Concurrency
Condition Variables
20 MIEIC

Pedro F. Souto (pfs@fe.up.pt)

March 24, 2020

Introduction

» Locking ensures mutual exclusion
» But sometimes all we need is synchronization

» E.g waiting for a thead to terminate
void xchild(void xarg) {

1
2
3
4
5
6
7
8
9

10
11
12
13
14

int

printf ("child\n");
// XXX how to indicate we are done?
return NULL;

main (int argc, char xargvl[]) {
printf ("parent: begin\n");
pthread_t c;

Pthread_create (&c, NULL, child, NULL);

// XXX how to wait for child?
printf ("parent: end\n");
return 0;

//

Synchronizing with Shared Variables

1 volatile int done = 0;

2

3 void xchild(void =xarg) {

4 printf ("child\n");

5 done = 1;

6 return NULL;

7 }

8

9 int main(int argc, char xargv[]) {

Juny
(==}

printf ("parent: begin\n");
pthread_t c;
Pthread_create(&c, NULL, child, NULL); // create
while (done == 0)
; // spin
printf ("parent: end\n");
return 0;

e e e e e
N Ok W N =
—

» But this requires busy-waiting
» |n this case, it is OK not to use locks to access done

Sumario

Condition Variables

A Solution: Condition Variables

Condition Variable is a queue on which the threads put
themselves while waiting for some condition
» When another thread changes the state so that the
condition is satisfied, it should wake up one (or more)
threads waiting on the condition

libpthread API

pthread _cond_t c¢ = PTHREAD_COND_INITIALIZER;

pthread_cond_wait ()
» The thread must hold the mutex, when calling
pthread_cond_wait ()

» Upon waiting pthread_cond_wait () releases the lock
» Upon returning from pthread_cond_wait ():

1. The thread holds the lock
2. But the condition may not be satisfied any more

» This is known as the Mesa semantics
pthread cond_signal ()
» Wakes up one thread waiting on the condition variable, if
any
pthread_cond_broadcast ()

» Wakes up all threads waiting on the condition variable, if
any

Joining a Thread with Condition Variables

1 int done = 0;

2 pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
3 pthread_cond_t ¢ = PTHREAD_COND_INITIALIZER;
4

5 void thr_exit () {

6 Pthread_mutex_lock (&m) ;

7 done = 1;

8 Pthread_cond_signal (&c);

9 Pthread_mutex_unlock (&m) ;

0)

12 void xchild(void xarg) {

13 printf ("child\n");
14 thr_exit();
15 return NULL;

16 }

18 void thr_join() {

19 Pthread_mutex_lock (&m) ;

20 while (done == 0)

21 Pthread_cond_wait (&c, &m);
22 Pthread_mutex_unlock (&m) ;

25 int main (int argc, char xargv([]) {

26 printf ("parent: begin\n");

27 pthread_t p;

28 Pthread_create (&p, NULL, child, NULL);
29 thr_join();

30 printf("parent: end\n");

31 return 0;

What if we did not use done?

void thr_exit () {
Pthread_mutex_lock (&m) ;
Pthread_cond_signal (&c);
Pthread_mutex_unlock (&m) ;

void thr_join() {
Pthread_mutex_lock (&m) ;
Pthread_cond_wait (&c, &m);
Pthread_mutex_unlock (&m) ;

O 0 N N U W
—~

=
(=]

11 }

» Can you see what may go wrong?

What if we did not use done?

void thr_exit () {
Pthread_mutex_lock (&m) ;
Pthread_cond_signal (&c);
Pthread_mutex_unlock (&m) ;

}

void thr_join() {
Pthread_mutex_lock (&m) ;
Pthread_cond_wait (&c, &m);
Pthread_mutex_unlock (&m) ;

O 0 N N U W

=
(=]

11 }

» Can you see what may go wrong?
» pthread_cond_signal () has no effect if no thread is
waiting
» Condition variables are not counters

What if thr_exit () did not use mutexes?

[

P O W oW Jo Ul whN -
e s ss se ss ee se ss ee s

void thr_exit () {
done = 1;
Pthread_cond_signal (&c);

}

void thr_join() {
Pthread_mutex_lock (&m) ;
while (done == 0)

Pthread_cond_signal (&c, &m);

Pthread_mutex_unlock (&m) ;

}

» Can you see what may go wrong?

What if thr_exit () did not use mutexes?

void thr_exit () {
done = 1;
Pthread_cond_signal (&c);

}

void thr_join() {
Pthread_mutex_lock (&m) ;
while (done == 0)

Pthread_cond_signal (&c, &m);

Pthread_mutex_unlock (&m) ;

P O W oW Jo Ul whN -
e s ss se ss ee se ss ee s

[

}

» Can you see what may go wrong?

» Note that the testing of done and the waiting are not atomic
anymore

What if thr_exit () did not use mutexes?

void thr_exit () {
done = 1;
Pthread_cond_signal (&c);

}

void thr_join() {
Pthread_mutex_lock (&m) ;
while (done == 0)

Pthread_cond_signal (&c, &m);

Pthread_mutex_unlock (&m) ;

P O W oW Jo Ul whN -
e s ss se ss ee se ss ee s

[

}

» Can you see what may go wrong?

» Note that the testing of done and the waiting are not atomic
anymore

» Inis not always necessary to hold the lock while calling
pthread_cond_signal ()

» In any case, holding the lock may be safer than not holding the
lock

Sumario

Bounded Buffer

The Problem of the Bounded Buffer

» This is a classical problem in which:
Producer (one or more) threads "generate" data items and
put them on a queue/buffer
Consumer (one or more) threads grab data items from the
queue and "consume" them

» If the buffer has an unlimited capacity, the problem is known
as the producer/consumer problem

» |f the buffer has limited capacity, the problem is known as the
bounded buffer
» Both problems are of very practical importance. E.g. consider
the multi-threaded implementation of a web server
» One of more threads receive the HTTP requests from the
clients and put them on a queue
» One or more threads get the requests from the queue, process
them and send back the HTTP responses to the clients

A simple BB Abstract Data Type

1 int buffer;

2 int count = 0; // initially, empty
3

4 void put (int wvalue) {

5 assert (count == 0);
6 count = 1;

7 buffer = value;

8 }

9

10 int get () {

11 assert (count == 1);
12 count = 0;

Ju—y
w

return buffer;

Juny
S

}

» This is a very simple example:

» The buffer has capacity for only one data item
» The data item passed through the buffer is only an int

» How could we pass an arbitrary data type?

Using the simple BB Abstract Data Type

1 int loops; // initialized somewhere
2 void xproducer (void =xarg) {

3 int i;

4 for(i = 0; i < loops: i++) {
5 while (count == 1);

6 put (1) ;

7 t

8 }

9 void xconsumer (void *arg) {
10 int i;

11 while (1) {

12 while (count == 0);
13 int tmp = get();

14 printf ("$d\n", tmp);

15 }
16 }

» The problem with the previous ADT is that it is not
thread-safe. |.e.
» |t may suffer race conditions when used by more than one
thread

Thread-safe BB ADT: 1st try

int loops; // must initialize somewhere...
cond_t cond;
mutex_t mutex;

void sproducer (void =xarg) {
int i;
for (i = 0; 1 < loops; i++)
Pthread_mutex_lock (&mutex) ;

if (count == 1)
Pthread_cond_wait (&cond, &mutex);
put (1) ;

Pthread_cond_signal (&cond) ;
Pthread_mutex_unlock (&mutex) ;

}

void xconsumer (voild =xarg) {
int 1i;
for (i = 0; 1 < loops; i++) |
Pthread_mutex_lock (&mutex) ;
if (count == 0)

Pthread_cond_wait (&cond, &mutex);
int tmp = get ();
Pthread_cond_signal (&cond) ;
Pthread_mutex_unlock (&mutex) ;
printf ("%d\n", tmp);

}

7/

7/
7/

7/

//
/7
7/
//
/7
7/

cl
c2
c3
c4
c5
cb

» This has a race-condition. Can you see it?

Use while rather than if

Teq State Teo State Ty State Count Comment
cl Running Ready Ready 0
c2 Running Ready Ready 0
c3 Sleep Ready Ready 0 Nothing to get
Sleep Ready pl Running 0
Sleep Ready p2 Running 0
Sleep Ready p4 Running 1 Buffer now full
Ready Ready p5 Running 1 T.1 awoken
Ready Ready p6 Running 1
Ready Ready pl Running 1
Ready Ready p2 Running 1
Ready Ready p3 Sleep 1 Buffer full; sleep
Ready cl Running Sleep 1 T2 sneaks in ...
Ready 2 Running Sleep 1
Ready c4 Running Sleep 0 ... and grabs data
Ready c5 Running Ready 0 T, awoken
Ready c6 Running Ready 0
c4 Running Ready Ready 0 Oh oh! No data

» The issue is that upon return from Pthread_cond_wait ()
the condition may not be satisfied any more

» Thead ¢, made it false again

» Recheck the condition rather than taking it for granted

Thread-safe BB ADT: 2nd try

void *producer (void xarg) {

int
for

}

ij
(i =0; 1 < loo

Pthread_mutex_lock (&mutex) ;

while (count ==

Pthread_cond_wait (&cond,

put (1) ;

Pthread_cond_signal (&cond) ;
Pthread_mutex_unlock (&mutex) ;

ps; i++)

1)

void *consumer (void xarg) {

int
for

i;
(i = 0; 1 < loo

Pthread_mutex_lock (&mutex) ;

while (count ==

Pthread_cond_wait (&cond,

int tmp = get ()

Pthread_cond_signal (&cond) ;
Pthread_mutex_unlock (&mutex) ;

printf ("$d\n",

ps; 1i++)
0)

’

tmp) ;

{

{

gmutex) ;

&mutex) ;

cl
c2
c3
c4
c5
[e19)

Thread-safe BB ADT: 2nd try

4 void *producer (void xarg) {

5 int 1i;

6 for (i = 0; i < loops; i++) {

7 Pthread_mutex_lock (&mutex) ; // pl
8 while (count == 1) // p2
9 Pthread_cond_wait (&cond, &mutex); // p3
10 put (i) ; // pé
11 Pthread_cond_signal (&cond) ; // p5
12 Pthread_mutex_unlock (&mutex) ; // p6

14 }

16 void *consumer (void xarg) {

17 int 1i;

18 for (i = 0; 1 < loops; i++) {

19 Pthread_mutex_lock (&mutex) ; // cl
20 while (count == 0) // c2
21 Pthread_cond_wait (&cond, &mutex); // c3
2 int tmp = get(); // c4
23 Pthread_cond_signal (&cond) ; // ¢c5
24 Pthread_mutex_unlock (¢mutex) ; // c6
25 printf ("$d\n", tmp);

26 }

27 }

» But this still has a race condition. Can you spot it?
=] 5

Thread-safe BB ADT: 2nd try

4 void *producer (void xarg) {

5 int 1i;

6 for (i = 0; i < loops; i++) {

7 Pthread_mutex_lock (&mutex) ; // pl
8 while (count == 1) // p2
9 Pthread_cond_wait (&cond, &mutex); // p3
10 put (i) ; // p4
11 Pthread_cond_signal (&cond) ; // p5
12 Pthread_mutex_unlock (&mutex) ; // p6

14 }

16 void *consumer (void xarg) {

17 int i;

18 for (i = 0; 1 < loops; i++) {

19 Pthread_mutex_lock (&mutex) ; // cl
20 while (count == 0) // c2
21 Pthread_cond_wait (&cond, &mutex); // c3
2 int tmp = get(); // c4
23 Pthread_cond_signal (&cond) ; // c5
24 Pthread_mutex_unlock (&mutex) ; // c6
25 printf ("$d\n", tmp);

2 }

27 }

» Think about waking up the wrong thread!
[m] = =

Thread-safe BB ADT: 2nd race

Te1 State Teo State Ty State Count Comment
cl Running Ready Ready 0
2 Running Ready Ready 0
c3 Sleep Ready Ready 0 Nothing to get
Sleep cl Running Ready 0
Sleep 2 Running Ready 0
Sleep c3 Sleep Ready 0 Nothing to get
Sleep Sleep pl Running 0
Sleep Sleep p2 Running 0
Sleep Sleep p4 Running 1 Buffer now full
Ready Sleep p5 Running 1 T.1 awoken
Ready Sleep p6 Running 1
Ready Sleep pl Running 1
Ready Sleep p2 Running 1
Ready Sleep p3 Sleep 1 Must sleep (full)
2 Running Sleep Sleep 1 Recheck condition
c4 Running Sleep Sleep 0 T.1 grabs data
c5 Running Ready Sleep 0 Oops! Woke T2
c6 Running Ready Sleep 0
cl Running Ready Sleep 0
2 Running Ready Sleep 0
c3 Sleep Ready Sleep 0 Nothing to get
Sleep 2 Running Sleep 0
Sleep c3 Sleep Sleep 0 Everyone asleep...

Thread-safe BB ADT: Fixes to 2nd race?

How to fix this?

Thread-safe BB ADT: Fixes to 2nd race?

How to fix this?
Use pthread_cond_broadcast ()
» Sometimes threads are awoken unnecessarily

Thread-safe BB ADT: Fixes to 2nd race?

How to fix this?
Use pthread_cond_broadcast ()

» Sometimes threads are awoken unnecessarily
Use two condition variables

» One for empty buffer, to be used by producers;
» One for filled buffer, to be used by consumers;

Thread safe BB ADT: No races

void xproducer (void xarg)

16

int
for

lI
(1 = 0; 1 < loops; i++) {
Pthread_mutex_lock (&mutex) ;

while (count == 1)
Pthread_cond_wait (&empty, &mutex);
put (1) ;

Pthread_cond_signal (&£fill);
Pthread_mutex_unlock (&mutex) ;

void xconsumer (void *arg) {

int
for

i;

(1 = 0; 1 < loops; i++) {
Pthread_mutex_lock (&mutex) ;
while (count == 0)

Pthread_cond_wait (&fill, &mutex);
int tmp = get();
Pthread_cond_signal (&empty) ;
Pthread_mutex_unlock (&mutex) ;
printf ("$d\n", tmp);

N

	Condition Variables
	Bounded Buffer

