
Sistemas Operativos: Concurrency
Semaphores

Pedro F. Souto (pfs@fe.up.pt)

April 12, 2016



Roadmap

What is a semaphore?

Mutual Exclusion with Semaphores

"Joining" with Semaphores

Bounded Buffer with Semaphores



Introduction

I A semaphore is a powerful synchronization primitive. It can be
used for:
Mutual Exclusion like mutexes/locks
Synchronization without busy waiting like condition variables

I A semaphore is a kind of a counter that supports two
operations:
up actually, sem_post() in libpthreads
down actually, sem_wait() in libpthreads

whose semantics are slightly unusual.



Definition and libpthread API (1/2)

I In addition, to incrementing/decrementing the semaphores
value

I When a thread calls sem_wait() it may
either return immediately, if its value was positive upon calling

or block, otherwise
I When a thread calls sem_post() it:

I unblocks one thread, if some is blocked on the semaphore;

I We can think that each each semaphore has a queue for
waiting threads.

I When a semaphore value is negative, it gives the number of
waiting threads



libpthread API (2/2)

I The libpthread API defines also an operation for initializing
a semaphore

I Indeed, depending on the problem to solve, we may need to
initialize a semaphore with a proper value;

I Using semaphores for solving concurrency problems requires
some ingenuity, so let’s look at some examples



Roadmap

What is a semaphore?

Mutual Exclusion with Semaphores

"Joining" with Semaphores

Bounded Buffer with Semaphores



Application: Ensuring Mutual Exclusion

Question What should the initial value of the semaphore be?

I Remember that we want the code to be executed in mutual
exclusion.



Application: Ensuring Mutual Exclusion

Question What should the initial value of the semaphore be?
I Remember that we want the code to be executed in mutual

exclusion.



Mutual Exclusion Execution



Roadmap

What is a semaphore?

Mutual Exclusion with Semaphores

"Joining" with Semaphores

Bounded Buffer with Semaphores



Example: Simple Synchronization (Joining)
Problem A thread must wait for another one
Solution

Question What should the initial value of the semaphore be?



Example: Simple Synchronization (Joining)
Problem A thread must wait for another one
Solution

Question What should the initial value of the semaphore be?



Joining Execution 1

I The waiting thread calls sem_wait() before the other calls
sem_post()



Joining Execution 2

I The signaling thread calls sem_post() before the other calls
sem_wait()



Roadmap

What is a semaphore?

Mutual Exclusion with Semaphores

"Joining" with Semaphores

Bounded Buffer with Semaphores



Bounded Buffer with Semaphores

Question How to make this thread safe?
Idea Use 2 semaphores just like in the solution based on condition

variables
empty which counts the number of empty positions in the BB

Question who should wait on this semaphore?
full which counts the number of full positions in the BB



Bounded Buffer with Semaphores

Question How to make this thread safe?

Idea Use 2 semaphores just like in the solution based on condition
variables
empty which counts the number of empty positions in the BB

Question who should wait on this semaphore?
full which counts the number of full positions in the BB



Bounded Buffer with Semaphores

Question How to make this thread safe?
Idea Use 2 semaphores just like in the solution based on condition

variables
empty which counts the number of empty positions in the BB

Question who should wait on this semaphore?

full which counts the number of full positions in the BB



Bounded Buffer with Semaphores

Question How to make this thread safe?
Idea Use 2 semaphores just like in the solution based on condition

variables
empty which counts the number of empty positions in the BB

Question who should wait on this semaphore?
full which counts the number of full positions in the BB



Bound Buffer with Semaphores: 1st Try (1/2)



Bound Buffer with Semaphores: 1st Try (2/2)

Question What is wrong with this solution?

Answer It does work properly for MAX=1
But what if MAX>1?
What if multiple threads try to access the BB simultaneously?

Solution?

I Let’s add a semaphore to ensure mutual exclusion



Bound Buffer with Semaphores: 1st Try (2/2)

Question What is wrong with this solution?
Answer It does work properly for MAX=1

But what if MAX>1?
What if multiple threads try to access the BB simultaneously?

Solution?

I Let’s add a semaphore to ensure mutual exclusion



Bound Buffer with Semaphores: 1st Try (2/2)

Question What is wrong with this solution?
Answer It does work properly for MAX=1

But what if MAX>1?

What if multiple threads try to access the BB simultaneously?
Solution?

I Let’s add a semaphore to ensure mutual exclusion



Bound Buffer with Semaphores: 1st Try (2/2)

Question What is wrong with this solution?
Answer It does work properly for MAX=1

But what if MAX>1?
What if multiple threads try to access the BB simultaneously?

Solution?

I Let’s add a semaphore to ensure mutual exclusion



Bound Buffer with Semaphores: 1st Try (2/2)

Question What is wrong with this solution?
Answer It does work properly for MAX=1

But what if MAX>1?
What if multiple threads try to access the BB simultaneously?

Solution?

I Let’s add a semaphore to ensure mutual exclusion



Bound Buffer with Semaphores: 1st Try (2/2)

Question What is wrong with this solution?
Answer It does work properly for MAX=1

But what if MAX>1?
What if multiple threads try to access the BB simultaneously?

Solution?

I Let’s add a semaphore to ensure mutual exclusion



Bounded Buffer with Semaphores: 2nd Try (1/2)



Bounded Buffer with Semaphores: 2nd Try (2/2)

Question What is the problem now?

What if a consumer starts before any producer?
Deadlock ensues:

I The consumer waits for a producer to add an item to the BB
I But the producer cannot do it, because it cannot enter the

CS without the consumer releasing the mutex
Generally a deadlock is a race-condition in which each thread of a

set (of threads) is waiting for an event that can be generated
only by another thread in this set.

How to fix this?
Answer Acquire the mutex just before accessing the BB



Bounded Buffer with Semaphores: 2nd Try (2/2)

Question What is the problem now?
What if a consumer starts before any producer?

Deadlock ensues:
I The consumer waits for a producer to add an item to the BB
I But the producer cannot do it, because it cannot enter the

CS without the consumer releasing the mutex
Generally a deadlock is a race-condition in which each thread of a

set (of threads) is waiting for an event that can be generated
only by another thread in this set.

How to fix this?
Answer Acquire the mutex just before accessing the BB



Bounded Buffer with Semaphores: 2nd Try (2/2)

Question What is the problem now?
What if a consumer starts before any producer?
Deadlock ensues:

I The consumer waits for a producer to add an item to the BB
I But the producer cannot do it, because it cannot enter the

CS without the consumer releasing the mutex
Generally a deadlock is a race-condition in which each thread of a

set (of threads) is waiting for an event that can be generated
only by another thread in this set.

How to fix this?
Answer Acquire the mutex just before accessing the BB



Bounded Buffer with Semaphores: 2nd Try (2/2)

Question What is the problem now?
What if a consumer starts before any producer?
Deadlock ensues:

I The consumer waits for a producer to add an item to the BB
I But the producer cannot do it, because it cannot enter the

CS without the consumer releasing the mutex
Generally a deadlock is a race-condition in which each thread of a

set (of threads) is waiting for an event that can be generated
only by another thread in this set.

How to fix this?

Answer Acquire the mutex just before accessing the BB



Bounded Buffer with Semaphores: 2nd Try (2/2)

Question What is the problem now?
What if a consumer starts before any producer?
Deadlock ensues:

I The consumer waits for a producer to add an item to the BB
I But the producer cannot do it, because it cannot enter the

CS without the consumer releasing the mutex
Generally a deadlock is a race-condition in which each thread of a

set (of threads) is waiting for an event that can be generated
only by another thread in this set.

How to fix this?
Answer Acquire the mutex just before accessing the BB



Bounded Buffers with Semaphores: A Solution


	What is a semaphore?
	Mutual Exclusion with Semaphores
	"Joining" with Semaphores
	Bounded Buffer with Semaphores

