
Sistemas Operativos: Concurrency (Part 4)

Pedro F. Souto (pfs@fe.up.pt)

April 9, 2012

Agenda

Synchronization Barriers

Messages

Remote Procedure Call (RPC)

Communication Channel Properties

Message-based Communication in Unix/Linux

Additional Reading

Agenda

Synchronization Barriers

Messages

Remote Procedure Call (RPC)

Communication Channel Properties

Message-based Communication in Unix/Linux

Additional Reading

Synchronization Barrier
I This allows the synchronization of n processes/threads

rather than just 2 threads

B
a

rr
ie

r

B
a

rr
ie

r

B
a

rr
ie

r

A A A

B B B

C C

D D D

Time Time Time

Process

(a) (b) (c)

C

source: Modern Operating Systems, 2nd. Ed.

I Processes that arrive at the barrier are made to wait until all other processes of the group arrive there
I Unblocking is performed automatically, when the last process arrives at the barrier

I Particularly useful in parallel programs that proceed in
phases

Synchronization Barrier: POSIX API

int pthread_barrier_init(pthread_barrier_t *restrict barrier,
const pthread_barrierattr_t *restrict attr,
unsigned count); // number of threads in group

int pthread_barrier_destroy(pthread_barrier_t *barrier);

int pthread_barrier_wait(pthread_barrier_t *barrier);

int pthread_barrierattr_destroy(pthread_barrierattr_t *attr);
int pthread_barrierattr_init(pthread_barrierattr_t *attr);

I count “specifies the number of threads that must call
pthread_barrier_wait() before any of them
successfully return from the call.”

I Apparently not available in Linux

Agenda

Synchronization Barriers

Messages

Remote Procedure Call (RPC)

Communication Channel Properties

Message-based Communication in Unix/Linux

Additional Reading

Comnunication (IPC) with Messages

Problem The synchronization mechanisms considered so far
(locks, semaphores, monitors and condition variables) cannot
be used in systems where threads/processes do not share
memory – for example, when they run on different computers

Solution Use messages:
processes/threads send/receive messages via a
communication channel:

Process Process

I Uma mensagem é uma sequência de bits indivísivel:
I O formato e o significado duma mensagem são

especificados pelo protocolo de comunicação.

Communication Primitives with Messages
I Message-based IPC uses mainly 2 primitives:
send(destination, &message)
receive(source, &message)

send()

receive()

I Often, source can be a special value, say ANY, which
allows a process to receive a message from any process

Message-based IPC: Semantics and Application

I Surprisingly, there are many variations on this theme:
naming: what are destination and source? Process

names? Names of channel endpoints?
sinchronization: do the sender/receiver synchronize/block

on message send/receive?
buffering: does the channel store the messages?
channel properties: loss of messages? duplication of

messages? order?
I Message-based IPC is typically studied in computer

networks and distributed systems courses
I Message-based IPC can also be used in systems that

share memory. E.g.:
I in parallel systems: MPI (Message Passing Interface);
I between processes/threads executing in the same

computer, or even processor

Message Passing: Naming

Direct Naming i.e. send() and receive() specify processes
identifiers

I To simplify the management of process identifiers, often
these are local to each computer

I In this case, one needs also to specify the computer on
which the process runs, e.g. the computer IP address

I Not a very flexible solution:
I If processes are not always assigned the same identifier,

applications must find the identifier the process has

Indirect Naming i.e. send() and receive() specify the
“name/address” of the channel end

I Known either as mailbox or port
I In this case, the processes may have to associate

themselves with the name/address of the port
I If this is not known a priori, some way to look it up must

be provided

Message Passing: Synchronization/Blocking

Asynchronous communication The sender does not
synchronize with the receiver

I send() never blocks, and the sender can proceed
immediately after it returns from send()

I The receiver blocks on receive() if the channel has
no message

Synchronous communication The sender synchronizes with
the receiver

I send() blocks, if the receiver is not ready to receive
I The receiver blocks on receive(), if the sender is not

ready to send

Message Passing: Buffering

I Buffering refers to the ability of the channel to store
messages in transit

I It is related to the capacity of the “communication channel”
I Not an issue in synchronous communication

I Conceptually, in synchronous communication there is no
need for “buffering”

I In practice, it is usually not possible to copy a message
directly from the sender to the receiver, thus there is usually
some buffering

I In the case of asynchronous communication there must be
some buffering. Conceptually, the buffer can be
Unbounded
Bounded In this case, if the buffer is full, when the sender

tries to send a message, either:
1. The sender must block, or
2. The message will be lost

Agenda

Synchronization Barriers

Messages

Remote Procedure Call (RPC)

Communication Channel Properties

Message-based Communication in Unix/Linux

Additional Reading

Remote Procedure Call (RPC)

Problem Message based programming with
send()/receive() is not very convenient

I depends on the properties of the communication
channel

I requires the specification of an application protocol
I resembles I/O programming

Idea invoke functions to be executed in remote computers
I familiar paradigm
I facilitates transparency
I particularly convenient for client-server applications

RPC: The Idea

Local Calls
Code For

Main Program

main

Call A

Exit

Code For

Call B

Return

Procedure A
Code For

Return

Procedure B

Remote Calls
Main Program
On machine 1

(client)

Procedure A
On machine 2

(server)

Procedure B
On machine 3

(server)

Exit
Respond
to caller

call remote
proc. B

to caller
Respond

main

proc. A
call remote

RPC: Some Remarks

I RPC is a higher-level of abstraction primitive than pure
message passing

I It is language-based (like monitors) rather than OS-based
I It encapsulates a request message and a response

message
I RPC is a kind of synchronous communication

I The caller blocks until the callee returns
I Some variations on the same theme:

Rendezvous RPC in which there is no concurrent
execution of calls

I Remote calls are performed sequentially, hence in
mutual exclusion

Remote Method Invocation (RMI) RPC for objects
I Invocation of methods (an object’s operation) of objects

that run in a different address space
I Very common since Java RMI (and C# Remote)

Agenda

Synchronization Barriers

Messages

Remote Procedure Call (RPC)

Communication Channel Properties

Message-based Communication in Unix/Linux

Additional Reading

Properties of a Communication Channel

I Connection-oriented vs. connectionless
I Reliablility: loss and duplication
I Order
I Abstraction: message-based vs stream-based
I Flow control
I Directionality and number of channel ends
I Identification of the communication entities

Connection-oriented vs. Connectionless

Connection-oriented: the processes must set up the
communication channel before exchanging data – like phone
communication;

Connectionless: the processes may exchange data
immediately without previously setting up a communication
channel – like standard (and electronic) mail communication

Reliability (loss)

Reliable: ensures that the data sent is received by the receiver
I under certain assumptions
I otherwise, it notifies the communicating processes

123 123

Unreliable: it is up to the communicating processes to detect
any communication problem and to take the appropriate
actions, if any

123 12

Reliability (duplication)

“Generates” duplicate: the channel may deliver duplicate
messages to the destination process(es) – it is up to the
latter to detect and discard them (if relevant)

123 23 2 1

No duplicates: the channel never delivers duplicate messages
to the destination process(es)

123 23 2 1

Order

Ordered: ensures that the data is delivered to the destination in
the order in which it was sent

123 12

Unordered: does not ensure data is delivered in the order it
was sent

I If maintaing the order is important it is up to the
application to ensure it

123 3 1 2

IMP order and reliability are orthogonal properties

Communication Abstraction

Message (datagram): the channel preserves message
boundaries – sequence of bytes processed as atomic
entities: analogous to standard (and electronic) mail

Stream: the channel does not preserve message boundaries.
Essentially it operates as a pipe for bytes: analogous to other
I/O streams.

3 2 1 3 2’ 1’

Other Charateristics of the Communication Channel

Flow control: prevents “fast” senders from flooding “slow”
receivers

I Senders do not necessarily have to be more powerful
than the receivers to be “faster”

Number of processes on the receiving end
unicast only one receiver
broadcast all processes in a “universe”
multicast a subset of processes in a “universe”

Directionality whether it can be used to exchange data in a
single direction or bidirectionally

Agenda

Synchronization Barriers

Messages

Remote Procedure Call (RPC)

Communication Channel Properties

Message-based Communication in Unix/Linux

Additional Reading

BSD Sockets API

I A socket can be seen as an end of a communication
channel

I An object to which one can plug several channels
I It specifies functions to send()/receive() messages

to/from sockets, among other functions
I It is very flexible, hence somewhat complex

I It was designed in the early 1980’s
I The Java API, designed about 10 years later, is much

simpler
I It is used virtually by all Internet applications

I Windows’ Winsock API is based on BSD sockets
I It is usually studied in computer networks and distributed

system courses
I But it can also be used for communication among

processes on the same computer

Pipes

Pipe Unidirectional channel used for the communication of byte
streams between processes

I Can be thought of as a FIFO buffer to wich the sender
process may send bytes and from which the receiver
process may receive bytes

I Pipes do not preserve message boundaries

3 2 1 3 2’ 1’

Pipes: API

#include <unistd.h>

int pipe(int fd[2]) creates a pipe
I Upon success, fd[] is initialized with the file descriptors

of the two ends of the pipe:
fd[0] is the receive/read end of the pipe

I Receiving is via the read() system call
fd[1] is the send/write end of the pipe

I Sending is via the write() system call

I Pipes can be accessed only via these descriptors.
I Pipes can be used only for data exchange among:

I The process that created it, by invoking pipe()
I Its descendats, that inherit the descriptors via fork()

I A process should close the end of the pipe that it does not
use

Pipes: Code Fragment
/* IMPORTANT: No error checking */
#include <unistd.h>
void main(void) {

int fd[2]; // For the pipe’s end

pipe(fd);
if(fork() == 0) { // child is sender

close(fd[0]); // close read end
... // use write(fd[1],...) to send

} else { // parent is reader
close(fd[1]); // close write end
... // use read(fd[0],...) to receive

}
}

I Not sure which is the read and which is the write end?
Use macros:
#define PIPE_RD_END 0
#define PIPE_WR_END 1

I How can we use pipes for bidirectional communication?

Pipes and Filters

I Pipes allow the development of powerful transformations
by pipelining filters
Filter Program that reads from its standard input, performs

some transformation, and outputs to its standard output
I Many useful Unix programs, such as head, sort, grep,
sed and awk are designed as filters to support their use
in pipelines

I For example:
ps -ax | wc -l

counts the number of processes running on the system
I Implementing filter pipelines requires:

I Creating pipes for communication between filters
I Redirecting the standard input/output to the appropriate

end of the pipes

Pipes: Filter Example
1: #include <unistd.h>
2:
3: int main(void) {
4: int fd[2];
5: char *ps_args[] = {"ps", "ax", NULL};
6: char *wc_args[] = {"wc", "-l", NULL};
7:
8: pipe(fd);
9:

10: if (fork() != 0) { // ps is parent, but need not be
11: close(1); // redirect stdout to
12: dup(fd[1]); // the write end of the pipe
13: close(fd[0]); // first filter does not read pipe
14: execve("/bin/ps", ps_args, NULL);
15: } else { // wc is child, but need not be
16: close(0); // redirect stdin to
17: dup(fd[0]); // the read end of the pipe
18: close(fd[1]); // second filter does not write pipe
19: execve("/usr/bin/wc", wc_args, NULL);
20: }
21: return 0;
22: }

FIFOs (Named Pipes)
I The pipes API can be used for communication only

between processes that are descendants of the process
that created it

I Pipes can be accessed only using the file descriptors
returned by pipe()

I File descriptors can be passed to other processes only via
fork()

I FIFOs are like pipes but are named/identified by a
pathname in the file system

I Can be used for communication between any pair of
processes with the appropriate permissions (OS
dependent)

I Access to FIFOs is done as for any file:
I Using open()/close(), and read()/write() syscalls
I But data exchange with FIFOs needs not be via any

permanent storage media
I Creation of a FIFO uses a function different from open():
int mkfifo(const char *pathname, mode_t mode);

Alternatively, you can use the mknod() syscall

Agenda

Synchronization Barriers

Messages

Remote Procedure Call (RPC)

Communication Channel Properties

Message-based Communication in Unix/Linux

Additional Reading

Additional Reading

Sistemas Operativos

I Subsection 6.5.5 – Barriers
I Sections 10.1, 10.2, 10.3.1 – Messages

Modern Operating Systems, 2nd. Ed.

I Subsections 2.3.8 and 2.3.9 – Message Passing &
Barriers

I Section 8.2 – Multicomputers (Messages and RPCs)

Operating Systems Concepts, 7th. Ed.

I Subsection 3.4.2 – Message Passing Systems
I Subsection 3.6.2 – Remote Procedure Calls

	Synchronization Barriers
	Messages
	Remote Procedure Call (RPC)
	Communication Channel Properties
	Message-based Communication in Unix/Linux
	Additional Reading

