Sistemas Operativos: Concurrency

Pedro F. Souto (pfs@fe.up.pt)

March 30, 2016

Roadmap

Threads

Review

» A multi-threaded program has several execution points
» Threads of the same process:
» Share the same address space

OKB OKB
the code segment:
P“)gram Code where instructions live P“)gram Code
1KB N 1KB
the heap segment:
Heap dconlamsdvE\a\k)gC'd data Heap
jynamic data structures
2B (it grows downward) 2B
(free)
(free)
Stack (2)
'(‘w gvcw: upward) (free)
the stack segment:
15KB contains local variables 15KB
arguments to routines,
Stack feturn values, etc. Stack (1)
16KB 16KB

Figure 26.1: Single-Threaded And Multi-Threaded Address Spaces

» However each thread has its own:

» Stack (Stack Pointer/Base Pointer)
» Register set, including

» Program Counter/Instruction Pointer
» State (Ready, Running, Waiting)

Thread Creation

5 void *mythread(void xarg) {

6 printf ("$s\n", (char %) arg);

7 return NULL;

8 }

9

10 int

1 main (int argc, char xargv[]) {

12 pthread_t pl, p2;

13 int rc;

14 printf ("main: begin\n");

15 rc = pthread_create (&pl, NULL, mythread, "A");
16 rc = pthread_create (&p2, NULL, mythread, "B");
17 // join waits for the threads to finish

18 rc = pthread_join(pl, NULL); assert(rc == 0);
19 rc = pthread_join(p2, NULL); assert(rc == 0);
20 printf ("main: end\n");

21 return 0;

22 }

assert (rc ==
assert (rc ==

0);
0);

I

ul
it
)
£
i)

Interleavings (1/3)

» Thread "A" runs when "main" thread blocks
main Thread1 Thread2

starts running
prints “main: begin”
creates Thread 1
creates Thread 2
waits for T1

runs
prints “A”
returns
waits for T2
runs
prints “B”
returns

prints “main: end”

Interleavings (2/3)

» Thread "A" runs as soon as it is created

main Thread1 Thread2
starts running
prints “main: begin”
creates Thread 1
runs
prints “A”
returns
creates Thread 2
runs
prints “B”
returns

waits for T1

returns immediately; T1 is done
waits for T2

returns immediately; T2 is done
prints “main: end”

Interleavings (3/3)

» Thread "B" runs before thread "A"
main Thread 1 Thread?2

starts running
prints “main: begin”
creates Thread 1

creates Thread 2
runs
prints “B”
returns
waits for T1
runs
prints “A”
returns

waits for T2
returns immediately; T2 is done
prints “main: end”
» Many more interleavings are possible:
» They are determined by the scheduler decisions

Data Sharing in Multi-Threaded Programs (1/2)

int max;
volatile int counter = 0; // shared global variable

void *mythread(void =xarg)
{
char xletter = arg;
int i; // stack (private per thread)

printf ("%s: begin [addr of i: %p]l\n",
letter, &i);

for (1 = 0; 1 < max; i++) {

counter = counter + 1; // shared: only one
}
printf ("$s: done\n", letter);

return NULL;

Data Sharing in Multi-Threaded Programs (2/2)

int main(int argc, char =xargvl[])

{

if (argc !'= 2) {
fprintf (stderr, "usage: main-first <loopcount>\n"
exit (1) ;

}

max = atoi(argv[l]);

pthread_t pl, p2;

printf ("main: begin [counter = %d] [%x]\n",
counter, (unsigned int) &counter);

Pthread_create (&pl, NULL, mythread, "A");

Pthread_create (&p2, NULL, mythread, "B");

// join waits for the threads to finish

Pthread_join(pl, NULL);

Pthread_join (p2, NULL);

printf ("main: done\n [counter: %d]\n [should: %d]\n",
counter, max=*2);

return O;

Pthread_create () isnot pthread_create ()

void
Pthread_create (pthread_t =*thread,
const pthread_attr_t =xattr,
void x (xstart_routine) (voidx), void =*arq)

int rc = pthread_create(thread, attr,

start_routine, argqg);
assert (rc == 0);

» This is a pattern used by Richard Stevens in his books
» It is useful for illustrating simple programs
» There is no need for explicitly handling failure of the system call

Data Sharing: What is going on

» Let’s run this for different values of max:
» 1.000.0000
» 10.000.0000
» 100.000.0000

Data Sharing: What is going on?

» objdump -d tl

4009b4: mov 0x2008d2 (%rip), %eax # 60128c <counter>
4009ba: add 50x1, $eax
4009bd: mov %$eax, 0x2008c9 ($rip) # 60128c <counter>

» Or, from the book:

100: mov 0x8049%alc, %eax
105: add $0x1, %eax
108: mov %eax, 0x8049%alc

Data Sharing: a race condition

(after instruction)

0oSs Thread 1 Thread 2 PC %eax counter
before critical section 100 0 50
mov 0x8049alc, %eax 105 50 50
add $0x1, %eax 108 51 50
interrupt
save T1’s state
restore T2's state 100 0 50
mov 0x8049alc, %eax 105 50 50
add $0x1, %eax 108 51 50
mov %eax, 0x8049alc 113 51 51
interrupt
save T2's state
restore T1's state 108 51 51

mov %eax, 0x8049alc 113 51 51

» Actually, this needs not happen that often
» Usually a thread executes several loop iterations, not one only
» The issue is that the increment is not done atomically, i.e.
indivisibly
» If the x86 had an instruction that increments a value in memory
atomically:
100: addl 0x8049%alc, 0x01

Data Sharing: critical sections and mutual exclusion

(after instruction)

0oSs Thread 1 Thread 2 PC %eax counter
before critical section 100 0 50
mov 0x8049alc, %eax 105 50 50
add $0x1, Y%eax 108 51 50
interrupt
save T1’s state
restore T2's state 100 0 50
mov 0x8049alc, Y%eax 105 50 50
add $0x1, Y%eax 108 51 50
mov %eax, 0x8049alc 113 51 51
interrupt
save T2's state
restore T1's state 108 51 51

mov %eax, 0x8049alc 113 51 51

» If the execution of a code segment may lead to a race
condition, then we say that that segment is a critical section
» A simple way to ensure correct execution is to ensure that
critical sections are executed in mutual exclusion
» This can be done with the help of some synchronization
primitives

Lock

» Alock is a synchronization variable that is used to ensure
mutual exclusion in the execution of critical sections that may
interfere with one another

» Locks support two operations (primitives):
lock which locks/acquires a lock

» Upon return, the 1ock is locked/aquired/held by the calling
thread

» Depending on the implementation, the calling thread may block,
i.e. move to the WATIT state, if the lock has been locked already

unlock () which unlocks/textbfreleases a lock
» Invoking unlock on a locked/aquired/held lock, allows
another thread to return from the 1ock primitive
» So the protocol used to prevent race conditions with locks is:
lock_t mutex; // some globally-allocated lock

lock (mutex) ;
cen // critical section
unlock (mutex)

Locks (Mutexes) em libpthread

v

v

A mutex is a variable whose type is pthread_mutex_t

#include <pthread.h>
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

List of functions that operate on mutexes:

int

int
int
int
int

pthread _mutex_init (pthread mutex_t =*mutex,
const pthread_mutexattr_t =xattr);
pthread_mutex_destroy (pthread_mutex_t *mutex);
pthread_mutex_lock (pthread_mutex_t »*mutex);
pthread_mutex_trylock (pthread_mutex_t *mutex);
pthread_mutex_unlock (pthread_mutex_t xmutex);

pthread_mutex_trylock () tries to lock, i.e. it always
returns immediately, even if the mutex is already locked.

» The return value indicates whether the lock is held by the

calling thread or by a different thread.

A mutex must be initialized before use

Eliminating race-conditions with locks

#include "mythreads.h"
finclude <pthread.h>

int max;
volatile int counter = 0;
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

void xmythread(void xarqg)
{
char xletter = arg;
int i; // stack (private per thread)
printf ("%$s: begin [addr of i: %p]l\n", letter, &i);

for (i = 0; 1 < max; 1i++) {
Pthread_mutex_lock (&lock) ;
counter = counter + 1; // shared: only one

Pthread_mutex_unlock (&lock) ;
}

printf ("%$s: done\n", letter);
return NULL;

	Threads

