
Sistemas Operativos: Input/Output
Intro and HW/SW Interface

Pedro F. Souto (pfs@fe.up.pt)

March 9, 2016

Agenda

Introduction

I/O Controllers and I/O Buses

Modes of Data Transfer

Additional Reading

Agenda

Introduction

I/O Controllers and I/O Buses

Modes of Data Transfer

Additional Reading

Input/Output Devices

I Wide variety of I/O devices
Device Type Data rate
Keyboard Human-interface 10 byte/s
Mouse Human-interface 100 byte/s
Modem Communication 56 kbit/s
ISDN line Communication 128 kbit/s
Laser printer Human-interface 100 kbyte/s
Ethernet Communication 10 Mbit/s
USB Bus 12 Mbit/s
40× CD-ROM Storage 6 Mbyte/s
Fast Ethernet Communication 100 Mbit/s
EIDE (ATA-2) Storage 16.7 Mbyte/s
XGA Monitor Human-interface 60 Mbyte/s
Gigabit Ethernet Communication 1 Gbit/s
PCI bus Bus 528 Mbyte/s
HyperTransport Bus Bus 25.6 Gbyte/s

Agenda

Introduction

I/O Controllers and I/O Buses

Modes of Data Transfer

Additional Reading

I/O Controllers (1/3)
I An I/O controller is an electronic component that

I Controls the operation of the I/O device
I Some examples:

I Network card
I Video card
I Hard disk controller
I UART (serial port controller)

Monitor

Keyboard
Floppy

disk drive

Hard
disk drive

Hard
disk

controller

Floppy
disk

controller

Keyboard
controller

Video
controller

MemoryCPU

Bus

I The OS interfaces with the I/O controller (adapter), but not
with the device itself

I Nevertheless, the developer of a device driver needs to
have a fairly detailed knowledge of the device’s operation

I/O Controllers (2/3)

I I/O controllers have 4 sets of registers
Control registers for configuring and controlling the

device’s operation
Status registers for monitoring the state of the device and

of the operations it performs
Input data registers (or buffers) for data transfer from the

device
Output data registers (or buffers) for data transfer to the

device

I/O Controllers (3/3)

I Access to these registers may be via:
I/O instructions such as in/out

I The system uses different address spaces for memory
and for I/O

I Protection is simplified by making these instructions
privileged

Memory-mapped I/O
I Device registers are accessed like memory locations,

using load (read) or store (write) instructions
Two address One address space Two address spaces

Memory

I/O ports

0xFFFF…

0

(a) (b) (c)

I/O Buses (1/3)

I Except for slow processors, I/O controllers and memory
use different buses

CPU Memory I/O

Bus
All addresses (memory

and I/O) go here

CPU Memory I/O

CPU reads and writes of memory
go over this high-bandwidth bus

This memory port is
to allow I/O devices
access to memory

(a) (b)

I The use of multiple I/O buses has 2 main reasons:
Physics the faster the shorter must a bus be
Costs it is expensive to engineer a high-speed bus

I The bus on which a controller is, usually is not transparent
to the device driver developer

I/O Buses (2/3)

I On a PC, there are typically 3 types of buses:

ISA
bridge

Modem

Mouse

PCI
bridgeCPU

Main
memory

SCSI USB

Local bus

Sound
card

Printer Available
ISA slot

ISA bus

IDE
disk

Available
PCI slot

Key-
board

Mon-
itor

Graphics
adaptor

Level 2
cache

Cache bus Memory bus

PCI bus

I It is up the PCI bridge (or better the north-bridge) to filter
the addresses

I/O Buses (3/3)

source: http://commons.wikimedia.org/wiki/File:X58_Block_Diagram.png

Agenda

Introduction

I/O Controllers and I/O Buses

Modes of Data Transfer

Additional Reading

Programmed I/O (1/2)

I The CPU transfers the data between memory and the
controller’s data registers

String to
be printedUser

space

Kernel
space

ABCD
EFGH

Printed
page

(a)

ABCD
EFGH

ABCD
EFGH

Printed
page

(b)

A
Next

(c)

AB
Next

copy_from_user(buffer, p, count); /* copy data to kernel */
for(i = 0; i < count; i++) { /* for all characters */

while(*printer_status_reg != READY); /* wait for printer */

printer_data_reg = p[i]; / output next character */
}

I The actual protocol may differ from one controller to
another

Programmed I/O (2/2)

I The CPU must poll the controller to find out if the device is
ready for the next operation

I Often, it must also check whether the operation succeeded

I.e. we have busy waiting:

Interrupt-Driven I/0 (1/4)

CPU
Interrupt
controller

Disk
controller

Disk drive

Current instruction

Next instruction

1. Interrupt

3. Return

2. Dispatch
to handler

Interrupt handler

(b)(a)

1

3

4 2

I Relies on the processor’s interrupt mechanism
I When the device

I completes a command
I detects an event (e.g. reception of a packet)

it raises an HW interrupt
I The CPU jumps into the OS and executes an interrupt

handler (IH)/interrupt service routine ISR)

Recall: Timer Interrupt Handling

Interrupt-Driven I/0 (2/4)

CPU

Interrupt
controller

3. CPU acks
 interrupt

2. Controller
 issues
 interrupt

1. Device is finished

Disk

Keyboard

Printer

Clock

Bus

12

6

9 3
48

57

111
210

I So that interrupt processing is more efficient, many
processors use vectored interrupts

1. The CPU and the interrupt controller execute a HW
handshake protocol

I So that the CPU learns which device generated the interrupt

2. The CPU then invokes the appropriate interrupt handler

Interrupt-Driven I/0 (3/4)

I The processor programs the I/O controller to execute the
operation

copy_from_user(buffer, p, count); /* copy data to kernel */
while(*printer_status_reg != READY); /* wait for printer */

printer_data_reg = p[0]; / output first character */
scheduler(); /* wait for I/O */

I The I/O controller generates an interrupt when the
operation is done

I The interrupt handler does what must be done on that
event

if(count == 0) {
unblock_process();

} else {

*printer_data_register = p[i];
count--;
i++;

}
acknowledge_interrupt();
return_from_interrupt();

Interrupt-Driven I/0 (4/4)

I Using interrupts, we can overlap I/O and processing, e.g.
the OS may run another process

I Interrupts are not always the best solution
I Handling interrupts has some overhead
I Context switch has also some costs

I In general:
I Interrupts are the best solution for "slow" devices
I Polling may be preferrable for "fast" devices

I/O with DMA (1/4)

Problem Interrupt-driven I/O avoids busy waiting but the
processor still has to transfer the data

I For large data blocks and high-speed devices such as
disk accesses, interrupt-driven I/O still leads to a very
high CPU utilization

I CPU must copy a large amount of data to device, e.g.
disk or network card

I/O with DMA (2/4)

CPU

DMA
controller

Disk
controller

Main
memory

Buffer

1. CPU
programs
the DMA
controller

Interrupt when
done

2. DMA requests
transfer to memory 3. Data transferred

Bus

4. Ack

Address

Count

Control

Drive

Solution Use DMA, i.e. a dedicated processor that takes over
of data transfer for the processor

I The processor has to configure:
I the DMA controller for carrying out the data transfer
I the I/O controller to carry out the operation

I The I/O controller signals the DMA controller when it is
ready to transfer data

I The DMA controller requests bus access, and does the
transfer when it is granted the bus

I The DMA controller interrupts the processor once the
data block has been transferred

I/O with DMA (3/4)
Fetch and deposit DMA can be also used for

memory-to-memory transfers

source: National Instruments

Flyby DMA

source: National Instruments

I/O with DMA (4/4)
I The code for initiating the DMA operation (to print a buffer),

might be:
copy_from_user(buffer, p, count); /* copy data to kernel*/
set_up_DMA_io(); /* set up for DMA operation */
scheduler(); /* wait for I/O */

I The DMA controller generates an interrupt when the data
transfer is done to avoid busy-waiting

I The interrupt handler for the DMA controller might be
something like:

acknowledge_interrupt();

unblock_process();

return_from_interrupt();
I With DMA the CPU is relieved of data transfer and can

perform useful computation while data is moved between
memory and the I/O device

Agenda

Introduction

I/O Controllers and I/O Buses

Modes of Data Transfer

Additional Reading

Additional Reading
OSTEP

I Sections 36.1-36.6: I/O Devices

Sistemas Operativos

I Sections 11.1: Objectivos do Subsistema de E/S
I Subsection 11.5.1: Communicação entre o Gestor e

o Periférico

Modern Operating Systems, 2nd. Ed.

I Section 5.1: Principles of I/O Hardware
I Section 5.2: Principles of I/O Software

Operating Systems Concepts, 7th. Ed.

I Section 13.1: Overview
I Section 13.2: Hardware

http://pages.cs.wisc.edu/~remzi/OSTEP/file-devices.pdf

	Introduction
	I/O Controllers and I/O Buses
	Modes of Data Transfer
	Additional Reading

