
Sistemas Operativos: Concurrency (Part 3)

Pedro F. Souto (pfs@fe.up.pt)

March 30, 2012



Agenda

Classic Synchronization Problems

Synchronization in the Kernel

Additional Reading



Agenda

Classic Synchronization Problems

Synchronization in the Kernel

Additional Reading



Producer-Consumer Problem

I This is the name of the general problem behind the
bounded-buffer problem.

I The buffer instead of having a finite size is infinite
I Producers can always add an item to the “buffer”

I Consumers still have to wait on empty “buffer”
I This is not as theoretical as it sounds

I Implement the buffer with a linked-list rather than an array
typedef {

void *head;
void *tail;

} queue_t;
void enqueue(queue_t *q, void *obj);
void *dequeue(queue_t *q);



Sleeping Barber (1/2)

I Models the interaction between clients (customers) and
servers (barber)

source: Modern Operating Systems, 2nd. Ed.



Sleeping Barber (2/2)
I The barber shop has n waiting seats, in addition to the

barber chair
I The barber:

I Can serve at most one customer at a time
I If there are no customers, the barber sleeps (hence the

name) in the barber chair
I When a customer arrives

I If the barber is sleeping, it wakes it up
I Otherwise, if there is an empty seat the customer waits
I Else, it goes away

I Note that there is no data transfer in this problem as
formulated

I The issue is the synchronization between the processes
I A more general version of this problem considers the case

where there is more than one barber.

void barber(void);
void customer(void);



The Readers and Writers Problem
I Models access to a “database”

I This needs not be a relational database, but just a storage
service supporting two basic operations
read()
write()

I Processes/threads can play two roles:
readers which invoke only the read() operation
writers which invoke the write() operation

I Correctness conditions:
I A writer must access the database in mutual exclusion

I I.e., when a writer accesses the database, no other process
can access the database

I In practice, we restrict access to a data item, while allowing
concurrent accesses to different data items

I Readers can access the database concurrently
I This has some similarities with the critical section problem

I Mutual exclusion ensures correctness



The Readers and Writers Problem: Fairness (1/2)

The issue is ensure efficiency with fairness
When a reader is accessing the DB

I A writer trying to access the DB must wait
I A reader trying to access the DB may go ahead

Issue How to prevent writers’ starvation?
I Must ensure that the arrival of “new” readers does not
prevent a writer from ever accessing the DB

When a writer “leaves” the DB
I If there are:

I Only writers waiting
I Or, only readers waiting

the action to take is obvious.
Issue What if there are readers and writers wishing to

access the DB?



The Readers and Writers Problem: Fairness (2/2)
I Solutions that may lead to starvation are more or less

straightforward
I And so are solutions that ensure mutual exclusion

I Solutions that ensure fairness efficiently are more difficult
I An approach is to try to be efficient without affecting

fairness:
I If a writer is made to wait, no further reads are allowed to

access the database
I When a writer “leaves” the database, acess is given to the

process that has been waiting the longest.
I If that process is a reader, all other readers wishing to

access the DB are also allowed to do it
I Implementing this solution with available synchronization

mechanisms is not always easy
I Most often, there is no way to know which process has

been waiting for longer
I In this case, we may have to be less fair, but still avoid

starvation



Read/Write Locks: POSIX API

// Life cycle calls
int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock,

const pthread_rwlockattr_t *restrict attr);
int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);

// For locking a read-write lock for reading
int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

// For locking a read-write lock for writing
int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

// Timed lock calls: thread blocks at most abs_timeout
int pthread_rwlock_timedrdlock(pthread_rwlock_t *rwlock,

const struct timespec *restrict abs_timeout);
int pthread_rwlock_timedwrlock(pthread_rwlock_t *rwlock,

const struct timespec *restrict abs_timeout);

I Apparently not available in Linux



Dining Philosophers

I Models the problem of allocating several resources among
several processes without deadlocks nor starvation

src: Modern Operating Systems, 2nd. Ed.

I Five philosophers seat at a round
table, with one plate of spaghetti
per philosopher and one fork
between each pair of plates

I The life of a philosopher consists
of alternating periods of eating
and thinking

I In order to eat, a philosopher
needs to pick up both forks next
to his plate

I After eating, a philosopher puts
down both forks before starting to
think



Dining Philosophers: First Try

Idea Each philosopher picks up first the fork on its left
(assuming counterclockwise numbering)

#define N 5 /* Number of philosophers */

void philosopher(int i) {
while(1) {

think();
take_fork(i);
take_fork((i+1)%N);
eat();
put_fork(i);
put_fork((i+1)%N);

}
}

Problem If all philosopher pick their left fork at the same time,
none of them will be able to pick their right fork: deadlock



Dining Philosophers: More Tries

Solution (not really) If a philosopher cannot pick up its right
fork, it puts down its left fork, and tries again later.

Problem If later all philosophers pick their left fork
simultaneously, the same sequence of events can be
replayed forever

I Although no process blocks, there is no progress, a
situation known as starvation

I One possible solution is for each philosopher to pick up
both its forks in mutual exclusion.

I If they are not both available, it must pick none, and leave
the critical section

I Yet another solution is to use asymmetry:
I Odd numbered philosophers pick up first their left fork
I Whereas even numbered philosophers pick up first their

right fork



Agenda

Classic Synchronization Problems

Synchronization in the Kernel

Additional Reading



Facets of Kernel Synchronization

Implementation of the synchronization mechanisms
I Many synchronization mechanisms have to be

implemented by the kernel
Synchronization in the kernel itself

I Several processes/threads can make system calls
concurrently

I The kernel code implementing the system calls may
modify kernel data structures

I Interrupt handlers need to access kernel data structures
that may be accessed by other parts of the kernel code

I The concurrent execution of kernel code by different
processes/threads and of interrupt handlers requires
synchronization to prevent race conditions



Nonpreemptive Kernels

I Solution used mostly with uniprocessors
I A process/thread running in kernel mode is never

preempted. A process/thread in kernel mode runs until it:
I Exits the kernel (the system call returns)
I Blocks
I Voluntarily yields the CPU

I By careful programming, it is possible to avoid race
conditions between processes/threads running in kernel
mode

I Race conditions with interrupt handlers can be avoided by:
I Disabling interrupts when accessing shared data structures
I Often, the HW allows to selectively inhibiting interrupts

I This allows the system to be more responsive



Synchronization on Multiprocessors (1/2)
OS instance per CPU

Has

private


OS

CPU 1

Has

private


OS

CPU 2

Has

private


OS

CPU 3

Has

private


OS

CPU 4 Memory I/O

1 2

Data Data

3 4
Data Data

OS code

Bus

I When a process makes a system call it is handled by its
own CPU

OS on Master CPU also called Master-Slave

Master
runs
OS

CPU 1

Slave
runs user
processes

CPU 2

Slave
runs user
processes

CPU 3

User
processes

OS

CPU 4 Memory I/O

Bus

Slave
runs user
processes

I System calls are redirected to the master CPU

I OS synchronization can be done mostly as on
uniprocessors

I Races can be avoided using nonpremptive kernel



Synchronization on Multiprocessors (2/2)
Single OS which can be run by any CPU

Runs
users and
shared OS

CPU 1

Runs
users and
shared OS

CPU 2

Runs
users and
shared OS

CPU 3

Runs
users and
shared OS OS

CPU 4 Memory I/O

Locks

Bus

Problem Race conditions
Solution Several:

Single lock whole kernel in the same critical section
I At any time only one process can be inside the kernel
I Requires minimal changes from uniprocessor code

Multiple locks OS components are independent
I However, there are some data structures, such as the

process table, that are accessed by otherwise
independent parts of the kernel

I Access to multiple data structures may lead to
deadlock



Agenda

Classic Synchronization Problems

Synchronization in the Kernel

Additional Reading



Additional Reading

Sistemas Operativos

I Section 6.3
I Section 5.6

Modern Operating Systems, 2nd. Ed.

I Section 2.4
I Section 8.1

Operating Systems Concepts, 7th. Ed.

I Subsection 6.6


	Classic Synchronization Problems
	Synchronization in the Kernel
	Additional Reading

