and put them on a queue
I One or more threads get the requests from the queue, process

them and send back the HTTP responses to the clients

A simple BB Abstract Data Type

I This is a very simple example:
I The buffer has capacity for only one data item
I The data item passed through the buffer is only an int

I How could we pass an arbitrary data type?

Using the simple BB Abstract Data Type
1 int loops; // initialized somewhere
2 void *producer(void *arg) {
3 int i;
4 for(i = 0; i < loops: i++) {
5 while(count == 1);
6 put(i);
7 }
8 }
9 void *consumer(void *arg) {

10 int i;
11 while(1) {
12 while(count == 0);
13 int tmp = get();
14 printf("%d\n", tmp);
15 }
16 }

I The problem with the previous ADT is that it is not
thread-safe. I.e.
I It may suffer race conditions when used by more than one

thread
I Let’s make it thread-safe

Thread-safe BB ADT: 1st try

I This has a race-condition. Can you see it?

Use while rather than if

I The issue is that upon return from Pthread_cond_wait()
the condition may not be satisfied any more
I Thead c2 made it false again

I Recheck the condition rather than taking it for granted

Thread-safe BB ADT: 2nd try

Thread-safe BB ADT: 2nd try

I But this still has a race condition. Can you spot it?

Thread-safe BB ADT: 2nd try

I Think about waking up the wrong thread!

Thread-safe BB ADT: 2nd race

Thread-safe BB ADT: Fixes to 2nd race?

How to fix this?

Use pthread_cond_broadcast()
I Sometimes threads are awoken unnecessarily

Use two condition variables
I One for empty buffer, to be used by producers;
I One for filled buffer, to be used by consumers;

Thread-safe BB ADT: Fixes to 2nd race?

How to fix this?
Use pthread_cond_broadcast()

I Sometimes threads are awoken unnecessarily

Use two condition variables
I One for empty buffer, to be used by producers;
I One for filled buffer, to be used by consumers;

Thread-safe BB ADT: Fixes to 2nd race?

How to fix this?
Use pthread_cond_broadcast()

I Sometimes threads are awoken unnecessarily
Use two condition variables

I One for empty buffer, to be used by producers;
I One for filled buffer, to be used by consumers;

Thread-safe BB ADT: No races

	Condition Variables
	Bounded Buffer

