
Sistemas Operativos: Process Scheduling

Pedro F. Souto (pfs@fe.up.pt)

March 6, 2016



Roadmap

Process Scheduling

Further Reading



Process Scheduling
Problem: when there are more than one process ready for

executing, which one should execute?

running

waitingready

1

2

3

4

Solução: the OS, more specifically the scheduler, executes a
scheduling algorithm to decide
I.e., the scheduler determines to which process the CPU
should be assigned.

Note So far we have focused on the mechanisms, i.e. the how,
used by the OS to implement the process abstraction, we will
now look into policies, i.e. the when and what



Workload Assumptions

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. Once started, each job runs to completion
4. All jobs only use the CPU (i.e., they do not perform I/O)
5. The run-time of each job is known

Job This is usually a process
Note All these assumptions are unrealistic. We’ll drop them

one-by-one



Scheduling Metric

Metric Parameter used to measure something.
Turnaround time, Tturnaround time interval between the arrival, Tarr

of a process and its completion, Tcomp

Tturnaround = Tcomp − Tarr

I Many other metrics make sense for scheduling. E.g. fairness
I This may not be the best metric for interactive workloads.



First Come First Served (FCFS) or FIFO

I As its name suggests, the first job to arrive is the first to be
served, i.e. according to its order in some queue.

I E.g. 3 jobs, A, B and C, each with 10 time units execution
time, arrive in that order:

TA = 10 TB = 20 TC = 30

Tav =
TA + TB + TC

3
= 20

I But what if we drop the first assumption and TA = 100?

TA = 100 TB = 110 TC = 120

Tav =
TA + TB + TC

3
= 110

I This is known as the convoy effect. How can we avoid it?



Shortest Job First (SJF)

I To avoid penalizing the shortest jobs, these are run before
longer jobs

TA = 120 TB = 10 TC = 20

Tav =
TA + TB + TC

3
= 50

I Can be shown to be optimal, given the assumptions.
I But what if we drop the second assumption and B and C

arrive 10 time units after A?

TA = 100 TB = 110 TC = 120

Tav =
TA + TB + TC

3
= 110

I How can we improve this?



Shortest Time to Completion First (STCF)

I Need to drop 3rd assumption, i.e. allow the arrival of a
process to preempt a running process

I SJF is non-preemptive

TA = 120 TB = 10 TC = 20

Tav =
TA + TB + TC

3
= 50

I Can be shown to be optimal, given the assumptions.



What about I/O? (1/2)

I During their execution, processes (and threads) alternate
I bursts of CPU usage
I with periods waiting for I/O

I Depending on the relative size of these periods, processes
can be classified as: CPU-bound (a) or IO-bound (b)

Long CPU burst

Short CPU burst

Waiting for I/O

(a) 

(b) 

Time

I Therefore, let’s drop assumption 4
I All jobs only use the CPU (i.e., they do not perform I/O)



What about I/O? (2/2)

I What to do if a process blocks when it initiates an I/O
operation?

I If it does not schedule another process to run, the CPU will be
wasted (Fig. a)

(a) (b)
I Thus, the scheduler should (Fig. b):

1. Schedule a ready process to run, when another blocks on an
I/O operation

2. Pick the best process to run, when completion of an I/O
operation unblocks a process

I This allows overlapping processing and I/O improving a
system’s global performance



Response Time: a new metric
I The turnaround time may be a good metric for early batch

computer systems, but not so for time sharing systems
I For these systems interactive performance is also important,

and a better metric for that is response time, Tresp, the time
interval between the arrival of a job and the first time it is
schedule to run, Trun:

Tresp = Trun − Tarr
I Neither SJF nor STCF are particularly good with this metric

I Often they run jobs until completion before starting to run other
jobs for the first time

TA = 0 TB = 5 TC = 10

Tav =
TA + TB + TC

3
= 5

I The response time would be much worse, if the execution time
was 100 rather than 10 time units



Round-Robin (RR)
I RR runs each job for a time-slice/(scheduling) quantum

rather than until completion (drop 5th assumption)
I When a process runs until the end of its slice, the scheduler:

1. puts it at the end of the run queue;
2. picks the first job in the run queue

thus jobs run in turns, or round-robin
I The length of a time-slice must be multiple of the

timer-interrupt period

TA = 0 TB = 1 TC = 2

Tav =
TA + TB + TC

3
= 1

I By reducing the time-slice we can improve the response time
I At the cost of additional context-switches, which are not free

I Also, RR turnaround time tends to be poor:
I RR is inherently fair, and this usually hurts performance



Real Workloads

I Most real workloads are a mix of CPU-bound and interactive
jobs

I Round-robin cannot be tuned for both:
CPU-bound jobs the quantum should be large
Interactive jobs the quantum should be short

I Furthermore, most of the times the OS does not know
whether a job is CPU-bound or interactive

I Many jobs alternate between phases in which they are
CPU-bound and phases in which they are not

I Need a scheduler that is able to handle this kind of workload



Multi-Level Feedback Queue (MLFQ)

I Use multiple queues each with a
different priority level

I Each job has a priority, which may
change with time

I Basic scheduling rules:
1. If priority(A) > priority(B), then A

runs
2. If priority(A) = priority(B), then A

and B run in RR

Key How should the priority of a job change?
3. A job starts at the highest priority

4a. If a job uses up its entire time slice, its priority is reduced
4b. If a job gives up the CPU before its time slice is up, it keeps

its priority



MLFQ Examples
Single Long-running job Then, a short job comes

I After n − 1 time-slices,
where n is the number of
levels, a long-running will
sink into the lowest priority
queue

I An incoming short job
preempts the
longer-running job

I What flaws can you see in our current solution?



MLFQ: Avoiding Starvation

Issue: Starvation If short running jobs keep arriving, long running
jobs may starve, i.e. will not get a chance to run

Fix: Periodically boost the priority of a long running job to the
highest priority

Rule 5. After some time S, move all the jobs in the system to the
topmost queue



MLFQ: Avoiding Gaming

Issue: Gaming A process may give up the CPU just shortly before
the end of the time slice, and therefore keep the highest priority

Fix: Accumulate CPU cycles across time-slices, and reduce
priority when it uses up its allotment for the current level.

Rule 4: Once a job uses up its time alllotment at a given level, its
priority is reduced



MLFQ Conclusion
1. If priority(A) > priority(B), A runs
2. If priority(A) = priority(B), A and B take turns (RR)
3. When a job enters the system, it is placed at the highest

priority (topmost queue)
4. Once a job uses up its time allotment at a given level, its

priority is reduced
5. After some time period S, move all the jobs to the topmost

queue

Variations Some MLFQ schedulers
allow for different time-slices at
different priority levels

Criticism Too many voodo constants
to tune



Roadmap

Process Scheduling

Further Reading



Further Reading

OSTEP
I Scheduling: Introduction
I Scheduling: MLFQ

Sistemas Operativos

I Secções 4.1, 4.2, 4.3 e 4.4

Modern Operating Systems, 2nd. Ed.

I Sections 2.5 e 10.3

Operating Systems Concepts

I Sections 5.1, 5.2 , 5.3 (and 5.4)

http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

	Process Scheduling
	Further Reading

