Sistemas Operativos: Concurrency
Semaphores

Pedro F. Souto (pfs@fe.up.pt)

April 12, 2016

Roadmap

What is a semaphore?

Introduction

» A semaphore is a powerful synchronization primitive. It can be
used for:
Mutual Exclusion like mutexes/locks
Synchronization without busy waiting like condition variables
» A semaphore is a kind of a counter that supports two
operations:
up actually, sem_post () in libpthreads
down actually, sem_wait () in libpthreads
whose semantics are slightly unusual.

Definition and 1ibpthread API (1/2)

int sem_wait (sem_t =xs) {
decrement the value of semaphore s by one
wait if value of semaphore s is negative

}

int sem_post (sem_t =*s) {
increment the value of semaphore s by one

1
2
3
4
5
6
7
8 if there are one or more threads waiting, wake one
9

}

» In addition, to incrementing/decrementing the semaphores
value
» When a thread calls sem_wait () it may
either return immediately, if its value was positive upon calling
or block, otherwise
» When a thread calls sem_post () it:
» unblocks one thread, if some is blocked on the semaphore;
» We can think that each each semaphore has a queue for
waiting threads.

» When a semaphore value is negative, it gives the number of
waiting threads

libpthread API (2/2)

» The 1ibpthread API defines also an operation for initializing
a semaphore

1 #include <semaphore.h>
2 sem_t s;
3 sem_init (&s, 0, 1);

» Indeed, depending on the problem to solve, we may need to
initialize a semaphore with a proper value;

» Using semaphores for solving concurrency problems requires
some ingenuity, so let’s look at some examples

Roadmap

Mutual Exclusion with Semaphores

Application: Ensuring Mutual Exclusion

sem_t m;
sem_init (&m, 0, X); // initialize semaphore to X;

sem_wait (&m) ;
// critical section here
sem_post (&m) ;

N TG = W N =

Question What should the initial value of the semaphore be?

Application: Ensuring Mutual Exclusion

sem_t m;
sem_init (&m, 0, X); // initialize semaphore to X;

sem_wait (&m) ;
// critical section here
sem_post (&m) ;

Ul e W N =

Question What should the initial value of the semaphore be?

» Remember that we want the code to be executed in mutual
exclusion.

Mutual Exclusion Execution

Value | Thread 0 State Thread 1 State
1 Running Ready
1 call sem_wait () Running Ready
0 sem_wait () returns Running Ready
0 (crit sect: Dbegin) Running Ready
0 Interrupt; Switch—T1 Ready Running
0 Ready call sem_wait () Running
-1 Ready decrement sem Running
-1 Ready (sem<0) —+sleep Sleeping
-1 Running | Switch—T0 Sleeping
-1 (crit sect: end) Running Sleeping
-1 call sem_post () Running Sleeping
0 increment sem Running Sleeping
0 wake (T1) Running Ready
0 sem_post () returns Running Ready
0 Interrupt; Switch—T1 Ready Running
0 Ready semwait () returns Running
0 Ready (crit sect) Running
0 Ready call sem_post () Running
1 Ready sem_post () returns Running

Roadmap

"Joining" with Semaphores

Example: Simple Synchronization (Joining)
Problem A thread must wait for another one
Solution

Example: Simple Synchronization (Joining)
Problem A thread must wait for another one
Solution

sem_t s;

void =

child(void xarg) {
printf ("child\n");
sem_post (&s); // signal here: child is done
return NULL;

}

int

main (int argc, char xargv([]) {
sem_init (&s, 0, X); // what should X be?
printf ("parent: begin\n");
pthread_t c;
Pthread_create (c, NULL, child, NULL);
sem_wait (&s); // wait here for child
printf ("parent: end\n");
return 0;

}

Question What should the initial value of the semaphore be?

Joining Execution 1

» The waiting thread calls sem_wait () before the other calls
sem_post ()

Value | Parent State Child State
0 create (Child) Running | (Child exists; is runnable) Ready
0 call sem_wait () Running Ready
-1 decrement sem Running Ready
-1 (sem<0) —+sleep Sleeping Ready
-1 Switch— Child Sleeping | child runs Running
-1 Sleeping | call sem_post () Running
0 Sleeping increment sem Running
0 Ready wake (Parent) Running
0 Ready sem_post () returns Running
0 Ready Interrupt; Switch— Parent Ready
0 sem_wait () returns Running Ready

Joining Execution 2

» The signaling thread calls sem_post () before the other calls
sem_wait ()

Value | Parent State Child State
0 create (Child) Running (Child exists; is runnable) Ready
0 Interrupt; Switch— Child Ready child runs Running
0 Ready call sem_post () Running
1 Ready increment sem Running
1 Ready wake (nobody) Running
1 Ready sem_post () returns Running
1 parent runs Running | Interrupt; Switch— Parent Ready
1 call sem_wait () Running Ready
0 decrement sem Running Ready
0 (sem>0) —awake Running Ready
0 sem_wait () returns Running Ready

Roadmap

Bounded Buffer with Semaphores

Bounded Buffer with Semaphores

int buffer[MAX];
int fi1l1l = 0;
int use = 0;

void put (int value) {

}

buffer[fill] = value;

fill = (£fill + 1) % MAX;

int get () {

int tmp = buffer|use];
use = (use + 1) % MAX;
return tmp;

/7
/7

/7
/7

line
line

line
line

f1
£2

g2

Bounded Buffer with Semaphores

int buffer[MAX];
int fi1l1l = 0;
int use = 0;

void put (int value) {
buffer[fill] = value; // line
fill = (fill + 1) % MAX; // line
}

int get () {
int tmp = buffer[usel; // line
use = (use + 1) % MAX; // line
return tmp;

}

Question How to make this thread safe?

f1
£2

g2

Bounded Buffer with Semaphores

int buffer[MAX];
int £il1ll = 0;
int use = 0;

void put (int value) {

buffer[fill] = value; // line f1
fi1ll = (fill + 1) % MAX; // line f2
}
int get () {
int tmp = buffer[usel; // line gl
use = (use + 1) % MAX; // line g2

return tmp;
}
Question How to make this thread safe?

Idea Use 2 semaphores just like in the solution based on condition
variables
empty which counts the number of empty positions in the BB
Question who should wait on this semaphore?

Bounded Buffer with Semaphores

int buffer[MAX];
int £il1ll = 0;
int use = 0;

void put (int value) {

buffer[fill] = value; // line f1
fi1ll = (fill + 1) % MAX; // line f2
}
int get () {
int tmp = buffer[usel; // line gl
use = (use + 1) % MAX; // line g2

return tmp;
}
Question How to make this thread safe?

Idea Use 2 semaphores just like in the solution based on condition
variables
empty which counts the number of empty positions in the BB
Question who should wait on this semaphore?
full which counts the number of full positions in the BB

Bound Buffer with Semaphores: 1st Try (1/2)

1

2
3
4
5
6
7
8
9

sem_t empty;
sem_t full;

void xproducer (void *arg) {

int 1i;

for (1 = 0; 1 < loops;

sem_wait (&empty) ;

put (1) ;

sem_post (&full);

}

void xconsumer (void =*arg) {

int i, tmp = 0;

while (tmp != -1) {
sem_wait (&full);

tmp = get ();

sem_post (&empty) ;
printf ("$d\n",

}

tmp) ;

i++)

int main(int argc, char xargv([])

//
sem_init (&empty,
sem_init (&full,

//

0,
0,

MAX) ;
0);

// MAX buffers are empty to
and 0 are full

//

{

{

// line
// line
// line

// line
// line
// line

Pl
P2
P3

begin with...

Bound Buffer with Semaphores: 1st Try (2/2)

Question What is wrong with this solution?

Bound Buffer with Semaphores: 1st Try (2/2)

Question What is wrong with this solution?
Answer It does work properly for MAX=1

Bound Buffer with Semaphores: 1st Try (2/2)

Question What is wrong with this solution?
Answer It does work properly for MAX=1
But what if MAX>17?

Bound Buffer with Semaphores: 1st Try (2/2)

Question What is wrong with this solution?
Answer It does work properly for MAX=1

But what if MAX>17
What if multiple threads try to access the BB simultaneously?

Bound Buffer with Semaphores: 1st Try (2/2)

Question What is wrong with this solution?
Answer It does work properly for MAX=1

But what if MAX>17
What if multiple threads try to access the BB simultaneously?

Solution?

Bound Buffer with Semaphores: 1st Try (2/2)

Question What is wrong with this solution?
Answer It does work properly for MAX=1

But what if MAX>17
What if multiple threads try to access the BB simultaneously?

Solution?
» Let’'s add a semaphore to ensure mutual exclusion

Bounded Buffer with Semaphores: 2nd Try (1/2)

1 sem_t empty;

2 sem_t full;

3 sem_t mutex;

4

5 void *producer (void =*arg) {

6 int i;

7 for (1 = 0; 1 < loops; i++) {

8 sem_wait (&mutex) ; // line pO (NEW LINE)
9 sem_wait (&empty) ; // line pl

10 put (1) ; // line p2

11 sem_post (&full); // line p3

12 sem_post (&mutex) ; // line p4 (NEW LINE)

=
=W

}

—
@

16 void xconsumer (void *arg) {

17 int i;

18 for (1 = 0; 1 < loops; i++) {

19 sem_wait (&mutex) ; // line cO (NEW LINE)
20 sem_wait (&full); // line cl

21 int tmp = get(); // line c2

2 sem_post (&empty) ; // line c3

23 sem_post (&mutex) ; // line c4 (NEW LINE)
24 printf ("$d\n", tmp);

25 }

26 }

u]
o)
I
ul
it

Bounded Buffer with Semaphores: 2nd Try (2/2)

Question What is the problem now?

Bounded Buffer with Semaphores: 2nd Try (2/2)

Question What is the problem now?
What if a consumer starts before any producer?

Bounded Buffer with Semaphores: 2nd Try (2/2)

Question What is the problem now?
What if a consumer starts before any producer?
Deadlock ensues:

» The consumer waits for a producer to add an item to the BB
» But the producer cannot do it, because it cannot enter the
CS without the consumer releasing the mutex

Generally a deadlock is a race-condition in which each thread of a
set (of threads) is waiting for an event that can be generated
only by another thread in this set.

Bounded Buffer with Semaphores: 2nd Try (2/2)

Question What is the problem now?
What if a consumer starts before any producer?
Deadlock ensues:

» The consumer waits for a producer to add an item to the BB
» But the producer cannot do it, because it cannot enter the
CS without the consumer releasing the mutex

Generally a deadlock is a race-condition in which each thread of a
set (of threads) is waiting for an event that can be generated
only by another thread in this set.

How to fix this?

Bounded Buffer with Semaphores: 2nd Try (2/2)

Question What is the problem now?
What if a consumer starts before any producer?
Deadlock ensues:

» The consumer waits for a producer to add an item to the BB
» But the producer cannot do it, because it cannot enter the
CS without the consumer releasing the mutex
Generally a deadlock is a race-condition in which each thread of a
set (of threads) is waiting for an event that can be generated
only by another thread in this set.
How to fix this?

Answer Acquire the mutex just before accessing the BB

Bounded Buffers with Semaphores: A Solution

sem_t empty;
sem_t full;
sem_t mutex;

O ® N U e W N =

void xproducer (void xarg) {

int
for

}

ij

(i =0; 1 < loops;
sem_wait (&empty) ;
sem_wait (&mutex) ;
put (1) ;

sem_post (&mutex) ;
sem_post (&full);

it++)

void xconsumer (void =*arg) {

int
for

i;

(i =0; 1 < loops;
sem_wait (&full);
sem_wait (&mutex) ;
int tmp = get();
sem_post (&mutex) ;
sem_post (&empty) ;
printf ("$d\n", tmp);

it++)

{

{

//
//
//
//
//

//
//
//
//
//

line
line
line
line
line

line
line
line
line
line

cl
cl
c2
c2
c3

.5

.5

.5

.5

(MOVED MUTEX HERE...

(... AND HERE)

(MOVED MUTEX HERE...

(... AND HERE)

	What is a semaphore?
	Mutual Exclusion with Semaphores
	"Joining" with Semaphores
	Bounded Buffer with Semaphores

