
Sistemas Operativos: Concurrency

Pedro F. Souto (pfs@fe.up.pt)

March 30, 2016

Roadmap

Threads

Review
I A multi-threaded program has several execution points
I Threads of the same process:

I Share the same address space

I However each thread has its own:
I Stack (Stack Pointer/Base Pointer)
I Register set, including

I Program Counter/Instruction Pointer
I State (Ready, Running, Waiting)

Thread Creation

Interleavings (1/3)

I Thread "A" runs when "main" thread blocks

Interleavings (2/3)

I Thread "A" runs as soon as it is created

Interleavings (3/3)
I Thread "B" runs before thread "A"

I Many more interleavings are possible:
I They are determined by the scheduler decisions

Data Sharing in Multi-Threaded Programs (1/2)

int max;
volatile int counter = 0; // shared global variable

void *mythread(void *arg)
{

char *letter = arg;
int i; // stack (private per thread)
printf("%s: begin [addr of i: %p]\n",

letter, &i);
for (i = 0; i < max; i++) {

counter = counter + 1; // shared: only one
}
printf("%s: done\n", letter);
return NULL;

}

Data Sharing in Multi-Threaded Programs (2/2)

int main(int argc, char *argv[])
{

if (argc != 2) {
fprintf(stderr, "usage: main-first <loopcount>\n");
exit(1);

}
max = atoi(argv[1]);

pthread_t p1, p2;
printf("main: begin [counter = %d] [%x]\n",

counter, (unsigned int) &counter);
Pthread_create(&p1, NULL, mythread, "A");
Pthread_create(&p2, NULL, mythread, "B");
// join waits for the threads to finish
Pthread_join(p1, NULL);
Pthread_join(p2, NULL);
printf("main: done\n [counter: %d]\n [should: %d]\n",

counter, max*2);
return 0;

}

Pthread_create() is not pthread_create()

void
Pthread_create(pthread_t *thread,

const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg)

{
int rc = pthread_create(thread, attr,

start_routine, arg);
assert(rc == 0);

}

I This is a pattern used by Richard Stevens in his books
I It is useful for illustrating simple programs

I There is no need for explicitly handling failure of the system call

Data Sharing: What is going on

I Let’s run this for different values of max:
I 1.000.0000
I 10.000.0000
I 100.000.0000

Data Sharing: What is going on?

I objdump -d t1

4009b4: mov 0x2008d2(%rip),%eax # 60128c <counter>
4009ba: add $0x1,%eax
4009bd: mov %eax,0x2008c9(%rip) # 60128c <counter>

I Or, from the book:
100: mov 0x8049a1c, %eax
105: add $0x1, %eax
108: mov %eax, 0x8049a1c

Data Sharing: a race condition

I Actually, this needs not happen that often
I Usually a thread executes several loop iterations, not one only

I The issue is that the increment is not done atomically, i.e.
indivisibly

I If the x86 had an instruction that increments a value in memory
atomically:

100: addl 0x8049a1c,0x01

Data Sharing: critical sections and mutual exclusion

I If the execution of a code segment may lead to a race
condition, then we say that that segment is a critical section

I A simple way to ensure correct execution is to ensure that
critical sections are executed in mutual exclusion

I This can be done with the help of some synchronization
primitives

Lock
I A lock is a synchronization variable that is used to ensure

mutual exclusion in the execution of critical sections that may
interfere with one another

I Locks support two operations (primitives):
lock which locks/acquires a lock

I Upon return, the lock is locked/aquired/held by the calling
thread

I Depending on the implementation, the calling thread may block,
i.e. move to the WAIT state, if the lock has been locked already

unlock() which unlocks/textbfreleases a lock
I Invoking unlock on a locked/aquired/held lock, allows

another thread to return from the lock primitive
I So the protocol used to prevent race conditions with locks is:
lock_t mutex; // some globally-allocated lock
...
lock(mutex);
... // critical section
unlock(mutex)

Locks (Mutexes) em libpthread

I A mutex is a variable whose type is pthread_mutex_t
#include <pthread.h>
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

I List of functions that operate on mutexes:
int pthread_mutex_init(pthread_mutex_t *mutex,

const pthread_mutexattr_t *attr);
int pthread_mutex_destroy(pthread_mutex_t *mutex);
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

I pthread_mutex_trylock() tries to lock, i.e. it always
returns immediately, even if the mutex is already locked.

I The return value indicates whether the lock is held by the
calling thread or by a different thread.

I A mutex must be initialized before use

Eliminating race-conditions with locks

#include "mythreads.h"
#include <pthread.h>

int max;
volatile int counter = 0;
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

void *mythread(void *arg)
{

char *letter = arg;
int i; // stack (private per thread)
printf("%s: begin [addr of i: %p]\n", letter, &i);
for (i = 0; i < max; i++) {

Pthread_mutex_lock(&lock);
counter = counter + 1; // shared: only one
Pthread_mutex_unlock(&lock);

}
printf("%s: done\n", letter);
return NULL;

}

	Threads

