
Sistemas Operativos: Input/Output
Intro and HW/SW Interface

Pedro F. Souto (pfs@fe.up.pt)

April 14, 2012

Agenda

Introduction

I/O Controllers and I/O Buses

Modes of Data Transfer

Additional Reading

Agenda

Introduction

I/O Controllers and I/O Buses

Modes of Data Transfer

Additional Reading

Input/Output Devices

I Wide variety of I/O devices
Device Type Data rate
Keyboard Human-interface 10 byte/s
Mouse Human-interface 100 byte/s
Modem Communication 56 kbit/s
ISDN line Communication 128 kbit/s
Laser printer Human-interface 100 kbyte/s
Ethernet Communication 10 Mbit/s
USB Bus 12 Mbit/s
40× CD-ROM Storage 6 Mbyte/s
Fast Ethernet Communication 100 Mbit/s
EIDE (ATA-2) Storage 16.7 Mbyte/s
XGA Monitor Human-interface 60 Mbyte/s
Gigabit Ethernet Communication 1 Gbit/s
PCI bus Bus 528 Mbyte/s
HyperTransport Bus Bus 25.6 Gbyte/s

Agenda

Introduction

I/O Controllers and I/O Buses

Modes of Data Transfer

Additional Reading

I/O Controllers (1/3)

I An I/O controller is an electronic component that
I Controls the operation of the I/O device
I Some examples:

I Network card
I Video card
I Hard disk controller
I UART (serial port controller)

I The OS interfaces with the I/O controller
I It is also known as adapter

but not with the device itself
I Nevertheless, the developer of a device driver needs to

have a fairly detailed knowledge of the device’s operation

I/O Controllers (2/3)
Monitor

Keyboard
Floppy

disk drive

Hard

disk drive

Hard

disk

controller

Floppy

disk

controller

Keyboard

controller

Video

controller

MemoryCPU

Bus

I I/O controllers have 4 sets of registers
Control registers for configuring and controlling the

device’s operation
Status registers for monitoring the state of the device and

of the operations it performs
Input data registers (or buffers) for data transfer from the

device
Output data registers (or buffers) for data transfer to the

device

I/O Controllers (3/3)
I Access to these registers may be via:

Memory-mapped I/O
I Allows to use any memory access instruction for I/O
I There are some issues with caching and VM (to discuss

later)
I/O instructions such as in/out

I The system uses different address spaces for memory
and for I/O

I Protection is simplified by making these instructions
privileged

Two address One address space Two address spaces

Memory

I/O ports

0xFFFF…

0

(a) (b) (c)

I/O Buses (1/3)

I Except for slow processors, I/O controllers and memory
use different buses

CPU Memory I/O

Bus
All addresses (memory

and I/O) go here

CPU Memory I/O

CPU reads and writes of memory

go over this high-bandwidth bus

This memory port is

to allow I/O devices

access to memory

(a) (b)

I Even, when the controllers are memory-mapped
I In this case memory addresses have to be passed to the I/O

bus
I The bus on which a controller is, usually is not transparent

to the device driver developer

I/O Buses (2/3)

I On a PC, there are typically 3 types of buses:

ISA

bridge

Modem

Mouse

PCI

bridgeCPU

Main

memory

SCSI USB

Local bus

Sound

card

Printer Available

ISA slot

ISA bus

IDE

disk

Available

PCI slot

Key-

board

Mon-

itor

Graphics

adaptor

Level 2

cache

Cache bus Memory bus

PCI bus

I It is up the PCI bridge (or better the north-bridge) to filter
the addresses

I/O Buses (3/3)

source: http://commons.wikimedia.org/wiki/File:X58_Block_Diagram.png

Agenda

Introduction

I/O Controllers and I/O Buses

Modes of Data Transfer

Additional Reading

Programmed I/O
I The CPU transfers the data between memory and the

controller’s data registers

String to

be printedUser

space

Kernel

space

ABCD

EFGH

Printed

page

(a)

ABCD

EFGH

ABCD

EFGH

Printed

page

(b)

A
Next

(c)

AB
Next

copy_from_user(buffer, p, count); /* copy data to kernel */
for(i = 0; i < count; i++) { /* for all characters */

while(*printer_status_reg != READY); /* wait for printer */

printer_data_reg = p[i]; / output next character */
}

I The CPU must poll the controller to find out if the device is
ready for the next operation

I Often, it must also check whether the operation succeeded
I.e. we have busy waiting

Interrupt-Driven I/0 (1/4)

CPU
Interrupt

controller

Disk

controller

Disk drive

Current instruction

Next instruction

1. Interrupt

3. Return

2. Dispatch

to handler

Interrupt handler

(b)(a)

1

3

4 2

I Relies on the processor’s interrupt mechanism
I When the device

I completes a command
I detects an event (e.g. reception of a packet)

it generates an HW interrupt

Interrupt-Driven I/0 (2/4)

CPU

Interrupt

controller

3. CPU acks

 interrupt

2. Controller

 issues

 interrupt

1. Device is finished

Disk

Keyboard

Printer

Clock

Bus

12

6

9 3
48

57

111
210

I So that interrupt processing is more efficient, many
processors use vectored interrupts

1. The CPU and the interrupt controller execute a HW
handshake protocol

I So that the CPU learns which device generated the interrupt

2. The CPU then invokes the appropriate interrupt handler

Interrupt-Driven I/0 (3/4)
I Before executing the interrupt handler, the CPU

automatically stores some of its state in the stack
Question which stack should be used? The user’s process

stack?
I The SP contents may not be valid
I It may point to the “end” of a page, leading to a page

fault
I Another issue concerns the interrupt precision

I In pipelined or superscalar architectures, the CPU does not
execute one instruction at a time, but several

This is a HW feature with major implications on the OS

Fetch

unit

Fetch

unit

Fetch

unit

Decode

unit

Decode

unit

Execute

unit

Execute

unit

Execute

unit

Execute

unit

Decode

unit

Holding

buffer

(a) (b)

Interrupt-Driven I/0 (4/4)

I The processor programs the I/O controller to execute the
operation

copy_from_user(buffer, p, count); /* copy data to kernel */
while(*printer_status_reg != READY); /* wait for printer */

printer_data_reg = p[0]; / output first character */
scheduler(); /* wait for I/O */

I The I/O controller generates an interrupt when the
operation is done

I The interrupt handler does what must be done on that
event

if(count == 0) {
unblock_process();

} else {

*printer_data_register = p[i];
count--;
i++;

}
acknowledge_interrupt();
return_from_interrupt();

I/O with DMA (1/5)
Problem Interrupt-driven I/O avoids busy waiting but the

processor still has to transfer the data
I For large data blocks and high-speed devices such as

disk accesses, interrupt-driven I/O would lead to a very
high CPU utilization

Solution Use DMA, i.e. a dedicated processor that takes over
of data transfer for the processor

I The processor has to:
I configure the DMA controller for carrying out the data

transfer
I configure the I/O controller to carry out the operation

I The I/O controller signals the DMA controller when it is
ready to transfer data

I The DMA controller requests bus access, and does the
transfer when it is granted the bus

I The DMA controller interrupts the processor once the
data block has been transferred

I/O with DMA (2/5)

CPU

DMA

controller

Disk

controller

Main

memory

Buffer

1. CPU

programs

the DMA

controller

Interrupt when

done

2. DMA requests

transfer to memory 3. Data transferred

Bus

4. Ack

Address

Count

Control

Drive

I The CPU has to program the DMA controller with:
I The memory address with the data buffer
I The number of bytes/words to transfer
I Other parameters such:

I direction of data transfer (read/write)
I bus mode: cycle stealing vs. burst mode
I transfer mode: flyby vs. fetch-and-deposit

I/O with DMA (3/5)
Fetch and deposit DMA can be also used for

memory-to-memory transfers

source: National Instruments

Flyby DMA

source: National Instruments

I/O with DMA (4/5)

I The code for initiating the DMA operation (to print a buffer),
might be:
copy_from_user(buffer, p, count); /* copy data to kernel*/
set_up_DMA_io(); /* set up for DMA operation */
scheduler(); /* wait for I/O */

I The DMA controller generates an interrupt when the data
transfer is done to avoid busy-waiting

I The interrupt handler for the DMA controller might be
something like:

acknowledge_interrupt();

unblock_process();

return_from_interrupt();

I/O with DMA (5/5)

I A DMA controller capabilities vary widely:
I May handle more than one data transfer simultaneously
I May handle more than one data buffer per DMA request

I A system may have more than one DMA controller
I Usually, each I/O bus has its own DMA controller, which is

integrated into the bus controller chip

Issues
I Processor data cache coherency
I Physical memory addresses vs virtual memory

addresses (later)

Agenda

Introduction

I/O Controllers and I/O Buses

Modes of Data Transfer

Additional Reading

Additional Reading

Sistemas Operativos

I Sections 11.1: Objectivos do Subsistema de E/S
I Subsection 11.5.1: Communicação entre o Gestor e

o Periférico

Modern Operating Systems, 2nd. Ed.

I Section 5.1: Principles of I/O Hardware

Operating Systems Concepts, 7th. Ed.

I Section 13.1: Overview
I Section 13.2: Hardware

	Introduction
	I/O Controllers and I/O Buses
	Modes of Data Transfer
	Additional Reading

